
Exploring Regular Structures in Strings

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Dominik Köppl

Dortmund

2018

Tag der mündlichen Prüfung: 17. Juli 2018
Dekan: Prof. Dr.-Ing. Gernot A. Fink
Gutachter: Prof. Dr. Johannes Fischer, und

Prof. Dr. Shunsuke Inenaga

Acknowledgments
The first words are dedicated to those who helped and supported me for finishing
this thesis.

First and foremost, I want to express my gratitude to my advisor Johannes
Fischer for giving me the opportunity to work in his research group at the TU
Dortmund. I am deeply grateful for his scientific guidance during the past years,
for encouraging me to present my results at conferences, and for giving me the
freedom to pursue my own research interests with a high degree of independence.

Second, I am grateful to Shunsuke Inenaga for hosting me during the JSPS
summer program 2016, for the interesting scientific discussions during various
meetings (leading to two conference contributions and one journal article), and
for immediately agreeing to serve as the second referee of this thesis.

I thank Thomas Schwentick and Sven Rahmann for agreeing to serve as
members of my defense committee. I want to thank Thomas Schwentick for
holding the mini-workshop for theoretical computer science at the faculty, at
which I could contribute several times.

I am obliged to the co-authors of my articles for sharing their experience and
knowledge. My special thanks are directed to my co-authors Roland Glück,
Tomohiro I, and Florian Kurpicz, who were also willing to help me polishing up
this work. I also want to thank my co-author Kunihiko Sadakane for welcoming
me twice as a guest at his research group at the Tokyo University.

I owe a big thanks to Jonas Charfreitag, Andre Droschinsky, Jonas Ellert,
Marius Greiff, Jannik Junghänel, Bastian Kuhn, Elias Kuthe, Alexander Köppl,
Bianca Markowski, Manuel Mulzer, Christopher Osthues, Arno Pasternak, Jonas
Schmidt, Henning Timm, Elias Wiebelitz, and Jens Zentgraf for proofreading
parts of this thesis and making valuable suggestions.

I am also grateful to my scientific student assistants Patrick Dinklage and
Marvin Löbel without whom the framework tudocomp would not have been
realizable. I want to thank especially our secretary Gundel Jankord and our
technical administrator Helmut Henning for making paperwork as agreeable as
possible.

i

Abstract
This thesis is dedicated to string processing algorithms and to combinatorics
on words. With respect to the former, we devise Lempel-Ziv (LZ) factorization
and sparse suffix sorting algorithms. With respect to the latter, we search for
all distinct squares, all maximal α-gapped repeats, and all maximal α-gapped
palindromes. The topics of the presented approaches are related: for instance,
our results for the LZ factorization have applications for finding all distinct
squares, whereas our sparse suffix sorting algorithm profits from finding gapped
repeats. The results can contribute to tools for data compression, for text
indexing, and for the analysis of biological sequences.

Given a text T of length n whose characters are drawn from an integer
alphabet of size σ, we obtain the following results within the RAM model:

LZ factorizations. We devise algorithms computing Lempel-Ziv-77 (LZ77) and
Lempel-Ziv-78 (LZ78) in O(n/ε) = O(n) time while taking min(O(n lg σ), (1 +
ε)n lg n +O(n)) bits of working space, where ε with 0 < ε ≤ 1 is a selectable
constant trade-off parameter. We also show that the LZ78 factorization can be
computed with a Las Vegas algorithm in O(n) time with O(z lg(σz)) bits of
working space, where z is the number of LZ78 factors. Previous algorithms use
more memory or need superlinear time.

Applications of the LZ77 factorization. We revisit the longest previous factor
(LPF) table, which is traditionally stored in an array of n lg n bits. We propose
a succinct representation of the LPF table taking 2n+ o(n) bits, and compute
the LPF table with an adaptation of our LZ77 factorization algorithms, running
in O(n lgεσ n) time with O(n lg σ) bits of working space, or in O(n) time with
(1 + ε)n lg n+O(n) bits of working space. Having the LPF table at hand, we
devise an algorithm computing all distinct squares in O(n) time with twice
the amount of the working space, i.e., with either 2(1 + ε)n lg n + O(n) or
O(n lg σ) bits, for computing the LPF table. Additionally, we propose the first
algorithm computing all distinct squares online. The online algorithm runs in
O(n lg2 lg n/ lg lg lg n) time.

Sparse Suffix Sorting. We propose an online algorithm computing the sparse
suffix array and the sparse longest common prefix array of the text T in
O(c(

√
lg σ + lg lg n) +m lgm lg n lg∗ n) time with O(m) words of space under

the premise that the space of T is rewritable, where m ≤ n is the number of

iii

suffixes to be sorted (provided online and arbitrarily), and c is the number
of characters with m ≤ c ≤ n that must be compared for distinguishing the
designated suffixes. This is the first deterministic approach with a working
space limit of O(m) words and non-trivial running time. Previous approaches
are randomized or impose restrictions on the selected suffixes.

All maximal α-gapped repeats and palindromes. We show that the number
of all maximal α-gapped repeats and the number of all maximal α-gapped
palindromes are at most 3(π2/6 + 5/2)αn and 7(π2/6 + 1/2)αn − 3n − 1,
respectively. Subsequently, we present an algorithm finding all maximal α-
gapped repeats in O(αn) time. This is the first algorithm that runs in linear
time independently of σ, as previous results with the same running time assumed
σ to be constant.

iv

Contents
1 Introduction 1

1.1 Joining the Dots . 4
1.2 Our Results . 5

1.2.1 LZ Factorizations . 6
1.2.2 Applications of the LZ77 Factorization 8
1.2.3 Sparse Suffix Sorting . 9
1.2.4 Gapped Repeats and Palindromes 10
1.2.5 The Big Picture . 10

1.3 Publications Contributed to this Thesis 11
1.4 Style Policies . 13

2 Preliminaries 15
2.1 Basic Notation . 15
2.2 Model of Computation . 16
2.3 Intervals . 16
2.4 Strings . 16
2.5 Regular Structures . 17
2.6 Support Data Structures . 18
2.7 Input Text . 19
2.8 Effective Alphabet . 20
2.9 Text Data Structures . 21

3 Lempel-Ziv Factorizations 23
3.1 Our Contribution . 24
3.2 Related Work . 25
3.3 Preliminaries . 29

3.3.1 Factorizations . 29
3.3.2 Suffix Trees . 31
3.3.3 Operations on the Suffix Tree 31
3.3.4 Framework of the LZ Algorithms 38

3.4 LZ77 with Space-Efficient Suffix Trees 41
3.4.1 Alphabet-Independent Output-Streaming 42
3.4.2 Alphabet-Sensitive Algorithm 43
3.4.3 Alphabet-Independent In-Place Algorithm 47
3.4.4 Adaptation to Computing the LPF Table 52

3.5 Application: Distinct Squares 54
3.5.1 Preliminaries . 56

v

Contents

3.5.2 Set of All Distinct Squares 56
3.5.3 Algorithmic Improvement 59
3.5.4 Elaborated Example . 62
3.5.5 Need for RMQs on the LPF Table 63
3.5.6 Practical Results . 64
3.5.7 Computing All Distinct Squares Online 65
3.5.8 Decorating the Suffix Tree with All Squares 69
3.5.9 On the Tree Topology of the MAST 71

3.6 Variants of the LZ77 Factorization 74
3.6.1 Non-Overlapping LZ77 74
3.6.2 Non-Overlapping Reversed LZ77 80
3.6.3 Overlapping Reversed LZ77 84

3.7 LZ78 with Space-Efficient Suffix Trees 85
3.7.1 Storing the LZ Trie Topology 86
3.7.2 Alphabet-Sensitive Algorithm 91
3.7.3 Alphabet-Independent Algorithm 98

3.8 Practical LZ78 and LZW Computation 103
3.8.1 LZ-Trie Representations 104
3.8.2 Practical Results . 110

3.9 Conclusion . 116
3.10 Landscape Oriented Figures . 122

4 Sparse Suffix Sorting 127
4.1 Algorithm Outline and Our Contribution 128

4.1.1 Suffix Sorting and LCE Queries 130
4.1.2 Outline of this Chapter 132

4.2 Edit Sensitive Parsing . 132
4.2.1 Alphabet Reduction . 133
4.2.2 Meta-Blocks . 136
4.2.3 Edit Sensitive Parsing Trees 137
4.2.4 Fragile and Stable Nodes in ESP Trees 142

4.3 Hierarchical Stable Parsing Trees 156
4.3.1 Upper Bound on the Number of Fragile Nodes 157
4.3.2 Tree Representation . 163
4.3.3 LCE Queries with HSP Trees 163

4.4 Sparse Suffix Sorting . 167
4.4.1 Abstract Algorithm . 167
4.4.2 Sparse Suffix Sorting with HSP Trees 174

4.5 Sparse Suffix Sorting in Text Space 177
4.5.1 Truncated HSP Trees . 177
4.5.2 Sparse Suffix Sorting with Truncated HSP Trees 183

4.6 Alternative to the Suffix AVL Tree 190
4.7 Conclusion . 196
4.8 Landscape Oriented Figures . 199

vi

Contents

5 Gapped Regular Structures 203
5.1 Related Work and Our Contribution 204
5.2 Preliminaries . 208

5.2.1 Periodicity . 208
5.2.2 Gapped Repeats and Palindromes 209

5.3 Combinatoric Result . 212
5.3.1 β-Periodic Repeats and Palindromes 212
5.3.2 Improved Point Analysis 216
5.3.3 β-Aperiodic Repeats . 220
5.3.4 β-Aperiodic Palindromes 224

5.4 Computing All Maximal α-Gapped Repeats 232
5.4.1 Overlapping Arms . 232
5.4.2 Support Data Structures 233
5.4.3 Short Arms . 238
5.4.4 Long Arms . 244

5.5 Conclusion . 250

6 Epilogue 253

Symbol Register 255

Acronyms 263

Bibliography 265

Index 281

vii

Chapter

1 Introduction
From rainbows, river meanders, and shadows to spider
webs, honeycombs, and the markings on animal coats,
the visible world is full of patterns that can be described
mathematically.

— John A. Adam [3]

Handling large texts spans a wide range of problems. Most prominent examples
are (1) text compression to store and transfer textual data, (2) the indexing
of full texts to search in textual data, and (3) the analysis of characteristics
in textual data (e.g., evaluating biological data). Näıve approaches tackling
these problems fail for textual data in general because they tend to be too slow
or require memory that is orders of magnitude larger than the data. To still
handle large data sets in reasonable time and memory, we need to shift our
attention to solutions whose performance scales well with the problem instance.
These solutions need (a) to work in linear or near-linear time to have guarantees
about their scalability regarding the speed, and (b) to use data structures with
small memory footprints to support working with large textual data within the
available memory resources.

The key technique of our solutions is based on finding and exploiting regular
structures. Regular structures like repeats and palindromes help us to pave new
ways to (1) compress texts, (2) speed up text comparisons, and (3) characterize
texts. Regular structures are ubiquitous: They are found in biological data
like deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences, natural
languages or programming languages. For instance, the common German
tongue-twister1

fischers fritz fischt frische fische frische fische fischt fischers fritz

1 2 3 4 5 6 7 8 9 10

is rich in regular structures: the re-occurrences of fischers fritz and fischt
are called gapped repeats, the substring consisting of the two consecutive occur-
rences of frische fische is called a square, i.e., a square is a gapped repeat
with a gap of length zero. The first occurrence and the repeated occurrence of
a gapped repeat are called its left and right arm, respectively. By means of this
example text, we intend to highlight some concepts that we study in this thesis:
1 We enumerated the words to ease the following explanations.

1

1 Introduction

(1) A compressor can apply the Lempel-Ziv-77 (LZ77) factorization [246] to
remove all re-occurrences. The word-based LZ77 factorization is computed
by scanning the text from left to right. Starting at the first word (i = 1),
we process the text as follows: Given that we are at the i-th word, we
replace the right arm of the longest gapped repeat starting at the i-th
word with a reference to its left arm, and move to the (i + `)-th word,
where ` is the number of words covered by the left arm. If the left arm
starts with the j-th word, the reference is stored as a pair (j, `), which
is also an instruction for the decompressor to substitute the tuple with
the j-th word and its `− 1 succeeding words. If there is no gapped repeat
starting at the i-th word, we move to the (i + 1)-th word and recurse.
For our tongue-twister the output is fischers fritz fischt frische
fische (4,2) (3,1) (1,2), in which the right arms of all previously
described gapped repeats are replaced by references.

(2) An index for substring comparisons could maintain a dictionary that
addresses each stored string by a name. The index replaces both arms of
a gapped repeat with a name, and stores the characters of an arm along
with its name in the dictionary. For instance, we could give the names A, B
and C to the substrings fischers fritz, fischt, and frische fische,
respectively, and replace all occurrences of these substrings with their
respective names.

This gives us a new text T ′ := ABCCBA.
Since we can restore the original text
with the dictionary and T ′, we can
discard T . For highly repetitive texts,
storing the dictionary and T ′ is more
space efficient than keeping T . A
query such as comparing the suffixes
starting at the fourth and the sixth
word (i.e., starting at the third and
fourth replaced substring) can now
be performed quicker by looking at
the names instead of the words them-
selves. Queries can be answered with
an index data structure like the suffix
tree even more efficiently. The suffix
tree for T ′$ is given in Fig. 1.1. We
appended the delimiter $ to ensure
that a suffix starting at position i is
represented by a leaf with number i.

1

2

7

$

3
A

4

6

$

5

1

B

C

C

B

A

$

6
B

7

5

A

$

8

2

C

C

B

A

$

9
C

0

4

B

A

$

1

3

C

B

A

$

Fig. 1.1: Suffix tree of T ′ =
ABCCBA.

We also stipulate that the delimiter $ is the lexicographically smallest
character. It can appear only at the end of a text. In the suffix tree, we

2

Compression Scheme Regularity

LZ77 (Sect. 3.4) Gapped Repeats
Reversed LZ77 (Sect. 3.6) Gapped Palindromes
LCPcomp [69, Sect. 3.2] LCP Array Histogram
Huffman code [126] Entropy H0
PPM [51] Entropy Hk

Fig. 1.2: Compression
schemes taking advan-
tage of specific regular-
ities.

sort the children of each node lexicographically, and label each leaf with
the starting position of its respective suffix.

(3) More can be seen when stepping down from word level to character level:
The text contains mainly occurrences of fri, isch and fisch, which are
interspersed by some characters. All these occurrences are part of gapped
repeats. The left and right arms of some of these gapped repeats are
inside the respectively left and right arm of other gapped repeats. We call
those gapped repeats maximal whose arms are not contained in the arms
of another gapped repeat, For instance, the re-occurrence fischt is not
maximal, whereas the re-occurrence fischt f is maximal.

We also study periodic substrings. A periodic substring is a consecutive
repetition of a string. Since periodic substrings contain at least two
consecutive occurrences of a string, they are a generalization of squares.
For instance, the substring frische fische frische fische is both
a square and a periodic substring, whereas frische fische frische
fische f is only a periodic substring. The latter periodic substring is
maximal, i.e., it can be extended neither to its left nor to its right to a
longer periodic substring (in our case, neither the preceding t nor the
succeeding i do fit). We call such a maximal periodic substring also a
run.

Apart from that, the string T ′ = ABCCBA defined in (2) is a palindrome.
Similar to periodic substrings, we say that a palindrome is maximal if it
cannot be extended outwards (like we could extend the occurrence of BCCB
in T ′ to ABCCBA). We profit from the restriction to maximal repetitions
or maximal palindromes in that their number in a text T is at most
linear in the length of T , whereas there can be quadratic many squares or
palindromes found in T . Combinatorial results providing upper bounds
on the number of a regular structure help us in attaining an upper bound
on the running time of algorithms finding all occurrences of this regular
structure.

3

1 Introduction

1.1 Joining the Dots
The keynote of the introduction of this chapter is to think of regular structures
as redundancies of the text. Removing redundancies is the key concept of
compression schemes that substitute redundant parts to gain compression. Put
differently, regular structures give evidence of the compressibility of a string,
whereas compression algorithms classify regular structures as redundant parts
of the text. As can be seen in Fig. 1.2, analyzing regular structures and devising
compression algorithms goes hand in hand. Figure 1.3 gives an overview of the
interaction of the topics that we focus on within this thesis.

Text Data
Structures

Compression
Algorithms

FactorizationsRegular Structures

influence
construction

of
find

compute

find

apply

accelerate

Fig. 1.3: Interaction of the topics within our
focus.

It would go beyond the scope
of this thesis to give a thorough
review of all regular structures
(for that see, e.g., [18, 63, 178])
or of the importance of reg-
ular structures. Instead, we
briefly sketch, for a text of
length n whose characters are
drawn from an integer alphabet
of size σ, the history and impor-
tance of two fundamental tools
for working with regular struc-
tures: The suffix tree and the
LZ77 factorization. The suffix
tree has a long story of advancements, starting with the construction algorithms
of Weiner [241], McCreight [187], and Ukkonen [236], each with a running time
of O(n lg σ), which was improved to O(n) time later by Farach-Colton et al. [75].
Gusfield [120] devoted most of his book to the usefulness of suffix trees, giving
plenty of examples on how to find regular structures with the suffix tree. He also
showed how to compute the LZ77 factorization with the suffix tree in O(n lg σ)
time. However, the suffix tree is traditionally stored in a pointer-based tree
structure, which takes O(n lg n) bits of memory. This memory footprint makes
pointer-based suffix trees unfavorable for large datasets. Just recently, Munro
et al. [190] presented a suffix tree construction algorithm using O(n lg σ) bits
of working space. The algorithm constructs an O(n lg σ)-bits representation
of the suffix tree in linear time. The drawback is that some operations, like
querying the suffix number of a leaf, are by a logarithmic factor slower than
in the pointer-based representation. Another representation [2] of the suffix
tree combines the suffix array with (succinct) support data structures. With
this representation Abouelhoda et al. [2] can compute the LZ77 factorization.
For that, they need the longest common prefix (LCP) array. The interesting
connection between the LCP array and the LZ77 factorization is that the LCP
array already stores the lengths of all LZ77 factors. This connection was ob-
served by Crochemore et al. [62]. They studied the longest previous factor (LPF)

4

1.2 Our Results

table [58, 98] whose i-th entry stores the length of longest substring starting
before i that is a prefix of the suffix starting at text position i, i.e., the i-th
entry is the length of an LZ77 factor that would start at the i-th text position
(cf. Sect. 3.4.4). Their study lead to the observation that the LPF table is a
permutation of LCP array [62, Prop. 2].

Back to the suffix tree representations, a question is whether we can compute
the LZ77 factorization in linear time in reasonable space. As we will later see, we
can answer this question affirmatively by presenting two algorithmic solutions
working with (a) the compressed suffix tree of Munro et al. [190] within O(n lg σ)
bits and (b) the suffix array enhanced with support data structures within
(1 + ε)n lg n+O(n) bits for an arbitrary constant ε > 0, respectively. Having
efficient algorithms computing the LZ77 factorization available, we present its
usefulness for finding regular structures by giving an application on computing
all distinct squares.

To close the cycle between regular structures and string algorithms, we
emphasize that regular structures can help devising string algorithms efficiently.
An interesting problem, for instance, is whether we can take advantage of regular
structures like gapped repeats to accelerate suffix comparisons. Suppose that
we want to sort m suffixes of a text T of length n while using only O(m) words
as working space. This can be done by a plain string sorter that treats the m
suffixes as m strings (without considering that the suffixes overlap). On the one
hand, the string sorter is best at sorting the m suffixes if they pairwisely share
a longest common prefix of constant length. In that case, the string sorter can
distinguish two suffixes in constant time. For instance, an in-place linear time
integer sorting algorithm (e.g., Lemma 2.7) can sort the suffixes in O(m) time
using O(m) words of space to store the order of the suffixes. On the other hand,
the string sorter runs in Ω(nm) time to sort the first m suffixes if T is a run
of the same character (i.e., T = an for a character a). In Chapter 4, we show
how to prevent the string sorter from running in quadratic time with a data
structure built on gapped repeats.

1.2 Our Results
Highlighting three different aspects of working with regular structures in the
opening of this introduction was not unintentional. In this thesis, we tackle
problems that can be categorized into these three aspects, namely:

(1) We devise algorithms computing the Lempel-Ziv-77 (LZ77) [246] and
Lempel-Ziv-78 (LZ78) [247] factorizations,

(2) we construct the sparse suffix array online, and

(3) we devise an upper bound on the number of all maximal α-gapped repeats
and palindromes, and show how to compute the sets

5

1 Introduction

• of all maximal α-gapped repeats,
• of all maximal α-gapped palindromes, and
• of all distinct squares.

We devised our algorithms within the RAM model. We assume that an algorithm
receives an input text (of length n) whose characters are drawn from an integer
alphabet (of size σ). Except for the hashing techniques presented in Sect. 3.8,
all algorithms work deterministic.

Since the computation of all distinct squares depends on the LZ77 factorization,
we felt that this result fits better in the chapter dedicated to the Lempel-Ziv (LZ)
factorizations. Having said that, the structure of this thesis is as follows:

1.2.1 LZ Factorizations
In Chapter 3, we provide new algorithms for computing the LZ factorizations.
The LZ factorizations partition a text into substrings, which are called factors.
Each factor refers either (LZ77) to a previous text position or (LZ78) to a previous
factor. These references are selected greedily, i.e., the referred position of an LZ77
factor F is the starting position of the longest substring starting before F that is
equal to F , whereas the referred factor of an LZ78 factor F is the factor that has
the longest common prefix with F among all other factors preceding F . Both
factorizations allow us to represent each factor as a pair of integers containing
(LZ77) the referred position and the factor length, or (LZ78) the referred factor and
an additional character. These pairs of integers can be encoded in a compressed
file. The crux is to find the referred positions and the referred factors. For
instance, scanning the text näıvely to find the referred position for each factor
takes quadratic time. Although introduced back in 1977 and 1978, research is
still active on this topic, yielding incremental improvements in computing the
LZ factorizations faster and more memory efficiently. In this line of research,
we present algorithms computing the LZ77 (Sect. 3.4) and the LZ78 (Sect. 3.7)
factorization in O(n) time while taking min(O(n lg σ), (1 + ε)n lg n+O(n)) bits
of working space, where ε with 0 < ε ≤ 1 is a selectable constant. These are
the first algorithms taking space that is at most linear in the number of bits
of the input text size. Previous results achieved non-linear time or work with
more memory. The currently best linear time algorithms for computing the LZ77
factorization are by Kärkkäinen et al. [148] and Goto and Bannai [116]. The
former group of authors presented an algorithm using 2n lg n bits of memory.
The latter group uses a single array with n lg n bits and support data structures
with O(σ lg n) bits. For σ = Ω(n), we can select a sufficient small ε such that
our solution using (1 + ε)n lg n+ 2n bits (Thm. 3.11) takes less space: We set
ε := min(1, σ/n−2/ lg n), which is positive if σ/n > 2/ lg n (this inequality holds
for sufficiently large σ). With this ε our working space becomes n lg n+ σ lg n
bits (if σ ≤ n + 2n/ lg n) or 2n lg n bits (if σ > n + 2n/ lg n). Our algorithm
runs in O(n/ε) = O(n2/σ) = O(n) time.

6

1.2 Our Results

However, we mostly deal with small alphabet sizes when working with the
LZ77 factorization in practice. Typical large texts with small alphabet sizes are
DNA sequences. Suppose that we want to compute the LZ77 factorization on
a collection of 100 human genomes (to illustrate our approach with concrete
numbers). A human genome has approximately 3 · 109 base pairs, where each
base is of one of four different types (A, C, G, or T) such that the human genome
can be represented as a string whose characters are drawn from an alphabet
of size four. By representing each base with two bits, a human genome can
be stored in 6 · 109 bits, or roughly 715 MiB. Consequently, a collection of 100
human genomes can be represented as a text of size 71,500 MiB ≈ 69.8 GiB
with σ = 4. The LZ77 factorization algorithm of Gusfield [120] using a pointer-
based suffix tree representation is unattractive with respect to the memory
footprint. For instance, the implementation by Kurtz [169] is considered one of
the most efficient suffix tree implementations. However, this implementation
already takes 80 bits on average and up to 160 bits per character. As Fig. 1.4
shows, there are several compressed suffix tree (CST) implementations available,
whose memory footprints range from 4 up to 17 bits per character. Our LZ77
factorization algorithm uses, additionally to the CST, at most 3n+ z lg n+ o(n)
bits (Thm. 3.13), where z is the number of LZ77 factors. For the second term,
we can assume that z lg n ≤ n lg σ = 2n for a compressible DNA sequence (like
in our case2). The o(n) term is due to a rank-support that usually takes a
fraction of n [196]. Within these assumptions, we need at most 6n bits on
top of the CST representation, i.e., between 10 and 22 bits per character on
average. This yields a range between 349 GiB and 803 GiB as an estimate for
the maximal memory consumption of our LZ77 algorithm. The approach of Goto
and Bannai [116] needs n lg n +O(σ lg n) ≥ n lg n bits of memory, or at least
39n bits with dlg ne = 39. Consequently, they need 1362 GiB of memory at least.
According to these numbers, our memory requirement is less than 26%–59%
of the memory needed by Goto and Bannai [116]. As pointed out by Abeliuk
et al. [1, Sect. 1], the memory requirement of a CST representation can be much
less (down to 0.6 bits per character) in the case of repetitive text collections
like a collection of human genomes. A downside of our approach is that current
CST implementations need more space during their construction such that a
practical evaluation of the memory consumption does not lead to satisfiable
results (yet).

Up to a term of O(n) bits, our LZ77 and LZ78 factorization algorithms work
within the same spaces. For LZ78, it is possible to further improve the memory
footprint of the LZ78 factorization when permitting randomization: In Sect. 3.8,
we present a randomized algorithm computing the LZ78 factorization in O(n)
expected time with O(z lg(σz)) bits of working space for the same text, where z
is the number of LZ78 factors. This variant is actually practical as we evaluate it
within a framework [69] using a dynamic trie data structure for computing the

2 For instance, see [239] for an approach compressing multiple human genomes with LZ77.

7

1 Introduction

Bits Ref.
4–6 Russo et al. [215]
8–12 Abeliuk et al. [1]
13–16 Abeliuk et al. [1]
13–17 Gog and Ohlebusch [110]

Fig. 1.4: CST implementations with
an estimate of the needed space (av-
erage number of bits per character).
There is a trade-off between the mem-
ory footprint and the practical speed
(not shown here).

LZ78 factorization. For LZ78-compressible texts, we can experimentally validate
that our algorithm needs less bits than the input.

Finally, we consider variants of the LZ77 factorization: (a) the classic-LZ77
factorization, in which each factor introduces an additional character like LZ78,
(b) the LZ77 factorization without overlaps, and the reversed LZ77 factorization
(c) with and (d) without overlaps (see the last paragraphs of Sects. 3.4.2 and 3.4.3
for the first variant and Sect. 3.6 for the other variants).

1.2.2 Applications of the LZ77 Factorization
In an intermezzo between the standard LZ77 factorization (Sect. 3.4.3) and its
variants (Sect. 3.6), we give applications to the results achieved so far: We recall
the LPF table [58, 98] in Sect. 3.4.4, which is traditionally stored in an array
with n lg n bits. We propose a succinct representation taking 2n + o(n) bits,
and compute the LPF table in this representation with an adaptation of our
LZ77 factorization algorithms. We present two algorithms computing the LPF
table (a) in O(n lgεσ n) time with O(n lg σ) bits of working space, or (b) in O(n)
time with (1 + ε)n lg n+O(n) bits of working space, respectively.

As an application to the LPF table, we focus on the computation of all distinct
squares in Sect. 3.5. It is known that there can be O(n2) occurrences of squares
in a text of length n (consider an). Common research focuses on counting (a)
those squares that do not contain another square [244], and (b) all distinct
squares, i.e., to count only one occurrence of each square present in the text.
For the latter, the best known algorithm finding all distinct squares runs in
linear time while taking O(n) words [65]. Unsatisfied with this space bound,
we present an alternative algorithm with refined space requirements: Having
the LPF table at hand, we present an algorithm finding all distinct squares in
O(n) time with twice the amount of the working space needed by one of the
two aforementioned algorithms computing the LPF table.

If we allow O(n) words of space, we can perform other operations with
(variants of) this algorithm: We present (a) an online algorithm computing
all distinct squares in O(n lg2 lg n/ lg lg lg n) time, and show that the set of all
distinct squares can be used for (b) finding the squares common to all strings of
a set with a total string length of n, and (c) computing the tree topology of the
minimal augmented suffix tree (MAST) [11], while spending O(n) time for the
last two problems. Computing the tree topology of the MAST was previously

8

1.2 Our Results

achieved in O(n lg n) time [38]. The MAST was introduced by Apostolico and
Preparata [11] for retrieving the number of non-overlapping occurrences of a
pattern in the text.

1.2.3 Sparse Suffix Sorting
In Chapter 4, we study how string sorting can be accelerated by taking advantage
of regular structures. We focus on the special topic of sorting a subset of suffixes
of a single string online. This is a variant of the common problem of computing
the suffix array storing the lexicographic order of all suffixes. It is motivated
by the fact that it is often not necessary to have every entry of the suffix array
available. The idea is to compute only those suffix array entries that are actually
requested; we call such a suffix array sparse. However, in most cases, it is not
clear in advance which positions are actually requested. An ideal algorithm
would build a dynamic sparse suffix array that supports adding a suffix online.
Here, we propose such an algorithm: We can compute m positions of the suffix
array, i.e., the order of m suffixes, in O(c(

√
lg σ + lg lg n) + (m lgm lg n lg∗ n))

time with O(m) words of additional working space to the text, where c is the
distinguishing prefix size, i.e., the number of characters that are necessary to
distinguish the m suffixes. We underline that the running time is sublinear
when c = o(n/(

√
lg σ + lg lg n)) and m lgm = o(n/ lg n lg∗ n). A feature of this

algorithm is that these m entries can be chosen online, in any given order. The
algorithm works in the restore model, where the algorithm is allowed to use the
text space itself as a working space, i.e., it is allowed to overwrite the text under
the premise that it can restore the original text. Overall, this approach is up
until now the best known deterministic algorithm for computing the sparse suffix
array that supports adding arbitrary text positions. Previous deterministic
approaches restrict the selection of the suffixes, need space linear in n, or run in
Ω(nm) time.

We describe our approach in Sect. 4.4 with an abstract data type that
(a) answers longest common extension (LCE) queries and (b) is mergeable.
As representations of this abstract data type, we propose the hierarchical
stable parsing (HSP) tree in Sect. 4.3 and its variant, the truncated HSP tree,
in Sect. 4.5. We parametrize the latter with a trade-off parameter τ with
1 ≤ τ ≤ n such that it answers an LCE query ` := lce(i, j) for two text
positions i and j with 1 ≤ i, j ≤ n in O(lg∗ n(lg(`/τ) + τ lg 3/ logσ n)) time.
It takes O(n/τ) words of space. We can build it in O(n(lg∗ n + (lg n)/τ +
(lg τ)/ logσ n)) time with additional O(max(n/ lg n, τ lg 3 lg∗ n)) words of space
during construction. The HSP tree is actually a slightly modified version of the
edit sensitive parsing (ESP) tree [55]. However, the ESP tree has a flaw, which
we unveil in Sect. 4.2.4. This flaw invalidates upper bounds claimed in several
research papers (e.g., [54, 100, 186, 227, 228]). Fortunately, we can verify that
our HSP tree is not affected by it (Sect. 4.3.1).

9

1 Introduction

Suffix Tree
Sect. 3.3.2

LZ77
Sect. 3.4

LZ78
Sect. 3.7

Reversed LZ77
Sect. 3.6

Distinct Squares
Sect. 3.5

Sparse Suffix Tree
Chapter 4

Runs
[160]

Max. α-Gapped Palindromes
[163]

Fig. 1.5: Influence of the different techniques studied in this thesis.

1.2.4 Gapped Repeats and Palindromes
In Chapter 5, we deal with a generalization of squares and palindromes: α-
gapped repeats and α-gapped palindromes. We know that the number of
squares and palindromes in a string can be O(n2), but the number of all runs
and maximal palindromes is bounded by O(n). However, the set of all runs and
maximal palindromes is rather tiny, and one may question whether there are
other regular structures with interesting bounds. Generalizations motivated by
the study of palindromic sequences of biological origin are maximal α-gapped
repeats and palindromes, for which we show that the maximum number of them
is tightly bounded by Θ(αn) for a real number α ≥ 1 (Sect. 5.3). This result
was also independently obtained by Crochemore et al. [66]. However, their
analysis is restricted to gapped repeats, and yields an upper bound in order of n
and α, whereas we can give concrete upper bounds, namely: There are at most
3(π2/6 + 5/2)αn many maximal α-gapped repeats and 7(π2/6 + 1/2)αn− 3n− 1
many maximal α-gapped palindromes.

Accompanied by this combinatorial result, we devise an algorithm finding
all maximal α-gapped repeats in O(αn) time, obtaining an optimal result with
respect to the worst case running time (Sect. 5.4). This is an improvement to
the best previous approaches assuming σ to be constant [66, 229].

1.2.5 The Big Picture
As Fig. 1.5 connotes, all three parts are related: Having knowledge of the
order of the suffixes and their longest common prefixes, we can compute suffix
tree representations (Sect. 3.3.2) that help us computing the LZ factorizations
(Sects. 3.4 and 3.7). The LZ77 factorization is the main tool for computing all
distinct squares (Sect. 3.5) and all runs [160]. Knowing the runs in a string, we
can accelerate LCE computation and sparse suffix array computation (Chapter 4),
which can be used to compute the order of the suffixes.

10

1.3 Publications Contributed to this Thesis

1.3 Publications Contributed to this Thesis
This thesis depends on the contents of several publications. We list these
publications grouped by chapter. Each listed reference is accompanied with a
list of sections that are based on the respective reference. References without
such a list are used as the foundation of the entire respective chapter. The
names of authors are sorted in each reference alphabetically. As mandatory by
the graduation exam regulations, the author appends a brief description of his
contribution to each article. We start with Chapter 3, which is based on

• J. Fischer, T. I, D. Köppl, and K. Sadakane. Lempel-Ziv factorization
powered by space efficient suffix trees. Algorithmica, 80(7):2048–2081,
2018 [92] — Sections 3.4.2, 3.4.3, 3.7.2 and 3.7.3.
This article consists of the following conference papers:

– D. Köppl and K. Sadakane. Lempel-Ziv computation in compressed
space (LZ-CICS). In Proc. DCC, pages 3–12, 2016 [167] — Sec-
tions 3.4.2 and 3.7.2.
The ideas of this contribution were conceived by the authors together
during a research stay at the University of Tokyo.

– J. Fischer, T. I, and D. Köppl. Lempel-Ziv computation in small space
(LZ-CISS). In Proc. CPM, volume 9133 of LNCS, pages 172–184,
2015 [89] — Sections 3.4.3 and 3.7.3.
All parts were developed by the authors together.

• H. Bannai, S. Inenaga, and D. Köppl. Computing all distinct squares in
linear time for integer alphabets. In Proc. CPM, volume 78 of LIPIcs,
pages 22:1–22:18, 2017 [22] — Sections 3.4.4 and 3.5.
The ideas of this contribution were developed in a joint effort during a
research stay at the Kyushu University. The work on the online algorithm
was initiated to answer a question posed by Thomas Schwentick at the
30th mini-workshop for theoretical computer science at the TU Dortmund.

• J. Fischer and D. Köppl. Practical evaluation of Lempel-Ziv-78 and
Lempel-Ziv-Welch tries. In Proc. SPIRE, volume 10508 of LNCS, pages
191–207, 2017 [87] — Section 3.8.
The results were discussed together as part of many iterations in the
algorithmic engineering progress on refining the described hash tables
practically. The implementation has become part of tudocomp [69].

• P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane. Compression
with the tudocomp framework. In Proc. SEA, volume 75 of LIPIcs, pages
13:1–13:22, 2017 [69] — Sections 3.3 and 3.8.

11

1 Introduction

The ideas of the LZ78U algorithm described in the paper (which is not
part of this thesis) were conceived during the stay of D. Köppl at the
University of Tokyo. The O(n lg n)-time algorithm LCPcomp is the result
of the Bachelor thesis of P. Dinklage, which was supervised by J. Fischer
and D. Köppl. The described framework tudocomp is mainly implemented
and maintained by P. Dinklage and M. Löbel.

Chapter 4 is based on

• J. Fischer, T. I, and D. Köppl. Deterministic sparse suffix sorting in the
restore model. Submitted, preprint available at ArXiv [91].
This preprint is based on the conference paper

– J. Fischer, T. I, and D. Köppl. Deterministic sparse suffix sorting
on rewritable texts. In Proc. LATIN, volume 9644 of LNCS, pages
483–496, 2016 [90].

The initial idea on this topic was conceived by T. I. All three authors
worked on the conference paper [90] together. Later, while D. Köppl was
extending the contents for a journal version, he discovered a discrepancy
in the referenced material [55] on which the results for the ESP trees in [90]
are based. This discovery lead (a) to the counter examples showing the
aforementioned flaw of the ESP trees and (b) to a thorough analysis of
ESP and HSP trees. All proofs were worked out by the authors together.

Chapter 5 is based on

• P. Gawrychowski, T. I, S. Inenaga, D. Köppl, and F. Manea. Tighter
bounds and optimal algorithms for all maximal α-gapped repeats and
palindromes. TOCS, 62(1):162–191, 2018 [108].
This article is based on the conference paper

– P. Gawrychowski, T. I, S. Inenaga, D. Köppl, and F. Manea. Ef-
ficiently finding all maximal α-gapped repeats. In Proc. STACS,
volume 47 of LIPIcs, pages 39:1–39:14, 2016 [107].

The combinatorial problem of whether there are O(αn) maximal α-gapped
repeats was posed by M. Crochemore during Stringmasters 2015 held in
Warsaw. A preliminary version proving an upper bound of O(αn) on the
number of all α-gapped repeats and palindromes was conceived by T. I and
D. Köppl (see [108, Lemma 7] for an easy proof of the O(αn) upper bound
on the number of all maximal α-gapped repeats). The authors could refine
their result with S. Inenaga to what the combinatorial section of [107, 108]
presents. The algorithmic part is an adaptation of an already existing
algorithm [70]. This adaptation was initiated by P. Gawrychowski and F.
Manea. It was worked out during a stay of D. Köppl at the University of
Kiel while participating at the conference WORDS 2015.

12

1.4 Style Policies

• T. I and D. Köppl. Improved upper bounds on all maximal α-gapped
repeats and palindromes. Submitted, preprint available at ArXiv [129] –
Section 5.3.
The ideas of this contribution were conceived by the authors after discov-
ering that the point analysis described in [107] could be easily improved.

1.4 Style Policies
We generally favor complying to the notation used in literature, but sometimes
make exceptions to ensure that the entire work is written in a unified style.
Exceptions are that the community on string combinatorics has the convention
to call strings words, and prefers the variables u, v, w for strings prior to S, T ,
etc. (which we use).

Long proofs may contain claims whose proofs are interesting by themselves.
These claims receive their own proof, a so-called sub-proof within the (long)
proof. A sub-proof is finished with a filled square (�) unlike a normal proof
ending with a hollow square (�).

All tables and figures with a caption are labeled as figures. Figures are sorted
chronologically by the time they are addressed in the text. Exceptions are a
few figures in landscape format like Figs. 3.48, 3.50 and 4.45 to 4.47. Some
of these figures are put at the end (see Sects. 3.10 and 4.8) of their respective
chapters to prevent disturbing the text flow. A row with label i in a tabular
figure displays an enumeration of natural numbers starting with one.

We prefer structuring the results of this thesis based on the needed tools
(instead of grouping the results by topic). For instance, this stands out when
considering the placement of the computation of all distinct squares (Sect. 3.5)
within Chapter 3 dealing with LZ factorization algorithms.

For citations, we opted for citing a later published journal version (in case that
we are aware of it) instead of a conference version (or even of a preprint). One
reason is that the contents in a journal version are more mature and complete,
based on the fact that most journals have no page restriction, but a more rigid
revision system. A small downside is that comparing the publications by their
dates can be misleading, as the review process of journals usually takes more
time than a conference publication.

13

Chapter

2 Preliminaries
Certain string algorithms that were generally deemed
to be irrelevant to biology just a few years ago have be-
come adopted by practicing biologists in both large-scale
projects and in narrower technical problems. Techniques
previously dismissed because they originally addressed
(exact) string problems where perfect data were assumed
have been incorporated as components of more robust
techniques that handle imperfect data.

— Dan Gusfield [120]

Throughout this thesis, we stick to the set of notations and definitions that we
introduce in the following. We also recall results that are (a) well-known in the
string community and (b) relevant for multiple following chapters. We refer to
the books [120, 178, 194] for a comprehensive introduction to string algorithms
and combinatorics on words.

2.1 Basic Notation
We write x := y or y =: x to define a variable or constant x with value y. The
symbol ← is used to assign a value to a variable already defined. For instance,
we favor writing i← i+ 1 for incrementing the variable i by one, since writing
i = i+ 1 (or even i := i+ 1) can be confusing in a more complex context.

In the pseudo code listings of our algorithms, we write incr i for i ← i + 1.
We use the instructions break and continue inside loops. We write break to exit
the innermost surrounding loop immediately, whereas we write continue to (a)
jump back to the beginning of that loop and (b) to subsequently continue with
the next iteration.

We denote the set of all positive natural numbers, the set of all integers, and
the set of all real numbers, with N, Z, and R, respectively.

The functions lg and logx denote the logarithm to the base two and the
logarithm to the base x for a real number x, respectively. For convenience,
we assume that lg n = dlg ne for a natural number n. We say that a function
f : N→ N is near-linear if f(n) = O(n lgO(1) n).

15

2 Preliminaries

2.2 Model of Computation
Our computational model is the word RAM model [9] with word size Ω(lg n).
Accessing a word costs O(1) time. A thorough definition of the word RAM
model with a discussion about its practical relevancy is given by Hagerup [122,
Sect. 2].

We deal with three different types of alphabets: (a) constant-size alphabets,
(b) integer alphabets whose characters are integers that fit into a constant number
of words, and (c) finite alphabets.

We analyze both deterministic and randomized algorithms in this thesis.
There are two special types of randomized algorithms we focus on: A Monte
Carlo algorithm is a randomized algorithm with expected running time and an
output that is expected to be correct. A Las Vegas algorithm differs from a
Monte Carlo algorithm in that its output is always correct.

2.3 Intervals
A (real) interval I = [b, e] ⊂ R for b, e ∈ R is the set of all real numbers i ∈ R
with b ≤ i ≤ e. We write [b, e), (b, e] or (b, e) if e, b, or both values are not
included in the interval, respectively.

A special kind of intervals are integer intervals I = [b . . e], where I is the
set of consecutive integers from b ∈ Z to e ∈ Z, for b ≤ e. Given an integer
interval I, b(I) and e(I) denote the beginning and the end of I, respectively, i.e.,
I = [b(I). .e(I)]. We write |I| to denote the length of I; i.e., |I| = e(I)−b(I)+1.
For b > e we stipulate that [b . . e] = ∅.

Given numbers i1, . . . , ij with j ≥ 2 whose values are between two integers b
and e with b ≤ e, we write b ≤ i1, . . . , ij ≤ e, or b ≤ i1, i2 ≤ e in case j = 2.

2.4 Strings
Let Σ denote a finite alphabet. We call an element T ∈ Σ∗ a string. Its length
is denoted by |T |. The empty string is Λ with |Λ| = 0, such that Σ+ = Σ∗ \ {Λ}.
Given an integer j with 1 ≤ j ≤ |T |, we access the j-th character of T with T [j].
Concatenating a string T ∈ Σ∗ k times is abbreviated by T k. A bit vector is a
string on the binary alphabet {0, 1}.

When T is represented by the concatenation of X, Y, Z ∈ Σ∗, i.e., T = XYZ ,
then X, Y and Z are called a prefix , substring and suffix of T , respectively; A
prefix X, substring Y , or suffix Z is called proper if X 6= T , Y 6= T , or Z 6= T ,
respectively. For i, j with 1 ≤ i ≤ j ≤ |T |, let T [i . . j] denote the substring of T
that begins at position i and ends at position j in T . If j > i, then T [i . . j] = Λ.
In particular, the suffix starting at position j of T is called the j-th suffix of T ,
and denoted with T [j . .]. Given a set of text positions P of T , Suf (P) is the

16

2.5 Regular Structures

set of all suffixes whose starting positions belong to P . The reverse T ᵀ of T is
the concatenation T [n] · · ·T [1] =: T ᵀ.

The longest common prefix (LCP) of two strings S and T is the longest string
that is a prefix of S and T . The longest common extension (LCE) is the LCP
of two suffixes of the same string. Similarly, the longest common suffix (LCS)
ending at two positions i and j of the string T is the longest string that is a
suffix of T [. .i] and T [. .j]. In particular, we are interested in the lengths of
an LCP, LCE, or LCS: The length of the LCP of two strings S and T is the
integer ` =: lcp(T, S) such that T [1. .`] = S[1. .`] and either (a) T [`+1] 6= S[`+1]
or (b) ` = min(|T | , |S|) hold. The length of an LCE is the length of the longest
common prefix T. lce(i, j) := lcp(T [i. .], T [j. .]) of two suffixes T [i. .] and T [j. .].
The length of the LCS ending at two positions i and j of the string T is the
integer ` =: T. lcs(i, j) such that T [i− `+ 1 . . i] = T [j − `+ 1 . . j] and either
(a) T [i− `] 6= T [j − `] or (b) min(i− `, j − `) = 0 hold. If the context is clear,
we abbreviate T. lce and T. lcs to lce and lcs, respectively.

An ordered alphabet Σ induces the lexicographic order ≺ on the set of
strings Σ∗. Given two strings S, T ∈ Σ∗, we write S ≺ T if S is a proper prefix
of T , or lcp(S, T) ≤ min(|S| , |T |)− 1 and S[1 + lcp(S, T)] < T [1 + lcp(S, T)].

The zeroth order empirical entropy of a string T whose characters are
drawn from the alphabet Σ := {c1, . . . , cσ} is H0(T) := (1/n)∑σ

j=1 nj lg(n/nj),
where nj is the number of occurrences of the character cj in T for all inte-
gers j with 1 ≤ j ≤ σ. The k-th order empirical entropy of T is Hk(T) :=
(1/n)∑S∈Σk |TS|H0(TS), where TS is the concatenation of each character in T
that directly follows an occurrence of the substring S ∈ Σk in T . For instance,
the substring S = momo of T = momomosumomomo! with alphabet {m, o, s, u, !}
has four occurrences in T . Concatenating the characters directly following these
occurrences yields TS = msm!.

2.5 Regular Structures
Regular structures are analyzed within two main classes: those that are repeti-
tive, and those that are palindromic.1

Repetitions. A period of a string T is a positive integer p ≤ |T | such that
T [i] = T [j] for all i and j with 1 ≤ i, j ≤ |T | and i ≡ j (mod p). A string can
have multiple periods, but only one smallest period. The exponent exp(T) of
a string T with smallest period p is the (rational) number |T | /p. If exp(T)
is at least two, we call the string T periodic. A periodic substring T [i . . j] is
called a run if it is maximal, i.e., if it can be extended neither (a) to its left
(T [i− 1 . . j]) nor (b) to its right (T [i . . j + 1]) without increasing its smallest

1 Note that there are also structures that are both repetitive and palindromic.

17

2 Preliminaries

period. Equivalently, the periodic substring T [i . . j] with smallest period p is a
run if (a) i = 1 or T [i−1] 6= T [i−1+p], and (b) j = n or T [j+1] 6= T [j+1−p].

The currently best known bound on the sum E(T) of the exponents of all
runs in a string T is as follows:

Lemma 2.1 ([21]). The sum of the exponents of all runs E(T) of a string T is
less than 3 |T |.

It is also known that the number of runs is less than n [21], and that we can
find all runs in optimal linear time:

Lemma 2.2 ([160]). Given a string T of length n whose characters are drawn
from an integer alphabet, we can determine all runs of T in O(n) time.

The simplest but most analyzed periodic strings are squares, i.e., strings of
the form SS for S ∈ Σ+. We call S and |S| the arm and the arm length of the
square SS, respectively. The arm length of the square SS is a period of the
periodic string SS. A string is called square-free if it contains no square.

Palindromes. An (ordinary) palindrome S is a string with Sᵀ = S. Let T be
a string. We call T [i . . j] the occurrence of a palindrome in T if T [i . . j] is a
palindrome. In such a case, we say that the center of this occurrence T [i . . j] is
the rational number (i+ j)/2. An occurrence of a palindrome is called maximal
if there is no longer palindrome with the same center. Consequently, a maximal
palindrome is uniquely defined by its center.

Lemma 2.3. The number of all maximal palindromes in a string of length n is
at most 2n− 1.

Proof. A string of length n has at most 2n − 1 palindromes with distinct
centers.

There is an algorithm computing all maximal palindromes in optimal linear
time:

Lemma 2.4 ([12, 182]). All maximal palindromes of a string of length n can
be computed in O(n) time in case that two characters can be distinguished in
constant time (which is the case for characters of an integer alphabet).

2.6 Support Data Structures
Given a string T ∈ Σ∗, a character c ∈ Σ, and an integer j, the rank query
T.rankc(j) counts the occurrences of c in T [1. .j], and the select query T.selectc(j)
gives the position of the j-th c in T . We stipulate that select1(0) = 0. If T is
a bit vector, there are data structures [49, 135] that use o(|T |) extra bits of
space, and can compute rank and select in constant time, respectively. Each

18

2.7 Input Text

of those data structures can be constructed in time linear in |T |. We say that
a bit vector has a rank-support and a select-support if it is endowed by data
structures providing constant time access to rank and select, respectively.

Given an integer array A of length n, a range minimum query (RMQ) asks
for the index of a minimum value in a given range of A. There is a lightweight
data structure that can be built on top of A such that it can answer RMQs on A
efficiently:

Lemma 2.5 ([86, Thm 3.7]). Let A[1 . . n] be an integer array, where accessing
an element A[i] takes tA time (1 ≤ i ≤ n). Given a positive constant δ ∈ R,
there exists a data structure of size δn bits built on top of A that answers RMQs
in O(tA/δ) time. It is constructed in O(tAn) time with o(n) additional bits of
working space.

A predecessor data structure A storing a set S of n elements sorted with
respect to a linear order < can

• access the i-th smallest element A[i],

and can, for a given element x,

• retrieve the largest index i with A[i] ≤ x (predecessor query), and

• retrieve the smallest index i with A[i] ≥ x (successor query).

Let tcomp be the time to compare two elements of the set. Given that the
elements of S are stored in a sorted integer array A, an access takes constant
time, while the other queries are answered in O(tcomp lg n) time with a binary
search. In a dynamic setting, where it is allowed to add or delete elements
of the set, a balanced binary search tree A can answer all queries as well as
support the dynamic operations (inserting, changing, and deleting an element)
in O(tcomp lg n) time.

Lemma 2.6. There is a predecessor data structure storing n elements of a
set S taking O(n) words of space that performs query and update operations in
O(tcomp lg n) time.

More sophisticated predecessor data structures are described in Sect. 3.2.

2.7 Input Text
For the following chapters, we take a string T of length n as our input, and call
it the text. All algorithms assume that the characters of T are drawn from an
integer alphabet Σ of size σ = |Σ| = nO(1). According to Sect. 2.2, each character
of T fits into a constant number of memory words. If not stated otherwise, we
assume that T is stored in such a way that accessing a character of T costs O(1)

19

2 Preliminaries

time (e.g., T is stored in RAM using n lg σ bits). When analyzing the memory
usage of an algorithm working with T , we neglect the space taken by T . Within
Chapter 3, we often assume that T is terminated with a delimiter $ appearing
nowhere else in T , so that no suffix of T is a prefix of another suffix of T . We
also assume that $ is smaller than all other characters of Σ.

Given lg σ = o(lg n), the RAM model allows us to scan the text in sub-linear
time by packing lg n/ lg σ characters into a single word. This technique is called
word-packing. The idea is to interpret a string T of length n as an integer array
with n/ logσ n entries, where each entry takes lg n bits. Consequently, we can
compare Ω(logσ n) characters in constant time.

2.8 Effective Alphabet
The restriction to integer alphabets is actually natural when devising string
algorithms, since every string T of length n whose characters are drawn from a
finite alphabet Σ can be reduced to a string T̃ ∈ [1. .n]∗ by sorting T ’s characters
and replacing them with their ranks. We call the new alphabet ΣT the effective
alphabet of T . This transformation is natural in the sense that the lexicographic
order of all substrings in T is kept (T [i1 . .i2] ≺ T [j1 . .j2]⇔ T̃ [i1 . .i2] ≺ T̃ [j1 . .j2]
for 1 ≤ i1 ≤ i2 ≤ n and 1 ≤ j1 ≤ j2 ≤ n).

The seminal work of Franceschini et al. [97] provides an efficient sorting
algorithm for this transformation:
Lemma 2.7 ([97]). Given an array of n integers, where each integer fits into a
word, we can sort this array in O(n) time with O(lg n) bits of working space.

We present the transformation in two parts. First, we deal with a transfor-
mation that maps ranks of ΣT to characters of Σ:
Lemma 2.8. We can compute an array A with |ΣT | lg |Σ| bits in O(n) time
with n lg |Σ|+O(lg n) bits of working space such that A[T̃ [i]] = T [i] for each
text position i.
Proof. We copy the text T to an array A of size n lg |Σ| bits, and sort its
characters with Lemma 2.7. After sorting A, we remove all adjacent duplicate
characters such that A[i] ∈ Σ stores the i-th lexicographically sorted character
contained in T , for every integer i from one up to the size of ΣT .
Corollary 2.9. There is a data structure computing (a) T̃ [i] with T [i] and (b)
T [i] with T̃ [i] in constant time, where T̃ [1 . . n] ∈ Σ∗T stores the lexicographic
ranks of T [1 . . n]. The data structure takes |ΣT | lg |Σ|+ |Σ| lg |ΣT | bits, and can
be computed in O(n+ |Σ|) time.
Proof. First, we compute the array A of Lemma 2.8. Subsequently, we create an
array A−1 with |Σ| entries and |Σ| lg |ΣT | bits of space. We set A−1[A[c]]← c
for every rank c with 1 ≤ c ≤ |ΣT |. Now we have that T̃ [i] = A−1[T [i]] and
A[T̃ [i]] = T [i] for every text position i with 1 ≤ i ≤ n.

20

2.9 Text Data Structures

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T a a a b a b a a a b a a b a $
SA 15 14 7 1 11 8 2 12 5 9 3 13 6 10 4
ISA 4 7 11 15 9 13 3 6 10 14 5 8 12 2 1
LCP 0 0 1 5 2 4 4 1 3 4 3 0 2 3 2
BWT a b b $ b a a a b a a a a a a

Fig. 2.1: Suffix array, its inverse, the LCP array, and the BWT of T =
aaababaaabaaba$, as defined in Sect. 2.9.

2.9 Text Data Structures
Assume that T [n] = $. SA and ISA denote the suffix array [183] and the inverse
suffix array of T , respectively. The entry SA[i] is the starting position of the
i-th lexicographically smallest suffix such that T [SA[i] . .] ≺ T [SA[i+ 1] . .] for all
integers i with 1 ≤ i ≤ n− 1. The Burrows-Wheeler transform (BWT) [40] of T
is the string BWT with BWT[i] = T [n] if SA[i] = 1 and BWT[i] = T [SA[i]− 1]
otherwise, for every i with 1 ≤ i ≤ n. LCP is an array such that LCP[i] is the
length of the LCP of T [SA[i] . . n] and T [SA[i − 1] . . n] for i = 2, . . . , n. For
convenience we stipulate that LCP[1] := 0. The arrays SA and LCP can be
constructed in O(n) time with the algorithms of Ko and Aluru [155] and Kasai
et al. [151], respectively. With SA we can construct ISA in O(n) time by using
the fact that SA is a permutation. See Fig. 2.1 for an example of the introduced
data structures.

These data structures allow us to answer an LCE query quickly, whose time
bound is denoted by tLCE.

Lemma 2.10. Given ISA, LCP and the RMQ data structure of Lemma 2.5 on
LCP, we can answer an LCE query on T in tLCE = O(1/δ) time.

Proof. An LCE query lce(j1, j2) with text positions j1 and j2 can be answered
with an RMQ on the range [min(ISA[j1], ISA[j2]) + 1 . . max(ISA[j1], ISA[j2])] of
LCP.

An LCE data structure is helpful for extending periodic substrings:

Corollary 2.11. Given a string T of length n and an LCE data structure on
it, we can return the longest periodic substring with a period p starting at
position i in T for integers i and p with 1 ≤ i, p ≤ n, in O(tLCE) time.

Proof. We can compute the LCE of T [i . .] and T [i+ p . .] in O(tLCE) time. If
this prefix is T [i+ p . . `], then T [i . . `] is the longest periodic substring with a
period p starting at position i.

There are two easy corollaries of Lemma 2.10 that are helpful for LCS queries
or for finding palindromic strings:

21

2 Preliminaries

Corollary 2.12. Given a string T of length n, there is a data structure that
answers the queries lcp(T [i . .], T [j . .]) and lcs(T [i . .], T [j . .]) in constant time.
The data structure can be built in O(n) time, taking O(n) words of space.

Proof. We build the data structures of Lemma 2.10 on T and its reverse. Then
lcs(T [i . .], T [j . .]) = lcp(T ᵀ[n+ 1− i . .], T ᵀ[n+ 1− j . .]).

We write LCE↔T = LCE↔ for a data structure supporting the queries of
Cor. 2.12 with tLCE time.

Corollary 2.13. Given a string T of length n, there is a data structure that
can compute the longest prefix of T [i . .] that is a suffix of T [1 . . j]. The data
structure can be built in O(n) time, taking O(n) words of space.

Proof. We compute the data structures of Lemma 2.10 on the string S :=
T [1] . . . T [n]T [n− 1] . . . T [1].2 Then the longest prefix of T [i . .] that is a suffix
of T [1 . . j] is given by lcp(S[i . .], S[2n− j . .]).

2 Actually, the data structures of Lemma 2.10 require that S ends with a unique delimiter
that is smaller than all its characters (like $ = T [n]). For that, we simply append a unique
delimiter to S that is lexicographically smaller than all characters of Σ ∪ {$}.

22

Chapter

3 Lempel-Ziv Factorizations
Any string of symbols that can be given an abbreviated
representation is called algorithmically compressible. On
this view, we recognize science to be a search for algo-
rithmic compressions.

— John D. Barrow [25]

A preliminary task of most text compressors is to factorize a text into substrings.
This task is also called text factorization. Probably the most famous such text
factorizations are the Lempel-Ziv-77 (LZ77) [246] and Lempel-Ziv-78 (LZ78) [247]
factorizations. Their area of application is widespread (cf. [214]), e.g., in the
command-line compression tools gzip (for LZ77) or compress (for LZ78), in
image file formats like png (using LZ77) or gif (using LZ78). The Lempel-
Ziv (LZ) factorizations have been found valuable for string dictionaries [16],
for text indexes [13, 78, 101, 102, 142, 143, 192], for detecting various kinds of
regularities in strings (like [57, 71, 121, 156, 160, 161, 181] or Sect. 3.5), and
for analyzing strings [61, 175, 176]. While the compression rates of LZ77-based
compressors are practically superior to those based on LZ78 in most cases, the
biggest advantage of LZ78 over LZ77 is that LZ78 allows for an easy construction
within compressed space and in near-linear time, which is not possible (to date)
for LZ77.

Although the family of LZ factorizations is well-studied, there are still im-
provements being made in computing them with respect to space and time.
Computing the factorizations efficiently is of practical interest, since main mem-
ory sizes of ordinary computers do not scale as fast as the sizes of commonly
maintained datasets. Both huge mainframes with massive datasets and tiny
embedded systems are valid examples for which a simple compressor may end
up depleting all available RAM. Additionally, compression algorithms with low
memory footprints are good candidates for compressing transient data kept
in memory. For instance, the zram module of modern Linux kernels [211]
compresses blocks of the main memory to prevent the system from running
out of working memory. Compressing RAM is sometimes preferable to storing
transient data on secondary storage (e.g., in a swap file), as the latter poses
a more severe performance loss. Another example is transferring websites as
compressed data by hosting servers [204]. A server may cache generated web
pages in a compressed form in RAM for performance benefits. To solve this

23

3 Lempel-Ziv Factorizations

problem, one has to think either about external memory compression algorithms
or about how to slim down memory consumption during computation in RAM.
In this chapter we present algorithms belonging to the latter approach.

3.1 Our Contribution
In Sect. 3.4 and Sect. 3.7 we present LZ77 and LZ78 factorization algorithms
using two suffix tree representations whose construction algorithms need only
limited working space. The used representations differ in the fact that one is
favorable for small alphabets, while the other is independent of the alphabet
size. Powered by these two suffix tree representations, we present algorithms
computing the LZ77 and the LZ78 factorization

• in O(n) time with O(n lg σ) bits of working space (Cor. 3.14 for LZ77 and
Cor. 3.41 for LZ78), or

• in O(n/ε) time with (1 + ε)n lg n+O(n) bits of working space (Cor. 3.17
for LZ77 and Cor. 3.48 for LZ78), where ε ∈ R is a trade-off parameter that
can be selected within the domain 0 < ε ≤ 1.

In the following, we treat ε as a real-valued constant such that O(n/ε) becomes
O(n) (cf. Figs. 3.1 to 3.3). Up to lg σ = o(lg n), the former algorithms with
O(n lg σ) = o(n lg n) bits are favorable to the latter ones. The working space
bounds of the O(n lg σ)-bits algorithms are due to the suffix tree: Given that
we have constant time access to the Ψ function (cf. Sect. 3.3) and to the tree
navigational operations of the suffix tree (cf. Sect. 3.3.3), we can compute
both factorizations in linear time using z lg n+O(n) additional bits of working
space (Thms. 3.13 and 3.40), where z is the number of factors in the LZ78
factorization.

The time and space bounds of our LZ77 factorization algorithms hold for two
popular LZ77 schemes:

• the original version of Ziv and Lempel [246], which we call classic-LZ77,
and

• the variant of Storer and Szymanski [224], which we just call LZ77, since
most research articles on the LZ77 factorization refer to this specific variant
with that name.

We also study the non-overlapping LZ77 factorization (Thm. 3.35) and the
reversed LZ77 factorization (Thm. 3.37), for which we can adapt our LZ77
factorization algorithms with a small penalty with respect to time and space.

As an application of the LZ77 factorization algorithms, we show how to
compute the longest previous factor (LPF) table and the number of all distinct
squares. The former is an array of the same length as the text whose i-th

24

3.2 Related Work

entry stores the length of the longest substring that starts before i and is a
prefix of the suffix starting at i. We show that we can compute the LPF table
in a 2n+ o(n)-bits representation (Cor. 3.21) with either O(n lgεσ n) time and
O(ε−1n lg σ) bits of working space, or O(ε−1n) time and (1 + ε)n lg n + O(n)
bits of working space (Lemma 3.22). Subsequently, the LPF table leads us to
the set of all distinct squares in Sect. 3.5, which has applications by itself.

In the last section of this chapter, we present a practical Las Vegas algorithm
computing the LZ78 factorization and one of its variants, the Lempel-Ziv-Welch
(LZW) factorization, in O(n/ε) time with O(z lg(zσ)) bits of space (Thm. 3.52).
The algorithm uses a trie data structure based on compact hashing [50]. We also
present a trie data structure based on Karp-Rabin fingerprints [149]. Together
with other trie data structures, we conduct a thorough evaluation of the LZ78
and LZW computation. It turns out that the trie based on compact hashing has
the lowest memory usage, while the trie based on fingerprinting is the quickest.
The takeaway message of Sect. 3.8 is that one can beat well-tuned out-of-the-box
trie data structures like Judy1, m-Bonsai [206], or the Cedar-trie [245] with a
careful choice of the LZ trie representation.

3.2 Related Work
While there are näıve algorithms with quadratic running time (for both LZ77
and LZ78), algorithms with limited space requirements running in (nearly) linear
time have only emerged in recent years (see Figs. 3.1 to 3.3). In what follows,
we give an overview of the most recent algorithms computing the LZ77 and LZ78
factorization.

First, let us look at the LZ77 factorization algorithms that run in linear
time. There, Goto and Bannai [115] showed an algorithm using 3n lg n bits.
This bound was very soon lowered to 2n lg n by Kärkkäinen et al. [148]. With
similar techniques, Goto and Bannai [116] proposed later a solution with n lg n+
O(σ lg n) bits, which is compelling if the alphabet size σ is small. The common
idea of the above articles is the usage of previous- and/or next-smaller-value
queries [83]. While Kärkkäinen et al. [148] need to hold the suffix array and
the next-smaller-value array in two arrays, Goto and Bannai [116] can cope
with a single n lg n bits array and an auxiliary array of size O(σ lg n) bits. This
auxiliary array is used to store the bucket boundaries needed by the suffix
array construction algorithm of Nong [199]. The bucket boundaries could also
be represented by a dynamic bit vector [195] of length n, yielding n + o(n)
additional bits (instead of the O(σ lg n) bits used by the auxiliary array) of
working space and O(n lg n/ lg lg n) time.

Another algorithm close to linear time was devised by Kempa and Puglisi [152].
They show a practical variant with (1 + ε)n lg n + n +O(σ lg n) bits of work-

1 http://judy.sourceforge.net

25

http://judy.sourceforge.net

3 Lempel-Ziv Factorizations

LZ77 factorization algorithms
Time Working Space Ref.

O(n) 3n lg n [115]
O(n) 2n lg n [148]
O(n) n lg n+O(σ lg n) [116]
O(n) (1 + ε)n lg n+O(n) Cor. 3.17
O(n) O(n lg σ) Cor. 3.14
O(n lg σ) O(n lg n) [213]
O
(
n lgn

lg lgn

)
n lg n+ n+ o(n) [116, 195]

O(n lg σ) (1 + ε)n lg n+ n+O(σ lg n) [152]
O(n logσ n lg lg σ) O(n lg σ) [147]
O(n lg lg σ) O(n lg σ) [27]

LZ78 factorization algorithms
Time Working Space Ref.

O(n) O(n lg n) [191]
O(n) (1 + ε)n lg n+O(n) Cor. 3.48
O(n) O(n lg σ) Cor. 3.41
O(n lg σ) O(z lg z) folklore
O(n(lg σ + lg lg n)) z lg n+ z lg σ +O(z) [13]
O
(
n(lg σ+lg lgn)

lg lgn

)
z lg n+ z lg σ +O(z) [14]

O
(

n
logσ n

lg2 lgn
lg lg lgn

)
O
(
n lg σ+lg logσ n

logσ n

)
[137]

O
(
n+ z lg2 lg σ

lg lg lg σ

)
O(z lg z) [85]

Fig. 3.1: Recent approaches in LZ77 (top) and LZ78 (bottom) factorization com-
putation. The working spaces are measured in bits (additional O(lg n) bits
omitted). The horizontal line in each table separates algorithms running in
linear time (above) from algorithms running in near-linear time (below).

26

3.2 Related Work

time

bits of space

[203]

[168]

[246]

[147]

[147]

3.14 [115][148][116]3.17

O
(lg

n)

εn n
lg
σ

+
O

(n)

O
(n

lg
σ)

(1
+
ε)n

lg
n

n
lg
n

+
O

(σ
lg
n)

2
n

lg
n

3
n

lg
n

n

n logσ n lg lg σ

n lgn lg lg σ
n(lg σ + lg lgn)

n lg3 n

n2

Fig. 3.2: Space/Time plot of LZ77 algorithms. The time is measured in O(·). The
numbers 3.14 and 3.17 refer to Cors. 3.14 and 3.17 of this chapter, respectively.

Time Working Space Ref.

O(n lg3 n) n lg σ +O(n) [203]
O(n lg n lg lg σ) εn [147]
O(n(lg σ + lg lg n)) εn [168]

Fig. 3.3: LZ77 algorithms
with small working spaces,
which are measured in bits.

ing space and O(n lg σ/ε2) time. There is also a trade-off algorithm given
by Kärkkäinen et al. [147], using O((n lg n)/d) bits of working space and
O(dn lg lg σ) time, where the O(lg lg σ) time factor is due to a wavelet tree [23].
Setting d ← logσ n we obtain O(n lg σ) bits of working space and O(n logσ n
lg lg σ) time.

The last group of LZ77 factorization algorithms that is notable to mention
consists of those algorithms that use the suffix tree. The first such algorithm
is by Rodeh et al. [213]. It uses O(n lg n) bits of space and runs in linear time
for constant alphabets. A more recent approach was presented by Belazzougui
and Puglisi [27, Sect. 4], whose algorithm runs in O(n) time with O(n lg σ)
additional bits of space on top of the suffix tree. With the compressed suffix
tree representation of Munro et al. [190], their algorithm has the same time and
space bounds as our LZ77 factorization algorithms (Cor. 3.14) running in O(n)
time with O(n lg σ) bits of working space.

The space bounds can become more attractive if even slower execution times
are affordable (cf. Fig. 3.3). We start with an approach of Okanohara and
Sadakane [203], which runs in O(n lg3 n) time using n lg σ +O(n) bits. The
aforementioned algorithm by Kärkkäinen et al. [147] works with O(εn) bits
and O(n lg n lg lg σ) time by setting d ← ε lg n for a constant ε with 0 < ε.

27

3 Lempel-Ziv Factorizations

Within the same space bound, Kosolobov [168] presented an algorithm running
in O(n(lg σ + lg lg n)) time.

The LZ78 factorization is done with different techniques. An LZ78 factorization
of size z can be stored in two arrays with z lg σ and z lg z bits to represent
the character (belonging to an alphabet of size σ) and the referred index,
respectively, of each factor. This space bound has not yet been achieved by
any efficient dynamic trie data structure. The classic approach is to build a
dynamic trie maintaining the factors during the computation. Storing z factors
in a simple pointer-based trie data structure takes O(z lg z) = O(n lg σ) bits
(see Lemma 3.4 why this holds) and O(n lg σ) time, if the children of a node
are maintained in a sorted list. Other ways to improve the LZ78 computation
are by using sophisticated trie implementations [85, 137], or by superimposing
the suffix tree with the suffix trie [191].

Following the former approach, Jansson et al. [137] proposed a compressed
dynamic trie based on word packing, and showed an application computing
the LZ78 factorization with O(n(lg σ + lg logσ n)/ logσ n) bits of working space
and O(n lg2 lg n/ (logσ n lg lg lg n)) time. When lg σ = o(lg n lg lg lg n/lg2 lg n),
their algorithm runs even in sub-linear time, but in the worst case it is super-
linear. More sophisticated trie implementations [85] improve this to O(n +
zlg2 lg σ/lg lg lg σ) time, while using O(z lg z) bits of space like the näıve trie
implementation. The time bound O(n + zlg2 lg σ/lg lg lg σ) becomes linear
when lg σ = o(lg n lg lg lg n/ lg2 lg n). Versions with succinct data structures are
shown by Arroyuelo and Navarro [13, Lemma 8] and Arroyuelo et al. [14] using
2z lg z + z lg σ +O(z) bits of working space and either O(n(lg σ + lg lg n)) or
O((n lg σ)/ lg lg n) time (for σ = ω(lgO(1) n) and σ = O(n)), respectively. All
these tries are favorable for small alphabet sizes. If the alphabet size σ becomes
large, the upper bounds on the times become unattractive.

Our theoretical LZ78 factorization algorithms follow the latter approach that
superimposes the suffix tree with the suffix trie. There, Nakashima et al. [191]
recently proposed a linear time algorithm. Although their algorithm works with
O(n lg n) bits of space, they did not care about the constant factor, and the
use of the (complicated) dynamic marked ancestor queries [6] seems to prevent
them from achieving a small constant factor.

On the practical side, we are only aware of the approaches of Arroyuelo
et al. [15] and Navarro [193]. The approach of Arroyuelo et al. [15] leverages
compact hashing to compute the LZ78 factorization with an alternative coding
within O(z lg σ) bits of working space in O(n) randomized time. Unfortunately,
none of them provides a systematic study of practical LZ78 computation algo-
rithms. A study related to what we present here was conducted by Kanda
et al. [140], but with focus on dynamic tries storing arbitrary strings (i.e., the
edge labels of their tries are strings, not restricted to single characters).

28

3.3 Preliminaries

a a a b a b a a a b a a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1,2)

(3,3) (2,4)

(3,3)

Coding: a(1,2)b(3,3)(2,4)(3,3)$

(a) LZ77 Factorization

a a a b a b a a a b a a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1,2,b) (3,3,a) (5,4,b)

(1,1,$)

Coding: a(1,2,b)(3,3,a)(5,4,b)(1,1,$)

(b) Classic-LZ77 Factorization

Fig. 3.4: Two kinds of LZ77 factorizations of the text aaababaaabaaba$. The
coding represents a fresh factor by a single character, and a referencing factor
by a tuple with two or three entries. For LZ77 (a), this tuple consists of the
referred position and the number of characters to copy. For classic-LZ77 (b), the
tuple additionally contains the character at the end of the factor.

i 1 2 3 4

Factor a aa b ab
Coding (0,a) (1,a) (0,b) (1,b)

i 5 6 7 8

Factor aaa ba aba $
Coding (2,a) (3,a) (4,a) (0,$)

(a) LZ78 Factorization

0

8

$

1

a

3

b

2

a

4

b

6

a

5

a

7

a

(b) LZ Trie

Fig. 3.5: The LZ78 factorizations of the text of Fig. 3.4. The coding in (a) is a
list of pairs. Each pair consists of the referred index and the character at the
end of the respective factor. The LZ trie (b) is another representation of the
LZ78 factorization.

3.3 Preliminaries
We first define the LZ77 and LZ78 factorizations. Subsequently, we present
our two suffix tree representations with which we compute the LZ77 and LZ78
factorizations in Sect. 3.4 and Sect. 3.7, respectively. Finally, we stipulate a
common framework of our factorization algorithms.

3.3.1 Factorizations
A factorization of a string T is a sequence of non-empty substrings F1, . . . , Fz
of T such that the concatenations of the substrings F1 · · ·Fz yields T . Each
substring of the factorization is called a factor .

Definition 3.1. A factorization F1 · · ·Fz = T is called the LZ77 factorization of
T if Fx = argmaxS∈Sj(T)∪Σ |S| for all x with 1 ≤ x ≤ z and j := |F1 · · ·Fx−1|+1,

29

3 Lempel-Ziv Factorizations

u: y

v: x
T [|F1 · · ·Fx|]

Fig. 3.6: Two connected nodes of an LZ trie. The nodes u
and v correspond to the y-th and x-th LZ78 factor, re-
spectively. Since v is the child of u, the x-th factor refers
to the index y, and consequently Fx = FyT [|F1 · · ·Fx|].

where Sj(T) is the set of substrings of T that start strictly before j.

In other words, the LZ77 factor Fx is either (a) the longest prefix of Fx · · ·Fz
that occurs at least twice in F1 · · ·Fx, or (b) equal to T [1 + |F1 · · ·Fx−1|] if such
a prefix does not exist. This factorization is also called s-factorization [56] or
Lempel-Ziv-Storer-Szymanski (LZSS) factorization [224]. An example of the LZ77
factorization of the text aaababaaabaaba$ is given in Fig. 3.4a.

The original factorization by Ziv and Lempel [246] is actually a variant of
the here introduced LZ77 factorization. We call this variant the classic-LZ77
factorization. The difference is that each factor of the classic-LZ77 factorization
introduces an additional character at its end:

Definition 3.2. A factorization F1 · · ·Fz = T is called the classic-LZ77 factor-
ization of T if Fx is the shortest prefix of Fx · · ·Fz that occurs exactly once in
F1 · · ·Fx.

We refer to Fig. 3.4b for an example of the classic-LZ77 factorization.

Definition 3.3. A factorization F1 · · ·Fz = T is called the LZ78 factorization of
T if Fx = F ′xc with F ′x = argmaxS∈{Fy |y<x}∪{Λ} |S| and c ∈ Σ for all 1 ≤ x ≤ z.

To put it in different words, the LZ78 factor Fx is the longest prefix of
T [1 + |F1 · · ·Fx−1| . .] that is equal to Fyc for an index y with 0 ≤ y ≤ x − 1
and a character c ∈ Σ (we stipulate that F0 := Λ). See Fig. 3.5 for an example
of the LZ78 factorization.

Although the above defined factorizations do not share the same value of z in
general, there is a well-known upper bound of z for all these factorizations:

Lemma 3.4 ([247]). Given a text of length n on an alphabet of size σ, the
LZ77, LZ77-classic, or LZ78 factorization divides the text into z factors with
z ≤ O(n/logσ n). We obtain that O(z lg z) = O(z lg n) = O(n lg σ).

We call a text position j with 1 ≤ j ≤ n the starting position of the factor
Fx with 1 ≤ x ≤ z if Fx starts at position j. A factor Fx may refer to either

(LZ77) a previous text position j (called Fx’s referred position), or

(LZ78) to a previous factor Fy (called Fx’s referred factor—in this case y is also
called the referred index of Fx).

30

3.3 Preliminaries

If there is no suitable reference found for a given factor Fx with starting
position j, then Fx consists of just the single letter T [j]. We call such a factor
a fresh factor . Fresh LZ78 factors refer to F0 := Λ. The other factors are called
referencing factors; let zR denote the number of referencing factors.

A natural representation of the LZ78 factors is a trie, the so-called LZ trie.
Except for the root, each node in the LZ trie represents a factor and is labeled
with its factor index (see Fig. 3.5b). The trie has the following properties: If
the x-th factor refers to the y-th factor, then there is a node u having a child v
such that u and v have the unique labels y and x, respectively. The edge (u, v)
is labeled with the last character of the x-th factor. Figure 3.6 depicts such an
edge. A node with label x is the child of the root if and only if the x-th factor
is a fresh factor.

3.3.2 Suffix Trees
The suffix trie of T is the trie of all suffixes of T . Each suffix trie edge e is
associated with a character of T called the edge label of e. The suffix tree of
T is the tree obtained by compacting the suffix trie of T , i.e., by contracting
each unary path to a single edge e, which is associated with the concatenation
of the labels of the edges on the contracted path; the string yielded by this
concatenation is called the edge label of e. Consequently, the edge label of a suffix
tree edge is a non-empty substring of T . We define the function edge length(e)
returning, for each edge e, the length of e’s label. The string label of a node v is
defined as the concatenation of all edge labels on the path from the root to v; the
string depth of a node is the length of its string label. By construction, the suffix
tree has n leaves and at most n−1 internal nodes. The leaf corresponding to the
i-th suffix with 1 ≤ i ≤ n is associated with suffix number i (see the underlined
numbers in Fig. 3.7). We write sufnum(λ) to denote the suffix number of a
leaf λ. Reading the suffix numbers in preorder gives the suffix array. This
means that the preorder of the leaves is an enumeration of the leaves according
to the lexicographic order of their respective suffixes. However, we sometimes
have neither the function sufnum nor SA available. In most cases, we do not
represent the suffix array as a plain array such that the access time to SA, which
we denote by tSA, is not constant in general.

A pointer-based suffix tree of a text T with length n takes O(n lg n) bits.
Farach-Colton et al. [75] presented an algorithm constructing the pointer-based
suffix tree of T in O(n) time. This representation supports the operations listed
in the following section.

3.3.3 Operations on the Suffix Tree
The algorithms introduced in Sects. 3.4 to 3.7 operate on suffix trees and need
the following navigational methods (v is a suffix tree node, λ and λ′ are suffix

31

3 Lempel-Ziv Factorizations

1

2

15

$

3

a

4

14

$

5

a

6

a

b

a

7

7

a

b

a

$

8

1

b

a

a

a

b

a

a

b

a

$

9

b

a

10

11

$

11

8

a

b

a

$

12

2

b

a

a

a

b

a

a

b

a

$

13

b

a

14

12

$

15

a

16

5

a

b

a

a

b

a

$

17

9

b

a

$

18

3

b

a

a

a

b

a

a

b

a

$

19

b

a

20

13

$

21

a

22

6

a

b

a

a

b

a

$

23

10

b

a

$

24

4

b

a

a

a

b

a

a

b

a

$

smallest leaf

= sufnum(18)

Fig. 3.7: The suf-
fix tree of T =
aaababaaabaaba$.
The nodes are labeled
by their preorder
numbers, which are
induced by a preorder
traversal of the tree.
The suffix number
of each leaf λ is the
underlined number
drawn in dark yellow
below λ.

tree leaves; v, λ and λ′ are represented by their preorder numbers):

• parent(v) returns the parent of the node v,

• depth(v) returns the tree depth of the node v,

• level anc(λ, d) returns the ancestor at depth d of the leaf λ,

• leaf select(i) returns the i-th leaf (in lexicographic order) for an integer i
with 1 ≤ i ≤ n,

• lca(λ, λ′) returns the lowest common ancestor (LCA) of the leaves λ and
λ′,

• lmost leaf(v) and rmost leaf(v) return the leftmost and rightmost leaf
below the node v, respectively,

32

3.3 Preliminaries

• leaf rank(λ) returns the number of preceding leaves (in lexicographic order)
of the leaf λ incremented by one (such that leaf rank(lmost leaf(root)) = 1
and leaf rank(rmost leaf(root)) = n, where root is the root),

• child rank(v) returns the number of preceding siblings of the node v,

• v. child(i) returns the i-th child of the node v (we only need i = 1, 2), and

• next sibling(v) returns the next sibling of the node v.

Note that leaf rank and sufnum are related, but different (we require access only
to the former operation). The difference is that, given a leaf λ representing
the i-th suffix, sufnum(λ) = i, whereas leaf rank(λ) = ISA[i], i.e., sufnum(λ) =
SA[leaf rank(λ)].

Additionally, we address the leaf with suffix number 1 with smallest leaf, and
want access to the following specific methods:

• head(λ) returns the first character of the suffix whose starting position is
sufnum(λ),

• next leaf(λ) returns the leaf with suffix number sufnum(λ) + 1 or the leaf
with label 1 (i.e., smallest leaf) if sufnum(λ) = n, and

• str depth(v) returns the string depth of the node v, given that v is an
internal node.

To attain the promised upper bound of either (1 + ε)n lg n + O(n) bits or
O(n lg σ) bits of working space, we focus on representations of the suffix tree that
are especially trimmed on a small memory footprint during their construction.
Unfortunately, most of the suffix tree representation need more space during
their construction, e.g., the representation of Russo et al. [215] can be stored in
nHk(T) + o(n lg σ) bits, but it needs Ω(n lg σ) bits of working space during its
computation.

In the following, we present two suffix tree representations with a memory-
efficient construction, and show how the above methods can be computed with
each representation. The first one, called compressed suffix tree, uses O(n lg σ)
bits of total space that is favorable for small alphabet sizes. In case of a large
alphabet, we choose an alphabet-independent solution, which we call succinct
suffix tree.2 It uses (1 + ε)n lg n+O(n) bits of total space; its memory footprint
is independent of the size of the alphabet. The compressed suffix tree uses less
memory than the succinct suffix tree for lg σ = o(lg n), but does not have any
advantages over even the pointer-based representation when σ = Ω(n).

2 The name succinct does not mean that the suffix tree is stored in succinct space, but rather
that it consists of an assembly of data structures, where most of them are stored succinctly.

33

3 Lempel-Ziv Factorizations

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T a a a b a b a a a b a a b a $
SA 15 14 7 1 11 8 2 12 5 9 3 13 6 10 4
ISA 4 7 11 15 9 13 3 6 10 14 5 8 12 2 1
Ψ 4 1 6 7 8 10 11 12 13 14 15 2 3 5 9
LCP 0 0 1 5 2 4 4 1 3 4 3 0 2 3 2
PLCP 5 4 3 2 3 2 1 4 4 3 2 1 0 0 0
LPF 0 2 1 0 3 2 5 4 4 3 4 3 2 1 0

Fig. 3.8: Figure 2.1 augmented with the Ψ-function, PLCP (Sect. 3.3.3.2) and
LPF (Sect. 3.4.4) of T = aaababaaabaaba$. Reading the suffix numbers of the
leaves of the suffix tree in Fig. 3.7 from left to right gives SA.

3.3.3.1 Compressed Suffix Tree

The compressed suffix tree (CST) consists of two components. The first data
structure is the Ψ-function [118] (see also Fig. 3.8). It is defined by

Ψ[i] :=

ISA[1] if SA[i] = n,

ISA[SA[i] + 1] otherwise.

It can be stored in O(n lg σ) bits while allowing constant access time [124].
The second one is a balanced parentheses (BP) representation [135] of the tree
topology [217] taking 4n + o(n) bits. Munro et al. [190] show the following
result:

Theorem 3.5 ([190]). The compressed suffix tree takes O(n lg σ) bits of space.
We can construct it with O(n lg σ) bits of working space in O(n) time.

The compressed suffix tree supports all operations described in Sect. 3.3.3:
First, the BP sequence supports the navigational methods in constant time [136,
197]. Second, we have access to smallest leaf because leaf rank(smallest leaf) =
Ψ[1] = ISA[1]. To see that, we remember that $ is the smallest character in T
appearing exactly once at T [n]; hence SA[1] = n. Finally, we can implement
the remaining methods efficiently as follows:

head(λ) Given that Σ is the effective alphabet of T , the root of the suffix tree
has σ children, each corresponding to a different character. The orders of
the children of the root and of the characters of Σ are the same. Hence,
child rank(level anc(λ, 1)) = head(λ) holds, and the left hand side can be
computed in constant time.
If Σ is not effective, we build the array A of Lemma 2.8. Having A, we
compute head(λ) with A[child rank(level anc(λ, 1))] in constant time.

34

3.3 Preliminaries

Algorithm 1: Computing the string depth of a suffix tree node.
input : suffix tree node v

1 function str depth
2 if v is an internal node then
3 λ← lmost leaf(v. child(1))
4 λ′ ← lmost leaf(v. child(2)) . exists since v is an internal node
5 m← 0
6 while head(λ) = head(λ′) do
7 λ← next leaf(λ)
8 λ′ ← next leaf(λ′)
9 incr m

10 return m

11 else if v is a leaf then . works only if sufnum(v) is available
12 return n+ 1− sufnum(v)

next leaf(λ) We can compute next leaf(λ) = leaf select(Ψ[leaf rank(λ)]) in con-
stant time.

str depth(v) We use the Ψ-function and head to compute the string depth of v
in time proportional to the string depth (see Algo. 1): First, we take
two different children of v (they exist since v is an internal node), and
choose an arbitrary leaf in the subtree of each child. By doing so, we have
selected two leaves representing two suffixes whose LCP is the string label
of the LCA of both leaves. Our task is to compute the length of this prefix.
To this end, we match the first characters of both suffixes by head. If they
match, we use Ψ to move to the next pair of suffixes3, and apply head
again. Informally, applying Ψ strips the first character of both suffixes
(like taking a suffix link, i.e., an edge from a node whose string label is cS
to a node whose string label is S, with c ∈ Σ, S ∈ Σ∗). We repeat this
as long as the first characters of both suffixes match. On a mismatch of
the first characters, each character finally represents an edge from v to a
different child, i.e., we have found the string depth of v that is equal to
the number of matched characters.

Usually, we do not need to compute sufnum(λ) = SA[leaf rank(λ)]. Since the
compressed suffix tree does not provide access to SA, such a call would cost us
O(n) time by sequentially scanning all leaves in lexicographic order. However,
in some scenarios we need access to SA (Sects. 3.4.4 and 3.6). For that, we can
augment the CST with the following data structure that gives access to SA:
3 Meaning that we select those two leaves that have the respectively next larger suffix

numbers.

35

3 Lempel-Ziv Factorizations

Lemma 3.6 (Grossi and Vitter [118, Sect. 3.2]). There is a data structure
using O(ε−1n lg σ) bits that can access SA in O(lgεσ n) time, where ε is a constant
with 0 < ε ≤ 1.

Belazzougui et al. [28] present an overview for other approaches supporting
access to SA.

3.3.3.2 Succinct Suffix Tree

Remembering Chapter 2, the arrays SA and ISA already need 2n lg n bits of
space, which is too much for our aimed space bounds of (1 + ε)n lg n bits. We
cannot store both SA and ISA as plain arrays. Instead, we make use of the
following data structure:

Lemma 3.7 ([194, Sect. 5.2]). Given a permutation A of the integers [1 . . n],
there is a data structure that provides access to A’s inverse in O(1/ε) time. The
data structure uses εn lg n+n bits. It can be constructed with additional n bits
in O(n) time.

Subsequently, we examine the space of LCP, which also needs n lg n bits
as a plain array. Sadakane [217] presented a representation of LCP taking
2n+ o(n) bits. His idea is to store the permuted longest-common-prefix array
PLCP, defined as PLCP[SA[i]] = LCP[i], in a bit vector in the following way (also
described in [81]): Since PLCP[1] + 1,PLCP[2] + 2, . . . ,PLCP[n] + n is a non-
decreasing sequence with 1 ≤ PLCP[1] + 1 ≤ PLCP[n] + n = n (PLCP[i] ≤ n− i
since the terminal $ is a unique character in T) the values I[1] := PLCP[1] and
I[i] := PLCP[i]− PLCP[i− 1] + 1 (2 ≤ i ≤ n) are non-negative. By writing I[i]
in the unary code 0I[i]1 to a bit vector S subsequently for each 2 ≤ i ≤ n, we
can compute PLCP[i] = select1(S, i)− 2i and LCP[i] = select1(S, SA[i])− 2SA[i].
Moreover, ∑n

i=1 I[i] ≤ n and therefore S is of length at most 2n. An example is
given in Fig. 3.8. The following lemma summarizes the space and time bounds:

Lemma 3.8 ([216, 237]). There is a data structure taking 2n+ o(n) bits that
can access LCP with SA in constant time. Having T , SA and ISA available, it
can be constructed in O(ntSA) time, where tSA is the time to access SA.

Having a representation of SA, ISA, and LCP, the succinct suffix tree (SST)
consists of

• ISA with n lg n bits,

• SA with εn lg n bits (using Lemma 3.7),

• LCP with 2n+ o(n) bits (using Lemma 3.8),

• an RMQ data structure on LCP with 2n+ o(n) bits (using Lemma 2.5 with
tSA = 1/ε),

36

3.3 Preliminaries

• and a 4n+ o(n)-bit representation of the suffix tree topology in depth-first
unary degree sequence (DFUDS) [29].

We construct the succinct suffix tree in the following way while making use
of several algorithms from the literature:

1. SA can be constructed in O(n) time with n lg n +O(lg n) bits of space,
including the space for SA itself ([177], or [114] in case that the alphabet
is effective).

2. We invert SA to ISA with n+O(lg n) bits of working space [72].

3. We construct the data structure of Lemma 3.7 to regain access to SA with
O(1/ε) access time.

4. Given SA and ISA, LCP can be computed in O(n/ε) time with no extra
space according to Lemma 3.8.

5. The RMQ data structure on LCP can be constructed in O(n/ε) time, and
answers queries in O(1/ε) time (see Lemma 2.5).

6. Given both SA and LCP with O(1/ε) access time, a space economical
construction of the tree topology was discussed in [202, Algo. 1]. The
authors showed that the DFUDS representation of the suffix tree topology
can be built in O(n/ε) time with n+ o(n) bits of working space.

Putting together all ingredients of the above list yields the following theorem:

Theorem 3.9. The succinct suffix tree takes (1 + ε)n lg n+O(n) bits of space.
We can construct it in-place in O(n/ε) time.

The succinct suffix tree endowed with an RMQ data structure on LCP as in
Lemma 2.10 improves the result of Cor. 2.12 with respect to construction and
final space.

Corollary 3.10. The succinct suffix tree from Thm. 3.9 can answer an LCE
query on T in O(1/ε) time.

The navigational methods of the suffix tree described in Sect. 3.3.3 can be
answered in constant time due to the chosen suffix tree topology [136]. We can
support the other methods easily with

• head(λ) := T [sufnum(λ)],4

4 We need the text T for computing head(λ) if its alphabet Σ is not effective. If Σ
is effective, we can compute head(λ) analogously to the compressed suffix tree with
child rank(level anc(λ, 1)).

37

3 Lempel-Ziv Factorizations

SST CST

Time O(n/ε) O(n)
Space (1 + ε)

n lg n +
O(n)

O(n lg σ)

Operation SST Time CST Time

sufnum(λ) O(1/ε) O(n)
str depth(v) O(1/ε) O(str depth(v))
edge length(e) O(1/ε) O(str depth(v))

Fig. 3.9: Left: Construction time and needed space in bits for the succinct
suffix tree (SST) and compressed suffix tree (CST) representations. Right: Time
bounds for certain operations needed by our LZ factorization algorithms.

• str depth(v) := LCP.RMQ[leaf rank(lmost leaf(v) + 1),
leaf rank(rmost leaf(v))],

• smallest leaf := leaf select(ISA[1]), and

• next leaf(λ) := leaf select(sufnum(λ) + 1).

All methods using sufnum with sufnum(λ) = SA[leaf rank(λ)] take O(1/ε)
time due to the way in which the suffix array is stored. These times differ from
the query times for the compressed suffix tree – see Fig. 3.9 for a juxtaposition.
As we will see in the following, our algorithms do not need to compute sufnum:
They linearly scan over all leaves in the lexicographic order, beginning with
smallest leaf with sufnum(smallest leaf) = 1 such that they can maintain the
suffix number of currently processed leaf with a counting variable. By doing so,
they can compute head(λ) and next leaf(λ) in constant time for the currently
processed leaf.

For our algorithms storing the LZ factorization within the space bounds of
the succinct suffix tree, it is important that the space taken by the succinct
suffix tree is rewritable. Let us call X the n lg n bits of space occupied by ISA,
and Y the εn lg n bits space taken by SA. We chose such generic names since
the contents of these arrays will change several times during the LZ77 and LZ78
computations.

Overwriting X does not only destroy ISA, but also disables the access to SA
and LCP. That is because the former is represented by the data structure of
Lemma 3.7 that needs access to ISA, and the latter is represented by the data
structure of Lemma 3.8 that needs access to SA.

3.3.4 Framework of the LZ Algorithms
Common to our LZ77 and LZ78 factorization algorithms in Sects. 3.4 and 3.7 is
the traversal of the suffix tree, during which we mark nodes. To mark nodes
efficiently we uniquely identify each node of the suffix tree with its preorder
number, i.e., the number induced by enumerating all nodes with a preorder

38

3.3 Preliminaries

traversal of the suffix tree. We can address a node by its preorder number and
vice versa in constant time by adding a rank- and a select-support to the bit
vector representing the suffix tree topology (i.e., either in DFUDS or in the BP
representation). If the context is clear, we implicitly convert a suffix tree node
to its preorder number, and vice versa.

Refining this idea, we distinguish between leaves and internal nodes since we
will often mark either leaves or internal nodes. Then we only have to allocate a
bit vector of length n for marking either leaves or internal nodes of the suffix tree.
The idea is to enumerate the leaves by their leaf rank-value, and the internal
nodes by their preorder numbers when omitting the leaves in the suffix tree.
The latter number can be computed in constant time since we can convert the
preorder number v of an internal node by v − leaf rank(lmost leaf(v)) + 1.

Next, we explain the common framework shared among our algorithms by
introducing some new keywords:

Witnesses. Witnesses are internal nodes that act as signposts for finding (LZ77)
the referred position or (LZ78) the referred index of a factor. These nodes are
necessary in our approach due to the space restrictions. To compute the referred
position or referred index of a factor F , we mark a certain internal node as the
witness of F such that we can determine the referred position or referred index
of F by examining its witness at a later stage. The number of witnesses zW is
at most the number of referencing factors zR. We enumerate the witnesses from
1 to zW using a bit vector BW of length n marking internal suffix tree nodes
that are witnesses. We add a rank1-support to BW such that we can map the
preorder numbers of the witnesses to the BW-ranks. We call BW.rank1(w) the
witness rank of a witness w.

Passes. We divide our algorithms into several passes. In a pass, we visit the
leaves of the suffix tree in text order. This is done by taking smallest leaf and
then calling next leaf successively. The passes differ in how a leaf is processed.
While processing a leaf λ, we want to access sufnum(λ). We can track the suffix
number of the current leaf with a counter variable, since we start at the leaf
with suffix number 1.

Corresponding Leaves. We say that a leaf λ corresponds to a factor F if
sufnum(λ) is the starting position of F . During a pass, we keep track of whether
a visited leaf corresponds to a factor. This is done as follows: While processing
a leaf λ corresponding to a factor F , we compute the length of F . This length
tells us the number of leaves after λ (in text order) that do not correspond
to a factor. By remembering the next corresponding leaf, we know whether
the current leaf corresponds to a factor — remember that a pass selects leaves
successively in text order, and smallest leaf always corresponds to the first factor.

39

3 Lempel-Ziv Factorizations

Our Setting. The algorithms have to factorize (i.e., determine the factor lengths
and the starting position of the factors) and compute the referred positions
(LZ77) or the referred indices (LZ78). We consider two scenarios:

1. In the first scenario, the output has to be stored explicitly in RAM.

For LZ77, we store the referred positions in an array with z lg n bits such
that the x-th entry stores the referred position of the x-th factor. The
factor lengths can be represented by an additional array with z lg n bits or
a bit vector of length n marking the ending positions of the factors. In the
latter case, we enhance the bit vector with a select-support such that we
can compute the length of the x-th factor with select1(x)− select1(x− 1)
in constant time.

For LZ78, we store the factor indices in an array with z lg z bits. The
characters at the end of the factors can be stored either

explicitly in a z lg σ bits array or

implicitly by a bit vector BT with a select-support marking the starting
positions of the factors. The bit vector BT takes n+ o(n) bits and
can look up the character at the end of the x-th factor (1 ≤ x ≤ z)
with T [BT.select1(x+ 1)− 1] in constant time.5

We use the explicit representation in conjunction with the compressed
suffix tree, while we use the implicit representation in conjunction with
the succinct suffix tree.

2. In the second scenario (output-streaming), we want the output to be
streamed sequentially. An output-streaming algorithm has to output a
factor as a pair of values, i.e., (LZ77) its referred position and length, or
(LZ78) its referred index and the character at its end; we call the set of
these value-pairs the coding of the respective factorization (see Figs. 3.4
and 3.5). The algorithm has to output the coding sequentially in text
order. We do not count the output in the final working space.

We can alter an output-streaming algorithm to store the factorization explicitly
by adding (LZ77) z lg n bits for the referred positions and min(n+ o(n), z lg n)
bits for the factor lengths, or (LZ78) z lg z bits for the referred indices and
min(n+ o(n), z lg σ) bits for the characters at the ends of each factor.

During this chapter, we often switch between both suffix trees representations.
Figure 3.10 gives a roadmap showing which suffix tree representation is used in
which section.
5 The implicit representation still requires T to be present for accessing the characters at the

end of the factors. We can build the explicit representation from the implicit representation
in O(z) time.

40

3.4 LZ77 with Space-Efficient Suffix Trees

Section CST SST

LZ77 (Sects. 3.4 to 3.6)

Sect. 3.4.1 ©
Sect. 3.4.2 ©
Sect. 3.4.3 ©
Sect. 3.4.4 © ©
Sect. 3.5 © ©
Sect. 3.6 © ©

LZ78 (Sect. 3.7)

Sect. 3.7.2 ©
Sect. 3.7.3 ©

Fig. 3.10: Connection between the algo-
rithms introduced in this chapter and
the presented suffix tree representations.
The figure shows which suffix tree repre-
sentation (marked with a circle) is used
by an algorithm (introduced in the re-
spective section).

3.4 LZ77 with Space-Efficient Suffix Trees
Our LZ77 factorization algorithms factorize the text while scanning it from left to
right. Suppose that we factorized the text up to the x-th factor Fx, and that the
factor Fx+1 is referencing. To determine the referred position of Fx+1, we need
to find the longest substring T [j . . j + `− 1] starting before 1 + |F1 · · ·Fx| that
is a prefix of the suffix T [1 + |F1 · · ·Fx| . .]. Since T [j+ `] 6= T [|F1 · · ·Fx|+ `+ 1]
(otherwise we could extend both substrings to the right), there is a suffix tree
node w with str depth(w) = ` having two leaves with respective suffix numbers j
and |F1 · · ·Fx| + 1. This node w is called the witness of Fx+1. Finding the
witnesses of all referencing factors is the crucial part of our LZ77 algorithms.
The witnesses can be found by the leaf-to-root traversals during a pass.

LZ77 Passes. Common to all passes is the following procedure: For each visited
leaf λ, we perform a leaf-to-root traversal, i.e., we visit every node on the path
from λ to the root. But we stop the leaf-to-root traversal on visiting a node
visited in an earlier traversal (of the same pass). The idea is the following: When
starting the leaf-to-root traversal of the leaf with suffix number j (1 ≤ j ≤ n),
the longest prefix F of T [j . .] that has an occurrence starting before j is the
string label of an already visited node. That is because of the following: First,
the ancestors of all leaves with suffix numbers smaller than j are already marked.
Consequently, F is a prefix of the concatenation of all edge labels on the path
from the root to a visited node. Second, F is actually the string label of a
visited node, since otherwise we could extend F by definition of the suffix tree.

Given that the leaf with suffix number j corresponds to a factor F , the factor
can be determined by accessing an already visited node in a leaf-to-root traversal
from the leaf with suffix number j. We only have to access the lowest already
visited node, since the LZ77 factorization chooses the longest preceding substring
matching F . For this purpose we create a bit vector BV of length n with which

41

3 Lempel-Ziv Factorizations

we mark the visited internal nodes (we represent internal nodes by a number
from 1 up to n as described in Sect. 3.3.4). This bit vector is cleared before a
pass starts. Since the suffix tree of T contains at most n− 1 internal nodes, a
pass can be conducted in linear time.

LZ77 Witnesses. Determining the witnesses is done in the first pass in the
following way: Let λ be a corresponding leaf. Suppose that we conduct a
leaf-to-root traversal from λ. We stop the traversal at an already visited node.
Reaching the root from λ corresponding to a factor (while visiting only nodes
that are not marked in BV) means that we found a fresh factor. Otherwise,
we visit an already visited node w, where w is not the root. If λ corresponds
to a factor F , w witnesses the referred position of F , i.e., w is the witness
of λ. This means that there is a suffix starting before text position sufnum(λ)
having a prefix equal to the string label of w. Moreover, w is the lowest node in
the set {lca(λ, λ′) | sufnum(λ′) < sufnum(λ)} consisting of the LCAs of λ and all
already visited leaves λ′. Consequently, the factor F corresponding to λ refers
to a text position coinciding with the suffix number of a leaf belonging to w’s
subtree. Its length is the string length of w. Having the length of F , we can
determine the starting position of the next factor, i.e., the suffix number of the
next corresponding leaf.

We computed the witnesses for our running example in Fig. 3.11. For LZ77
(left side), the witness nodes have preorder numbers 5, 9, and 13, and the leaves
corresponding to factors have suffix numbers 1, 2, 4, 5, 8, 12, and 15. For instance,
the leaf corresponding to the fourth factor has suffix number 5. Its witness has
preorder number 13. Among all descendant leaves of this witness our algorithms
choose the leaf with the lowest suffix number. In this example the referred
position of the fourth factor is text position 3 (that is equal to the suffix number
of the chosen leaf). The length of the fourth factor is the string depth of its
witness. The number of witnesses and the number of referencing factors is
zW = 3 and zR = 4, respectively.

3.4.1 Alphabet-Independent Output-Streaming
We build an RMQ data structure on SA to find the leaf with the smallest suffix
number in the subtree rooted at a given witness in O(1/ε) time (according
to Lemma 2.5 with tSA = 1/ε). This data structure allows us to output the
factorization with a single pass in linear time: On visiting an already visited
node v during a leaf-to-root traversal from a corresponding leaf λ, we find the
leaf λ′ with the smallest suffix number having v as its ancestor in O(1/ε) time
by an RMQ on SA. The suffix number of λ′ is the referred position of the factor
corresponding to the leaf λ, and str depth(v) is its factor length. The access to
SA is the only operation that costs us O(1/ε) time; the other operations can be
executed in constant time. In total, the algorithm runs in O(n/ε) time. The

42

3.4 LZ77 with Space-Efficient Suffix Trees

following theorem refines this time bound:

Theorem 3.11. Given a constant δ > 0, we can compute the LZ77 factorization
in O(z/(δε)+n/ε) = O(n/(δε)) time using (1+δ)n+o(n) bits of working space in
addition to the space needed for the succinct suffix tree when output-streaming.

Proof. We build the RMQ data structure of Lemma 2.5 on SA before inverting
it to ISA during the construction of the succinct suffix tree. According to
Lemma 2.5, the RMQ data structure takes δn bits and answers RMQs in O(tSA/δ)
time. It can be constructed in O(tSAn) time with o(n) additional bits. The
construction time is O(tSAn) = O(n), since SA is stored in the array X using
n lg n bits and having the access time tSA = O(1).

After inverting SA to ISA in X and storing the data structure of Lemma 3.7
representing SA in the array Y using εn lg n bits, the access time to SA and the
RMQ data structure worsens to tSA = O(1/ε) and O(1/(δε)), respectively.

Finally, we add BV using n bits to our working space. Since we get by with a
single pass, we do not need to maintain BW.

Corollary 3.12. We can stream the LZ77 factorization of a text of length n in
O(n/ε) time using (1 + ε)n lg n+O(n) bits of space.

Proof. We use the succinct suffix tree to compute the LZ77 factorization. Its
space requirement given in Thm. 3.9 dominates the space needed for the factor-
ization algorithm given in Thm. 3.11.

This is already an improvement over the previously best linear-time algorithm
using 2n lg n bits [148] for general integer alphabets.

Unfortunately, combining this algorithm with the compressed suffix tree
inherently causes the need to simulate SA. Simulating SA with the compressed
suffix tree still takes ω(1) time per SA access (see Lemma 3.6 for a known
trade-off with respect to space and time). Hence, we cannot hope for a linear
time algorithm with an approach that uses O(n lg σ) bits and RMQs on the suffix
array (which is not stored explicitly). Luckily, with a tiny trick, we can avoid
this problem by making two passes as shown in the next section.

3.4.2 Alphabet-Sensitive Algorithm
We study only the output-streaming variant, for which we claim the following
result:

Theorem 3.13. Given the compressed suffix tree of T , we can compute the
LZ77 factorization in O(n) time using 2n+z lg n+o(n) additional bits of working
space when output-streaming. The factorization can also be stored in RAM with
additional z lg n bits.

To obtain the claim of Thm. 3.13, we perform two passes:

43

3 Lempel-Ziv Factorizations

Algorithm 2: Pass (a) of the alphabet sensitive LZ77 algorithm of
Sect. 3.4.2.
1 λ← smallest leaf
2 p← 1 . tracks the suffix number of the next corresponding leaf
3 repeat
4 v ← parent(λ)
5 while v is not the root do
6 if BV[v] = 1 then . already visited?
7 if sufnum(λ) = p then . if λ corresponds to a factor
8 BW[v]← 1 . then v is the witness of λ
9 p← p+ str depth(v) . determine the starting position of the

next factor

10 break . on finding a visited node we stop

11 BV[v]← 1 . mark v as visited
12 v ← parent(v)
13 if v is the root then . λ corresponds to a fresh factor
14 incr p . determine the starting position of the next factor

15 λ← next leaf(λ)
16 until λ = smallest leaf

(a) create BW in order to determine the witnesses (see Algo. 2), and

(b) stream the output by using an array mapping witness ranks to text
positions (see Algo. 3).

Pass (a). We find the witnesses with the leaf-to-top traversals as described at
the beginning of this section. On finding a witness we mark it in BW (cf. Line 8
in Algo. 2), which helps us to determine the referred position in the next pass.
After this pass, we have determined the zW witnesses by the ones stored in BW.
We use the witnesses in the next pass to compute the referred positions (see
Fig. 3.11).

Pass (b). We clear BV, create a rank-support on BW and allocate an array W
consuming zW lg n bits. We use W to map a witness rank to a text position (a
referred position in particular, see Fig. 3.12). We set W [w] to the suffix number
of the leaf from which we visited the witness w for the first time (cf. Line 16 in
Algo. 3). By doing so, we find the referred position of a referencing factor F in
W [w] on visiting w again from the leaf corresponding to F . The length of F is
the string depth of w. Since fresh factors consist of single characters, we can
output a fresh factor by applying head to its corresponding leaf (cf. Line 20 in
Algo. 3).

44

3.4 LZ77 with Space-Efficient Suffix Trees

1

2

15

$

3

a

4

14

$

5

a

6

a

b

a

7

7

a

b

a

$

8

1

b

a

a

a

b

a

a

b

a

$

9

b

a

10

11

$

11

8

a

b

a

$

12

2

b

a

a

a

b

a

a

b

a

$

13

b

a

14

12

$

15

a

16

5

a

b

a

a

b

a

$

17

9

b

a

$

18

3

b

a

a

a

b

a

a

b

a

$

19

b

a

20

13

$

21

a

22

6

a

b

a

a

b

a

$

23

10

b

a

$

24

4

b

a

a

a

b

a

a

b

a

$

5

9

13

2

8

11

12

14

16

24

1

2

15

$

3

a

4

14

$

5

a

6

a

b

a

7

7

a

b

a

$

8

1

b

a

a

a

b

a

a

b

a

$

9

b

a

10

11

$

11

8

a

b

a

$

12

2

b

a

a

a

b

a

a

b

a

$

13

b

a

14

12

$

15

a

16

5

a

b

a

a

b

a

$

17

9

b

a

$

18

3

b

a

a

a

b

a

a

b

a

$

19

b

a

20

13

$

21

a

22

6

a

b

a

a

b

a

$

23

10

b

a

$

24

4

b

a

a

a

b

a

a

b

a

$

3

5

13

15

4

8

12

16

17

Preorder 1 3 5 6 9 13 15 19 21
BW 0 0 1 0 1 1 0 0 0

(a) LZ77 Factorization

Preorder 1 3 5 6 9 13 15 19 21
BW 0 1 1 0 0 1 1 0 0

(b) Classic-LZ77 Factorization

Fig. 3.11: Suffix tree of Fig. 3.7 with the witness nodes and the corresponding
leaves highlighted. The witness nodes and the corresponding leaves are deter-
mined during Pass (a) in Sect. 3.4.2 and Sect. 3.4.3. The witnesses are colored
in red (), the leaves corresponding to factors are colored in green (). The
number of ones in BW is zW.

witness rank 1 2 3
W 1 2 3

(a) LZ77

witness rank 1 2 3 4
W 1 1 3 5

(b) Classic-LZ77

Fig. 3.12: The array W storing a referred position for each witness rank in
Sect. 3.4.2. The entry W [i] is the suffix number of the leaf from which the i-th
witness w is visited for the first time; this number is the minimum value of the
suffix array in the range [leaf rank(lmost leaf(w)) . . leaf rank(rmost leaf(w))].

45

3 Lempel-Ziv Factorizations

Algorithm 3: Pass (b) of the alphabet sensitive LZ77 algorithm of
Sect. 3.4.2.
1 BV.clear
2 BW.add rank support
3 p← 1 . tracks the suffix number of the next corresponding leaf
4 zW ← BW.rank1(|W |)
5 W ← array of size zW lg n . maps witness ids to text positions
6 λ← smallest leaf
7 repeat
8 v ← parent(λ)
9 while v is not the root do

10 if BV[v] = 1 then . invariant: BV[v] = 1 ∧ p = sufnum(λ)⇒ BW(v) = 1
11 if sufnum(λ) = p then . λ corresponds to a factor
12 output text position W [BW.rank1(v)]
13 output factor length str depth(v)
14 p← p+ str depth(v) . determine next starting factor

15 break
16 if BW[v] = 1 then W [BW.rank1(v)]← sufnum(λ)
17 BV[v]← 1
18 v ← parent(v)
19 if sufnum(λ) = p then . λ corresponds to a fresh factor
20 output character head(λ)
21 output factor length 1
22 incr p
23 λ← next leaf(λ)
24 until λ = smallest leaf

The following corollary sums up our obtained result:

Corollary 3.14. We can compute the LZ77 factorization of a text of length n
in O(n) time using O(n lg σ) bits of space.

Proof. We use the compressed suffix tree to compute the LZ77 factorization.
Its space requirement given in Thm. 3.5 dominates the space needed for the
factorization algorithm given in Thm. 3.13.

Storing the Output. Instead of streaming the output we allocate an additional
array with z lg n bits such that we can fill this array in Pass (b) with the referred
positions. After Pass (b), we no longer need BW and the array W . We free
the space of BW and W , but create a bit vector BT of length n to store the
factor lengths. In an additional pass, we perform the leaf-to-root traversals only

46

3.4 LZ77 with Space-Efficient Suffix Trees

Initial (a) (b) (c) (M)

X ISA ISA ISA D Referred Positions
Y SA SA - - Helper Array

Fig. 3.13: Chronological table of the contents of the arrays X and Y modified
in Sect. 3.4.3. The algorithms working on the succinct suffix tree overwrite the
contents of the arrays X and Y , initially storing ISA and SA. The columns
represent the different phases that are chronologically sorted. Each column lists
the content stored in X or Y at the respective phase.

from the corresponding leaves. Given a leaf λ corresponding to a factor F , we
stop the traversal from λ when reaching the root or an already visited node w
(marked in BV). In the former case, F has length one. In the latter case, the
already visited node w is the witness of λ. Consequently, the length of F is
str depth(w), which we store in BT (set BT[sufnum(λ) + str depth(w)− 1]← 1).

Classic-LZ77 factorization. The LZ77 and the classic-LZ77 factorizations differ
in the fact that the latter always introduces a new character at the end of each
factor. We can easily adapt our algorithm to the classic-LZ77 factorization by
extending each factor during the first pass, in which we determine the witnesses
and factor lengths: On processing a corresponding leaf λ during this pass, we set
the length of the factor F corresponding to λ to the string depth of λ’s witness
incremented by one. We can obtain the character at the end of the factor Fx
when accessing the leaf whose suffix number is one text position smaller than
the suffix number of the leaf corresponding to Fx+1 (we then apply the function
head on that leaf to obtain the new character). In the particular case x = z,
the end of Fz is always $.

We conducted the classic-LZ77 factorization on our running example in
Fig. 3.11. There, the witness nodes have the preorder numbers 3, 5, 13, and 15,
and the leaves corresponding to factors have suffix numbers 1, 2, 5, 9, and 14.
We have zW = zR = 4.

Regarding the pseudo code of Algo. 2, we additionally need to check in Line 13
that we reach the root from a corresponding leaf. That is because we can reach
the root from a non-corresponding leaf during a leaf-to-root traversal of the
classic-LZ77 factorization. If we reach the root from a non-corresponding leaf
with suffix number j, then T [j] is the last character (i.e., the new character) of
the last computed factor.

3.4.3 Alphabet-Independent In-Place Algorithm
Allowing only (1 + ε)n lg n+O(n) bits for the entire working space plus output,
it is no longer possible to store both SA and ISA at the same time.

47

3 Lempel-Ziv Factorizations

Our idea is to gradually compute the necessary information about the factors
(their starting positions and their lengths) such that we can overwrite X and Y
when we no longer need SA and/or ISA (see Fig. 3.13 for an overview). As a
final result, we will store in X[x] the referred position of the x-th factor. We
divide our algorithm into three passes and a final matching phase, all of which
are discussed in detail in the following:

(a) Construct a bit vector BT[1 . . n] marking the starting positions of all
factors in T . Determine the witnesses, and mark them in BW.

(b) Construct a bit vector BD counting (in unary) the number of witnesses
visited during each leaf-to-root traversal.

(c) Construct an array D storing the witness ranks of all witnesses visited
during each leaf-to-root traversal (as counted in the second round).

(M) Convert the witness ranks in D to the referred positions.

Pass (a). This pass works exactly as Pass (a) in Sect. 3.4.2. After Pass (a), SA
is no longer needed.

Before starting with the next pass, let us assume conceptually that each leaf λ
maintains a list Lλ storing the visited witnesses during the leaf-to-root traversal
from the leaf λ in chronological order. If the last visited node w during the
leaf-to-root traversal from the leaf λ has been visited during a former traversal,
we add w to the end of the list Lλ only if the leaf λ corresponds to a factor F ;
in this case the node w is the witness of the factor F . We call the last entry
in Lλ of a corresponding leaf λ the referred entry of λ. The referred entry of a
leaf is its witness. Given that the witness of a leaf λ is w, there is exactly one
other leaf λ′ maintaining a list Lλ′ that contains w not as a referred entry, and
it holds that sufnum(λ′) < sufnum(λ). The leaf λ′ has also the smallest suffix
number among all leaves that contain w in their lists. This means that w is
first found on the leaf-to-root traversal starting from λ′, and is later determined
as the witness of λ. Consequently, the factor corresponding to λ refers to the
text position coinciding with the suffix number of λ′. To sum up, finding the
leaf whose list, excluding its referred entry, contains the referred entry of a
corresponding leaf λ is the crucial step in finding the referred position of the
referencing factor corresponding to λ.

To save space, we store the witnesses in the
lists not by their pre-order number, but by
their witness ranks. In our running example (cf.
Fig. 3.11), the lists have the contents L1 = (1),
L2 = (2, 1), L3 = (3), L4 = (), L5 = (3),
L6 = (), and so on (we wrote Lsufnum(λ) instead
of Lλ).

pre-order 5 9 13
witness rank 1 2 3

48

3.4 LZ77 with Space-Efficient Suffix Trees

text position 1 2 3 5 8 12
D 1 2 1 3 3 2 3

(a) Array D

j

1 1 1 1 1 11 2 3 4 5 6 7 8 9 0 1 2 3 4 5

BD 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1

(b) Bit Vector BD

Fig. 3.14: The list of lists L represented by D (a) and BD (b), computed on our
running example. The number of zeros between two ones (BD.select1(j) and
BD.select1(j + 1) for a text position j with 1 ≤ j ≤ n) in BD equals the number
of entries in D for the text position j. We shaded the referred entries of D in
blue (). Non-shaded numbers in D are unique, and each non-shaded number
appears later in a referred entry at least once. The LZ77-witnesses are depicted
on the left side of Fig. 3.11.

Due to Pass (a) we know that the leaf with suffix number 2 is a corresponding
leaf. The list L2 stores at its referred entry the witness with witness rank 1.
This witness is found during the leaf-to-root traversal from the leaf with suffix
number 1, since this leaf is the first whose list contains this witness rank.

In the following, we aim at representing the list of lists L, sorted by the suffix
numbers of the leaves (such that L[1] start with the list of the leaf with suffix
number 1). Despite the fact that L contains zW + zR witness ranks in total, we
want that it takes at most n lg n bits of space so that we can store it in X. This
is possible due to the following lemma.

Lemma 3.15. The number of witnesses zW plus the number of referencing
factors zR is at most n.

Proof. Let z1
R (resp. z+

R) denote the number of referencing factors of length 1
(resp. longer than 1), and let z1

W (resp. z+
W) denote the number of witnesses

whose string depth is 1 (resp. longer than 1). Also, zF denotes the number of
fresh factors. Clearly, zW = z1

W + z+
W, zR = z1

R + z+
R , z1

R ≤ zF, and z+
W ≤ z+

R .
Hence zR + zW = z1

W + z+
W + z1

R + z+
R ≤ zF + z1

R + 2z+
R ≤ n. The last inequality

follows from the fact that the factors are counted disjointly by zF, z1
R and z+

R ,
and the sum over the lengths of all factors is bounded by n, and every factor
counted by z+

R has length at least 2.

The data structure storing L consists of (a) an integer array D storing the
contents of L, and (b) a bit vector BD partitioning D into the n lists of L. The
array D can be built sequentially by appending the witness ranks whenever they
are marked or referred to during the leaf-to-root traversals. The bit vector BD

stores a one for each text position 1 ≤ j ≤ n, and intersperses these ones with
zeros counting the number of witnesses written to D during the j-th traversal.
In total, the bit vector BD contains n ones and zW + zR zeros. The ones in BD

implicitly divide D into n partitions (the j-th partition corresponds to the list
of the leaf with suffix number j). The size of the j-th partition (1 ≤ j ≤ n) is

49

3 Lempel-Ziv Factorizations

determined by the number of witnesses accessed during the j-th traversal. Hence
the number of zeros between the (j−1)-th and j-th one represents the number of
entries in Lλ for the leaf λ with suffix number j. Conceptually, we can access the
list Lλ by D[BD.rank0(BD.select1(j − 1)) + 1 . . BD.rank0(BD.select1(j))], where
j = sufnum(λ). Since we will perform only sequential scans over BD, there is no
need of a rank- or select-support of BD. We depicted the bit vector BD and the
array D of our running example in Fig. 3.14. Note that D only stores witness
ranks. Nevertheless, it uses lg n bits (instead of lg zW bits) per entry because we
overwrite the referred entries with the respective referred positions in the end.

Finally, we show the actual computation of D and BD. We want to store D
in X to comply with the claimed space bounds. Unfortunately, up to now, we
store ISA in X, which is necessary for traversing all leaves in text order, so that
overwriting X näıvely with D would result in losing this functionality. This
problem can be solved by performing two more passes, as already outlined at
the beginning of Sect. 3.4.3.

Pass (b). In this pass, we compute BD by counting the lengths of all lists in L
with the aid of BW. After this pass, we sparsify ISA according to BD: We
discard those ISA-values corresponding to suffixes that will not contribute to
the construction of D, i.e., those values i for which there is no zero between
the (i− 1)-th and the i-th one in BD. We align the resulting sparse ISA to the
right of X.

Pass (c). We overwrite X with D from left to right using the sparse ISA. Since
each suffix having an entry in the sparse ISA has at least one entry in D,
overwriting the remaining ISA values before using them cannot happen.

Matching (M). Once we have D in X, we start matching referencing factors
with their referred positions. Recall that each referencing factor has one referred
entry, and its referred position is obtained by matching the leftmost occurrence
of its witness in D.

Let us first consider the easy case with zW ≤ bnεc such that all referred
positions fit into Y (the helper array of size εn lg n bits). In a preprocessing,
we fill the entries of Y with an invalid value ⊥. For each m with 1 ≤ m ≤ zW,
we use Y [m] to store the suffix number of the smallest leaf among all leaves λ
having the m-th witness in their list Lλ.

Suppose that we have set Y [m] = k, i.e., the m-th witness was discovered for
the first time by the traversal from the leaf with suffix number k. Whenever we
read the referred entry D[i] of a factor F with a starting position larger than k
and BW.rank1(D[i]) = m, we know by Y [m] = k that the referred position of F
is k.

Both the filling of Y and the matching are done in one single, sequential
scan over D (stored in X) from left to right: While tracking the suffix number

50

3.4 LZ77 with Space-Efficient Suffix Trees

Algorithm 4: Matching (M) of the alphabet independent LZ77 algorithm
of Sect. 3.4.3.

input : array D and bit vector BD

result :X[x] is referred position of the x-th factor
1 BM ← bit vector of length |D| . mark already processed values
2 for 0 ≤ b < bzW/nεc do
3 Y [i]← ⊥ ∀1 ≤ i ≤ nε

4 for 1 ≤ i ≤ |D| do
5 m← BW.rank1(D[i]) . 1 ≤ m ≤ zW
6 if BM[i] = 0 and bnε ≤ m < (b+ 1)nε then
7 m← m− bnε . 1 ≤ m ≤ nε
8 if Y [m] = ⊥ then . store referred position
9 Y [m]← BD.rank1(BD.select0(D[i]))

10 else . X[i] is a referred entry
11 X[i]← Y [m]
12 BM[i]← 1 . mark that X[i] stores now a referred position

of the currently processed leaf with a counter k (1 ≤ k ≤ n), we look at
m := BW.rank1(D[i]) and Y [m] for each array position i with 1 ≤ i ≤ |D|:

• If Y [m] = ⊥, we set Y [m] to k (cf. Line 11 in Algo. 4).

• Otherwise, we have already set the value of Y [m] 6= ⊥ to the suffix number
of the first leaf λ′ having the m-th witness in its list Lλ′ . Remembering
that each witness can occur exactly once as a non-referred entry in a list,
the value D[i] is the referred entry of the factor F with starting position k
(otherwise Y [m] would be ⊥). Consequently, the referred position of F is
the value stored in Y [m]. We set X[i]← Y [m] to overwrite the referred
entry of the leaf with suffix number k with the referred position of its
corresponding factor F .

By doing so, we replace the witnesses stored in the referred entries of all
corresponding leaves with their respective referred positions.

If zW > bnεc, we run the same scan multiple times: We partition {1, . . . , zW}
into dzW/(nε)e equi-distant intervals (pad the size of the last one) of size bnεc,
and perform dzW/(nε)e scans. Since each scan takes O(n) time, the whole
computation takes O(zW/ε) = O(z/ε) time. One problem remains: Since the
domain of the witness ranks and referred positions can collide (both are integer
values), we have to track which referred entries in D are already converted to
referred positions. For this task, we use a bit vector BM marking all processed
referred entries such that we can skip the already processed referred entries.
Algorithm 4 shows the pseudo code computing the matching.

51

3 Lempel-Ziv Factorizations

Finally, we have the complete information of the factorization: The length
of the factors can be obtained by a select-query on BT, and X contains the
referred positions of all referencing factors. By a left shift we can restructure
X such that X[x] gives us the referred position (if it exists) for each factor
1 ≤ x ≤ z: The i-th one in BM marks the position of the i-th referred positions
in X. It is left to intersperse a zero for each fresh factor. This can be done by
a bit vector BZ of length z storing whether the x-th factor is referencing or a
fresh. The bit vector can be filled within Pass (b).

The following theorem sums up the results of this section:

Theorem 3.16. Allowing the succinct suffix tree of T to be rewritable, we can
overwrite it with the LZ77 factorization in O(n) time using 4n+ zW + zR + z +
o(n) ≤ 6n+ o(n) bits of working space on top of the space used by the suffix
tree.

Proof. Besides BV and BW (defined in Sect. 3.4, using 2n+ o(n) bits together)
we need to allocate extra space for the bit vectors BD (n+ zW + zR bits), BT

(n bits), and BZ (z bits). After Pass (b), we can free the space of BV, which
can be used for BM (zW + zR ≤ n bits).

Corollary 3.17. We can compute the LZ77 factorization of a text of length n
in O(n/ε) time using (1 + ε)n lg n+O(n) bits of space. The factors are stored
in-place.

Proof. We create the succinct suffix tree of Thm. 3.9 to compute the LZ77
factorization. Subsequently, we overwrite the (1 + ε)n lg n bits of space used
by the succinct suffix tree (for representing the suffix array and its inverse) in
order to compute the LZ77 factorization in-place according to Thm. 3.16.

Classic-LZ77 factorization. During the leaf-to-root traversals in Sect. 3.4.2,
we enlarge each referencing factor by one (remembering that the classic-LZ77
factorization introduces an additional character at the end of each referencing
factor). Since we use the bit vector BT to retrieve the position and the length of
a factor like before, it suffices to store the length of the factors in BT according to
the definition of the classic-LZ77 factorization. By doing so, the fresh character
terminating a referencing factor will never be considered to be the beginning of
a factor. Finally, the fresh character of each referencing factor can be looked up
with BT and T . Lemma 3.15 still holds for this variant of the factorization. In
fact, since z1

R = z1
W = 0, the proof gets easier.

3.4.4 Adaptation to Computing the LPF Table
Another approach for computing the LZ77 factorization is by using the LPF
table. The longest previous factor (LPF) table [58, 98] of T , denoted by LPF, is
formally defined as LPF[j] := max{` | there exists an i ∈ [1 . . j − 1] such that

52

3.4 LZ77 with Space-Efficient Suffix Trees

T [i . . i+ `− 1] = T [j . . j + `− 1]}. We can construct the LZ77 factorization T =
F1 · · ·Fz with it because Fi = T [k . . k+ max(1, LPF[k])] with k := ∑i−1

j=1 |Fj|+ 1
for 1 ≤ i ≤ z. An example is given in Fig. 3.8.

Our goal is to adapt the LZ77 algorithms of Sect. 3.4 to compute LPF in (near-
linear) time with the same space bounds as for computing the LZ77 factorization.
We start with the (to the best of our knowledge) state of the art algorithm with
respect to time and space requirements.

Lemma 3.18 ([62, Thm. 1]). Given SA and LCP, we can compute LPF in
O(ntSA) time. Besides the output space of n lg n bits, we only need constant
working space.

Apart from this algorithm, we are only aware of some practical improve-
ments [148, 201].

With the LCP array representation of Lemma 3.8 taking 2n+ o(n) bits, we
can construct LPF with the algorithm of Crochemore et al. [62] in the following
time and space bounds:

Corollary 3.19. Given SA as a plain array stored in n lg n bits (yielding
tSA = O(1)) and LCP stored in 2n+o(n) bits, we can compute LPF with O(lg n)
additional bits of working space (not counting the space for LPF) in O(n) time.

By plugging in a suffix array construction algorithm like the in-place con-
struction algorithm by Li et al. [177], we get the bounds shown in Fig. 3.15.

Although the result of this approach seems compelling, it stores SA and LPF
in plain arrays (the former for getting constant time access). In the following,
we will present a more compact representation of the LPF table, for which we
need the following property:

Lemma 3.20. For every integer j with 2 ≤ j ≤ n, it holds that n − j ≥
LPF[j] ≥ LPF[j − 1]− 1.

Proof. There is an i with 1 ≤ i < j − 1 such that T [i . . i + LPF[j − 1]− 1] =
T [j − 1 . . j − 1 + LPF[j − 1] − 1]. Hence T [i + 1 . . i + LPF[j − 1] − 1] =
T [j . . j − 1 + LPF[j − 1]− 1].

We conclude that the sequence LPF[1] + 1, LPF[2] + 2, . . . , LPF[n] + n is non-
decreasing with 1 ≤ LPF[1] + 1 ≤ LPF[n] + n ≤ n. We immediately obtain the
following corollary with Lemma 3.8:

Corollary 3.21. LPF can be represented by a bit vector with a select-support
such that accessing an LPF value can be performed in constant time. The data
structures use 2n+ o(n) bits.

To compute the LPF table within an improved space bound, we have to
come up with a new algorithm since the algorithm of Lemma 3.18 allocates
a plain array to have constant time random write access to the entries of

53

3 Lempel-Ziv Factorizations

Algorithm Time Working Space |LPF|

Lemma 3.18, [62] O(ntSA) |SA|+ |LCP|+O(lg n) n lg n
Cor. 3.19, [114, 177] O(n) n lg n+ 2n+ o(n) n lg n
Lemma 3.22, Thm. 3.9 O(ε−1n) (1 + ε)n lg n+O(n) 2n+ o(n)
Lemma 3.22, Lemma 3.6 O(ntSA) O(ε−1n lg σ) 2n+ o(n)

Fig. 3.15: Algorithms computing LPF. The space is counted in bits. The output
space |LPF| is not considered as working space. 0 < ε ≤ 1 is a constant.

LPF. Luckily, we can adapt the LZ77 factorization algorithms of Sect. 3.4 to
compute LPF instead of the LZ77 factorization. We aim at building the LPF
table representation of Cor. 3.21 directly such that we do not need to allocate
a plain array taking n lg n bits in the first place. To this end, we create a bit
vector of length 2n and store the LPF values in it successively. We perform a
single pass of one of the LZ77 factorization algorithms presented in Sect. 3.4.
Similarly to the first passes of the LZ77 algorithms, we use a bit vector BV to
mark already visited internal nodes. On visiting a leaf we climb up the tree until
reaching the root or an already marked node. In the former case (we reached
the root) we output zero. In the latter case, we output the string depth of the
marked node. By doing so, we have computed LPF[1 . . j] after having processed
the leaf with suffix number j.

Lemma 3.22. We can compute LPF in O(n lgεσ n) time with O(ε−1n lg σ) bits
of working space, or in O(n/ε) time using (1 + ε)n lg n+O(n) bits of working
space, for any constant ε with 0 < ε ≤ 1. Both variants include the space of the
output in their working spaces.

Proof. The time and space bounds are due to the construction of the suffix tree,
for which we choose either the succinct suffix tree representation (Thm. 3.9) or
the compressed suffix tree representation (Thm. 3.5). We compute the string
depth of a node with access to an RMQ data structure of LCP, and access to
SA. We can emulate both accesses with the compressed suffix tree in O(lgεσ n)
time according to Lemma 3.6, given that we have computed PLCP in the above
representation [190, Sect. 5].

We present an application of Lemma 3.22 in the following section.

3.5 Application: Distinct Squares
It is well-known that a string of length n contains at most n2/4 squares [93, Sect.
1]. This bound is the number of all squares, i.e., we count multiple occurrences
of the same square, too. If we consider the number of all distinct squares, i.e.,

54

3.5 Application: Distinct Squares

we count exactly one occurrence of each square, then the number becomes linear
in n: The first linear upper bound was given by Fraenkel and Simpson [93] who
proved that a string of length n contains at most 2n distinct squares. Later,
Ilie [132] showed the slightly improved bound of 2n−Θ(lg n). Recently, Deza
et al. [68] refined this bound to b11n/6c. In the light of these results one may
wonder whether future results will “converge” to the upper bound of n: The
distinct square conjecture [93, 138] is that a string of length n contains at most
n distinct squares; this number is known to be independent of the alphabet
size [184]. However, there is still a big gap between the best known bound and
the conjecture. While studying a combinatorial problem like this, it is natural
to think about ways to actually compute the exact number.

This section focuses on a computational problem on distinct squares, namely,
we wish to compute (a compact representation of) the set of all distinct squares
in a given string offline as well as online. In the offline setting, Gusfield and
Stoye [121] tackled this problem with an algorithm running in O(nσT) time,
where σT denotes the size of the effective alphabet of T . Although its running
time is optimal O(n) for a constant alphabet, it becomes O(n2) for a large
alphabet since σT can be as large as n. Crochemore et al. [65] improved this
result with an algorithm running in O(n) time for integer alphabets.

In the online setting, previous articles working with squares are due to Leung
et al. [174], and Hong and Chen [125] who find the shortest prefix S of T that
is a square in O(|S| lg σT) time and O(|S| lg2 |S|) time, respectively, if such an
S exists.6 Unfortunately, to the best of our knowledge, there is no study on
how to compute all distinct squares online.

In this section, we present an algorithm (Sect. 3.5.3) within the same time
bounds of O(n) as [65] for integer alphabets. This algorithm is practical
(Sect. 3.5.6), and can be adapted to work online (Sect. 3.5.7). Our contributions
are:

• We can find all distinct squares in O(n/ε) time with (2 + ε)n lg n+O(n)
bits of working space, or in O(ntSA) time with O(n lg σ) bits of working
space (Cor. 3.27), whereas Crochemore et al. [65] achieved O(n) time and
O(n) words. Next,

• we can find them online in O(n lg2 lg n/ lg lg lg n) time using O(n) words
of working space (Thm. 3.28),

• we can decorate the suffix tree with all distinct squares in O(n) time with
(occ + 2n) lg n+z lg z+O(n) bits of additional working space (Thm. 3.30),
where occ is the number of all distinct squares,

• we can find all squares that are common to all strings of a set with a total
string length of n in O(n) time with O(n) words (Thm. 3.32), and finally

6 Otherwise, the algorithms can test whether T is square-free. For that, we substitute |S|
with |T | = n in the running times.

55

3 Lempel-Ziv Factorizations

i 1 2 3 4 5 6 7 8 9 10 11 12

T a b a b a a a b a b a $
SA 12 11 5 6 9 3 7 1 10 4 8 2
LCP 0 0 1 2 1 3 3 5 0 2 2 4
PLCP 5 4 3 2 1 2 3 2 1 0 0 0
LPF 0 0 3 2 1 2 5 4 3 2 1 0

LZ77 F1 F2 F3 F4 F5 F6

Fig. 3.16: The arrays SA, LCP, PLCP and LPF of T = ababaaababa$, which is
factorized in six LZ77 factors.

• we can compute the tree topology of the minimal augmented suffix tree [11]
in linear time using O(n) words of working space (Thm. 3.33).

3.5.1 Preliminaries
Within this section, we represent the occurrences of substring S by pairs of
position and length such that S = T [i . . i+ `− 1] for a pair (i, `). A set of pairs
of position and length is called distinct, if there are no two pairs (i, `) and (i′, `)
within this set such that T [i . . i+ `− 1] = T [i′ . . i′ + `− 1], i.e., there are no
two pairs corresponding to substrings that are equal. A set of squares is a set
of pairs with the restriction that each pair (i, `) of this set corresponds to a
square T [i . . i+ `− 1]. A set of all distinct squares is a distinct set of squares
that is maximal under inclusion.

Within this section, we use the text T = ababaaababa$ as our running
example. Figure 3.16 shows T and other support data structures needed by our
algorithm computing all distinct squares.

3.5.2 Set of All Distinct Squares
Given a string T , our goal is to compute all distinct squares of T . Our algorithm
represents each found square as a pair (s, 2p) consisting of a starting position s
and a period p such that T [s . . s+ 2p− 1] is the leftmost occurrence of a square.
The size of this set is linear due to the following lemma:
Lemma 3.23 (Fraenkel and Simpson [93]). A string of length n can contain at
most 2n distinct squares.

We follow the approach of Gusfield and Stoye [121]. Their idea is to compute
a set of squares7 represented by pairs of starting position and length with which
7 It differs from the set we want to compute in the fact that they allow, among others,

occurrences of the same square in their set.

56

3.5 Application: Distinct Squares

niwaniwagowauraniwaniwaniwatorigairu

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

Fig. 3.17: Squares constructed by right rotations. This example highlights all
squares of length eight with lines, where the arms of each square are separated
with a small vertical bar. Squares that cannot be constructed by right-rotating
are colored in dark yellow (). The other squares are colored in blue ().
These squares can be constructed by right-rotating the square (16, 8).

ababaaababa$T=

Fig. 3.18: Squares of our running example highlighted with lines (like in Fig. 3.17).
The set of all squares is {(1, 4), (2, 4), (5, 2), (6, 2), (7, 4), (8, 4)}. If we take
the leftmost occurrences of all squares, we get {(1, 4), (2, 4), (5, 2)}; this set
comprises all squares colored blue (), i.e., the red lines () correspond to
occurrences of squares that are not leftmost. In this example, the red lines form
the set {(6, 2), (7, 4), (8, 4)}, which is a set of all distinct squares. A leftmost
covering set is {(1, 4), (5, 2)}.

they can generate all distinct squares. They call this set of squares a leftmost
covering set. A leftmost covering set obeys the property that every square of
the text can be constructed by right-rotating a square of this set. We say that a
square (k, 2p) is constructed by right-rotating a square (i, 2p) with i ≤ k if each
pair (i+ j, 2p) with 1 ≤ j ≤ k− i represents a square T [i+ j . . i+ 2p+ j − 1] =
T [i+ j . . i+ 2p− 1]T [i . . i+ j − 1]. See Fig. 3.17 for an example.

The set of the leftmost occurrences of all squares is a set of all distinct squares.
Figure 3.18 depicts an example of this set. Unfortunately, the leftmost covering
set computed in [121] is not necessarily a set of all distinct squares since (a)
it does not have to be distinct, and (b) a square might be missing (that can,
however, be constructed by right-rotating a square of the computed leftmost
covering set).

Our goal is to compute the set of all leftmost occurrences directly by modifying
the algorithm of Gusfield and Stoye [121]. In what follows, we briefly review how
their approach works: They compute their leftmost covering set by examining
the borders between all LZ77 factors F1 · · ·Fz = T . That is because of the
following lemma:

Lemma 3.24 ([121, Lemma. 4]). The leftmost occurrence of a square cannot
be contained completely in an LZ77 factor.

57

3 Lempel-Ziv Factorizations

pFx Fx+1

T =

q

`R `R`L `L

p FxFx−1

T =

q

`R
`R `L`L

Fig. 3.19: Search for squares on the LZ77 factor borders. Top: Squares of
Type 1 (top) and of Type 2 (bottom). Given two adjacent LZ77 factors, we
determine a position q that is p positions away from the border (the direction
is determined by the type of square we want to search for). By two LCE queries
we can determine the lengths `L and `R that indicate the presence of a square if
`L + `R ≥ p.

Lemma 3.25 ([121, Thm. 5]). Let Fx (1 ≤ x ≤ z) be the factor that contains
the position i+ p− 1 of the leftmost occurrence T [i . . i+ 2p− 1] of a square.
Then this occurrence belongs to one of the two types:

Type 1: its left end (position i) is inside Fx and its right end (position i+2p−1)
is inside Fx+1, or

Type 2: its left end is inside an LZ77 factor preceding the x-th factor and its
right end is inside Fx or Fx+1.

Having LCE↔, i.e., a data structure supporting LCE and LCS queries with
O(tLCE) query time, Gusfield and Stoye [121] can probe at the borders of two
consecutive factors whether there is a square. Roughly speaking, they have
to check at most |Fx|+ |Fx+1| many arm lengths at the borders of every two
consecutive factors Fx and Fx+1 according to Lemma 3.25 for 1 ≤ x ≤ z (set
Fz+1 := Λ). This gives ∑z

x=1 tLCE(|Fx|+ |Fx+1|) = O(ntLCE) time, during which
they can compute a leftmost covering set L. Figure 3.19 visualizes how the
checks are done. Applying the algorithm on our running example yields the
set L = {(1, 4), (5, 2), (7, 4)}. To transform this set into a set of all distinct
squares, their algorithm runs the so-called Phase II that uses the suffix tree. It
begins with computing the locations of the squares belonging to a subset L′ ⊆ L
in the suffix tree in O(n) time. This subset L′ is still guaranteed to be a leftmost
covering set. Finally, the algorithm computes all distinct squares of the text by
right-rotating the squares in L′. In the algorithm, the right rotations are done
by suffix link walks over the suffix tree. The running time analysis is based on
the fact that each node has at most σT incoming suffix links, where σT denotes
the number of different characters occurring in the text T . Since the number of

58

3.5 Application: Distinct Squares

distinct squares is linear (recall Lemma 3.23), Phase II runs in O(nσT) time.
In total, the running time of the algorithm is dominated by Phase II. How to
speed up this computation is the topic of the next section.

Algorithm 5: Helper functions used in Algo. 6.
input : starting position s and ending position e with s ≤ e

1 function recursive rotate(s, e)
2 m← LPF.RMQ[s . . e] . position with smallest entry in LPF[s . . e]
3 if LPF[m] > 2p then return . all squares already reported
4 report(m, 2p) and B[m]← 1 . B defined in Algo. 6
5 recursive rotate(s,m− 1) and recursive rotate(m+ 1, e)

input : starting position s and arm length p of a square
6 function right rotate
7 if B[s] = 1 then return
8 if LPF[s] < 2p then report(s, 2p) and B[s]← 1
9 `← lcp(s, s+ p)

10 recursive rotate(s+ 1,min(s+ p− 1, s+ `− p))

3.5.3 Algorithmic Improvement
In the following, we present our improvement of the algorithm sketched in
Sect. 3.5.2. To speed up the computation, we discard the idea of using the suffix
links for right-rotating squares (i.e., we skip Phase II completely). Instead, we
compute a list of all distinct squares directly. The modified algorithm outputs
this list sorted first by the lengths (of the squares) and second by the starting
positions.

First, we show that we can alter the original algorithm to output its leftmost
covering set in the order described above. In our modification, we iterate
over all possible arm lengths (Line 4 in Algo. 6), and search not yet reported
squares at all LZ77 borders (Line 6), for each arm length. To achieve linear
running time, we want to skip a factor Fx when the arm length becomes longer
than |Fx| + |Fx+1|. We can do this with an array Z of z lg z bits that is zero
initialized. When the currently tested arm length p exceeds |Fx| + |Fx+1|,
we write Z[x] ← min {y > x | |Fy|+ |Fy+1| ≥ p} such that Z[x] refers to the
next factor whose length combined with the length of its succeeding factor is
sufficiently large (cf. Line 12 in Algo. 6). By doing so, if Z[x] 6= 0, we can skip
all factors Fy with y ∈ [x . . Z[x] − 1] in constant time. The value of Z[x] is
computed in amortized constant time: When scanning for the lowest y > x with
|Fy| + |Fy+1| ≥ p, then we visit all positions y′ with x ≤ y′ ≤ y never again,
because we set Z[x] = y > y′. Maintaining the array Z allows us to run the
modified algorithm still in linear time.

59

3 Lempel-Ziv Factorizations

Algorithm 6: Modified Algo. 1 of [121].
input : LZ77 factorization F1, . . . , Fz

1 Let b(Fj) be the beginning position of the j-th factor, let Fz+1 = Λ and
b(Fz+1) := n.

2 Z ← array of size z lg z bits, zero initialized
3 m← max(|F1|+ |F2| , . . . , |Fz−1|+ |Fz|)
4 for p = 1, . . . ,m do
5 B ← bit vector of length n, zero initialized
6 for x = 1, . . . , z do
7 if |Fx|+ |Fx+1| < p then
8 y ← x

9 while |Fy|+ |Fy+1| < p do
10 if Z[y] 6= 0 then y ← Z[y]
11 else incr y
12 Z[x]← y and x← y

13 if |Fx| ≥ p then . probe for squares of Type 1
14 q ← b(Fx+1)− p . b(T [i . . j]) = i is the starting position
15 `R ← lcp(b(Fx+1), q) and `L ← lcs(b(Fx+1)− 1, q − 1)
16 if `R + `L ≥ p and `R > 0 then . found a square of length 2p with

its right end in Fx+1

17 s← max(q − `L, q − p+ 1) . square starts at s
18 right rotate(s,p) . see Algo. 5

19 q ← b(Fx) + p . probe for squares of Type 2
20 `R ← lcp(b(Fx), q) and `L ← lcs(b(Fx)− 1, q − 1)
21 s← max(b(Fx)− `L, b(Fx)− p+ 1) . square starts in a factor

preceding Fx

22 if `R + `L ≥ p and `R > 0 and s+ p ≤ b(Fx+1) and `L > 0 then
. found a square of length 2p whose center is in Fx

23 right rotate(s,p) . see Algo. 5

60

3.5 Application: Distinct Squares

Next, we show that the modified algorithm still computes the same set. To
see this, let us fix the arm length p (over which we iterate in the outer loop).
According to Lemma 7 of [121], processing squares of Type 1 before processing
squares of Type 2 (all squares have the same arm length p) produces the desired
output for arm length p.

Finally, we show the modification that computes all distinct squares (instead
of the original leftmost covering set). Roughly speaking, we use an RMQ data
structure on LPF to filter already found squares. The filtered squares are used
to determine the leftmost occurrences of all squares by right rotations. In more
detail, we modify Algo. 1 of [121] by filtering the squares in the following way.8
Given an arm length p, we mark in a bit vector B the beginning positions of all
found squares with arm length p (cf. Lines 4 and 8 in Algo. 5). Before reporting
a square, we discard the square if its starting position is already marked in B.
Checking the marking in B is sufficient to prevent reporting a square more than
once. The algorithm ensures that all right-rotated squares of an occurrence of a
square beginning at a marked position are already reported.

Suppose that we search for the leftmost occurrences of all squares whose
arm lengths are equal to p. Given the starting position s of a found square,
we consider the square (s, 2p) and its right rotations as candidates of our
list: If B[s] = 1, then this square and its right rotations have already been
reported. Otherwise, we report (s, 2p) if LPF[s] < 2p. To find the leftmost
occurrences of all not yet reported right-rotated squares efficiently, we first
compute the rightmost position e of the run with a period p containing the
square (s, 2p) by an LCE query (recall Cor. 2.11). Second, we check the interval
I := [s+ 1 . . min(s+ p− 1, e− 2p+ 1)] for the starting positions of the squares
whose LPF values are less than 2p. This is sufficient, because

1. there can be at most p− 1 different right-rotated squares of a square with
arm length p, and

2. the last starting position of a square with arm length p within the same
run is e− 2p+ 1.

To find all entries of LPF[I] with a value less than 2p, we perform an RMQ
query on LPF, finding the position j whose LPF value is minimal in I. If
LPF[j] ≥ 2p, then there is no leftmost occurrence of a square with arm length p
in the considered range. Otherwise, we report (j, 2p) and recursively search for
the text position with the minimal LPF value within the intervals [s+ 1 . . j − 1]
and [j + 1 . . min(s+ p− 1, e− 2p+ 1)], cf. Line 10 in Algo. 5. See Fig. 3.20 for
an example. In total, the time of the recursion is bounded by twice the number
of distinct squares starting in the interval I, since a recursion step terminates if
it could not report any square.
8 In Line 6 of Algo. 1b of [121], the condition start+k < h1 has to be changed to start+k ≤ h1.

Otherwise, given the text T = abaabab$, the algorithm would find only the square aa, but
not abaaba.

61

3 Lempel-Ziv Factorizations

k o n o k o n o s o k o n o k o n o k o $

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

0 0 0 1 4 3 2 1 0 5 8 7 6 7 6 5 4 3 2 1 0

2p

RMQ RMQ

T =

LPF =

Fig. 3.20: Searching all squares with arm length 4 and a starting positions j
with LPF[j] < 2p and 11 ≤ j ≤ 14. The height of the i-th vertical bar is set in
relation to the size of LPF[i]. Suppose that we found the square okon|okon at
position 10. To find the leftmost occurrences of those squares that are right
rotations of that square, we perform recursively RMQs on LPF. The first RMQ
retrieves the position whose LPF value is represented by a bar with diagonal
hatching (). To find the starting positions () of the other squares, we recurse
on the left and on the right side with an RMQ.

Theorem 3.26. Given LCE↔ with tLCE access time and LPF, we can compute
all distinct squares in O(ntLCE + occ) = O(ntLCE) time, where occ is the number
of distinct squares.
Proof. The occ term in the running time is dominated by the ntLCE term
due to Lemma 3.23. It is left to show that the returned list is the list of
all distinct squares: No square occurs in the list twice since we only report
the occurrence of a square (i, 2p) if LPF[i] < 2p. Assume that there is a
square missing in the list; let (i, 2p) be its leftmost occurrence. There is a
square (j, 2p) reported by the (original) algorithm [121] such that i− p < j ≤ i
and right-rotating (j, 2p) yields (i, 2p). Since we right-rotate all found squares,
we obviously have reported (j, 2p).

The next corollary, which is immediate from Thm. 3.26 and Lemma 3.22,
summarizes the main result of this section.
Corollary 3.27. Given a string T of length n, we can compute all distinct
squares in T in O(ε−1n) time with (2 + ε)n lg n+O(n) bits of working space,
or in O(n lgεσ n) time with O(ε−1n lg σ) bits of working space.

3.5.4 Elaborated Example
We run the algorithm devised in Sect. 3.5.3 on our running example T =
ababaaababa$ step by step. The arrays SA, LCP, PLCP, LPF, and the LZ77

62

3.5 Application: Distinct Squares

factorization are given in Fig. 3.16.
To ease the explanations within this example, we introduce the following

definitions: We call T [1 + |F1 · · ·Fi−1|] (first position of the i-th factor) and
T [1 + |F1 · · ·Fi|] (position after the i-th factor) the left border and the right
border of Fi, respectively. The idea of the algorithm is to check the presence
of a square at a factor border and at an offset value q of the border with LCE
queries. The value of q is the result of either adding p to the left border, or
subtracting p from the right border (see Fig. 3.19).

The algorithm finds the leftmost occurrences of all squares in the order (first)
of their lengths and (second) of their starting positions. We start with p = 1
and try to detect squares with arm length p at each LZ77 factor border. At
the beginning, we create a bit vector B marking all found squares with arm
length p = 1. A square of this arm length is found at the right border of F3. It
is of Type 1, since its starting position is in F3. To find it, we take the right
border b = 6 of F3, and the position q := b− p = 5. We perform an LCE and
an LCS query at b and q. Only the LCE query returns a non-zero value (here
one). But this is sufficient to find the square aa of arm length 1. Its LPF value
is smaller than 2p = 2, so it is the leftmost occurrence. It is not yet marked
in B, thus we have not yet reported it. Right rotations are not necessary for
arm length 1. Having found all squares with arm length 1, we clear B.

Next, we search for squares with arm length 2. We find a square of Type 2
at the left border b = 2 of F2 by performing an LCE and LCS query at b and
q := b+ p = 4. The queries reveal that T [1 . . 5] is a run with a period of p = 2.
Thus we know that T [1 . . 4] is a square. It is not yet marked in B, but has an
LPF value smaller than 2p = 4, i.e., it is a not yet reported leftmost occurrence.
On finding a leftmost occurrence of a square, we right-rotate it, and report all
right rotations whose LPF values are below 2p. This is the case for T [2 . . 5],
which is the leftmost occurrence of the square baba.

After some unsuccessful checks at the next factor borders, we come to factor F5
and search for a square of Type 2. An LCE and LCS query at the left border b = 8
of F5 and q := b + p = 10 reveal that T [7 . . 11] is a run with a period of 2.
The substring T [7 . . 10] is a square with LPF[7] = 5 ≥ 2p, i.e., it is a square
that we have already reported. Although we have already reported it, some
right rotations of it might not have been reported yet (see Sect. 3.5.5 for an
example). However, this time, all right rotations (i.e., the square T [8 . . 11])
have an LPF value of at least 2p, i.e., there is no leftmost occurrence of a square
of arm length 2 that can be found by right rotations. In total, we have found
and reported the leftmost occurrences of all squares once.

3.5.5 Need for RMQs on the LPF Table
Remember that our algorithm computing all distinct squares performs right
rotations of a square (s, 2p) with recursive RMQs on the interval I := [s+ 1 . .

63

3 Lempel-Ziv Factorizations

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T k o n o k o n o s o k o n o k o n o k o $

LPF 0 0 0 1 4 3 2 1 0 5 8 7 6 7 6 5 4 3 2 1 0

| |

||

Fig. 3.21: Text of Fig. 3.20 with LPF and the squares kono|kono, okon|okon,
and onok|onok highlighted with lines (the arms are separated with a vertical
bar).

min(s+p−1, e−2p+ 1)], where e is the last position of the run with a period p
that contains the square (cf. Algo. 5). Without an RMQ data structure, we could
linearly scan all LPF values in I, giving O(p) = O(n) time. We cannot do better
since the LPF values are arbitrary in general. For instance, this can be seen in
the setting of Figs. 3.20 and 3.21: The square kono|kono has two occurrences
starting at positions 1 and 11, whereas the square onok|onok has only one
occurrence at position 12. We find this single occurrence by right-rotating the
occurrence of okon|okon at position 10. We can perform the right rotation by
a linear scan over LPF or an RMQ on LPF. Prepending other squares to the
example can change the LPF values around that occurrence. We conclude that
we cannot perform a shortcut in general (like stopping the search when the
LPF value becomes at least twice as large as p). Despite the need of RMQs, the
following evaluation shows that the algorithm is still useful in practice.

3.5.6 Practical Results
We have implemented the algorithm computing the leftmost occurrences of
all squares9 in C++11. The primary focus of the implementation was on the
execution time, rather than on a small memory footprint: We have deliberately
chosen plain 32-bit integer arrays for storing all array data structures like
SA, LCP and LPF. These data structures are constructed as follows: First,
we generate SA with divsufsort10. Subsequently, we generate LCP with the
Φ-algorithm [146], and LPF with the simple algorithm of Crochemore et al. [62,
Proposition 1]. Finally, we use the bit vector class and the RMQ data structure
provided by the Succinct Data Structure Library (SDSL) [111]. In practice, it
makes sense to perform an RMQ on LPF only for very large LCP values and
arm lengths due to its long (yet constant) execution time. For small values, we
compare characters näıvely, or scan LPF linearly.

Experimental setup. All experiments were conducted on a machine with
32 GiB of RAM, an Intel Xeon CPU E3-1271 v3 and a Samsung SSD 850 EVO
250GB. The operating system was a 64-bit version of Ubuntu Linux 14.04 with
9 Available at https://github.com/koeppl/distinct_squares.

10 Available at https://github.com/y-256/libdivsufsort.

64

https://github.com/koeppl/distinct_squares
https://github.com/y-256/libdivsufsort

3.5 Application: Distinct Squares

the kernel version 3.13. All experiments ran with a single execution thread. The
source code was compiled with the GNU compiler g++ 6.2.0 using the compile
flags -O3 -march=native -DNDEBUG.

The text collections of our experiments (here and in Sect. 3.8.2) are provided
by the tudocomp framework [69, Table 1]. All texts have a length of 200 MiB.
They vary in the alphabet size and in the degree of repetitiveness, e.g.,

• pc-english is an English excerpt from the Gutenberg project11,

• pcr-cere is a highly-repetitive deoxyribonucleic acid (DNA) sequence
with small alphabet size,

• pc-dna is a non-highly-repetitive DNA sequence with small alphabet size,
and

• hashtag is a tab-spaced-version data dump with integer keys and hash
tags.

Figure 3.47 presents the text collections used in the evaluations.

Evaluation. Figure 3.22 shows the running times of the algorithm on the
aforementioned datasets. It seems that large factors tend to slow down the
computation (compare pc-english with wiki-all-vital), since the algorithm
has to check all arm lengths up to maxx(|Fx|+ |Fx+1|). This seems to have more
impact on the running time than the number of LZ77 factors z (compare pcr-
einstein.en with pc-proteins) or the number of distinct squares (compare
pcr-einstein.en with pcr-kernel). In most of the datasets, the running
times scale worse than linear, as can be seen in Fig. 3.23.

3.5.7 Computing All Distinct Squares Online
In this section, we consider the online setting, where new characters are appended
to the end of the text T . Given the text T [1 . . i] up to position i with the LZ77
factorization F1 · · ·Fy = T [1 . . i], we consider computing the set of all distinct
squares of F1 · · ·Fy−2, i.e., up to the last two LZ77 factors. In this setting, we
prove the following theorem:

Theorem 3.28. We can compute the set of all distinct squares in O(n lg2 lg n/
lg lg lg n) time online, where n is the number of read characters. We use O(n)
words of space during the computation.

We adapt the algorithm of Thm. 3.26 to the online setting by computing LPF
online, and filling a semi-dynamic LCE data structure that answers LCE queries
on the text and on the reversed text while supporting appending characters
11 https://www.gutenberg.org/

65

https://www.gutenberg.org/

3 Lempel-Ziv Factorizations

Collection maxx |FxFx+1| |occ| Time

hashtag 54 k 3160 k 196
pc-dblp.xml 1 k 7 k 70
pc-dna 98 k 133 k 310
pc-english 1094 k 13 k 2639
pc-proteins 68 k 3108 k 245
pc-sources 308 k 340 k 792
pcr-cere 185 k 47 k 535
pcr-einstein.en 1634 k 18,193 k 3953
pcr-kernel 2756 k 9 k 6608
pcr-para 74 k 37 k 265
tagme 1 k 19 k 79
wiki-all-vital 10 k 14 k 100

Fig. 3.22: Practical evaluation of the algorithm computing all distinct squares
(Sect. 3.5.6) on the datasets described in Sect. 3.5.6 and Fig. 3.47. We write
1 k for 103. The number of all distinct squares is |occ|. Execution time is in
seconds. It is the median of several conducted experiments, whose variance
in time was small. The number maxx |FxFx+1| is the maximal length of two
consecutive LZ77 factors. We needed approx. 5.73 GiB of RAM on each instance.

Collection 1 MiB 10 MiB 50 MiB 100 MiB 200 MiB

pc-dblp.xml 0.2 3 16 33 70
pc-dna 0.3 3 23 56 310
pc-english 0.2 5 42 500 2639
pc-proteins 0.3 4 25 74 245
pc-sources 0.2 3 31 286 792
pcr-cere 0.6 6 30 79 535
pcr-einstein.en 0.4 12 83 1419 3953
pcr-kernel 0.2 8 233 1274 6608
pcr-para 0.4 4 26 98 265

Fig. 3.23: Computing all distinct squares on the data sets defined in Sect. 3.5.6
and Fig. 3.47. Entries are running times measured in seconds. We measured
the algorithm with prefixes of 1 MiB, 10 MiB, 50 MiB, and 100 MiB of each
collection.

66

3.5 Application: Distinct Squares

to the text. We build this semi-dynamic LCE data structure with two online
suffix tree construction algorithms. With one online suffix tree construction
algorithm, we can compute LPF online and support LCE queries, while with the
other we can support LCS queries.

The first is Ukkonen’s algorithm that computes the suffix tree online in
O(ntnav) time [236], where tnav is the time for inserting a node and navigating
(in particular, selecting the child on the edge starting with a specific character).
We can adapt Ukkonen’s algorithm to compute LPF online (similar to how
Gusfield [120, Sect. 7.17.1] computes the LZ77 factorization without overlaps):
Assume that we have computed the implicit suffix tree of T [1 . . i− 1]. With
implicit we mean that suffixes of T [1 . . i − 1] can be (not necessarily proper)
prefixes of string labels of internal nodes, since the suffixes do not end with
the special delimiter $. On reading the character T [i], Ukkonen’s algorithm
processes T [i] by (1) following the suffix links of the current suffix tree, and
(2) adding new leaves where a branching occurs. Suppose that it creates a new
leaf with suffix number i. On adding this leaf, we additionally set LPF[i] to
the string depth of its parent. The value of LPF[i] is correct, since Ukkonen’s
algorithm obeys two invariants: First, added leaves never change (like receiving
a new suffix number). Second, on adding the leaf with suffix number i, there are
already all leaves with suffix number j with 1 ≤ j ≤ i− 1 present in the suffix
tree. Remembering the tree traversals described in Sect. 3.4, the witness of the
newest added leaf i is its parent v (recall Lemma 3.22), since all other leaves
in the subtree of v have a lower suffix number than i. As a consequence, the
string depth of v is max1≤j<i−1 lce(i, j), and therefore equal to LPF[i]. To sum
up, we can update the LPF values in time linear in the update time of the suffix
tree. We build the semi-dynamic RMQ data structure of Fischer [82, Sect. 3.2]
(or of Ueki et al. [235, Sect. 5] if n is known beforehand) on top of LPF. This
data structure takes O(n) words and can answer queries in constant amortized
time. It can be updated also in constant amortized time.

The second suffix tree construction algorithm is a modified version [35] of
Weiner’s algorithm [241] that builds the suffix tree in the reversed order of
Ukkonen’s algorithm in O(ntnav) time. Since Weiner’s algorithm incrementally
constructs the suffix tree of a given text from right to left, we can adapt this
algorithm to compute the suffix tree of the reversed text online in O(ntnav) time.

To get a suffix tree construction time of O(n lg2 lg n/ lg lg lg n), we use the
predecessor data structure of Beame and Fich [26]. We create a predecessor
data structure to store the children of each suffix tree node, such that we get
the navigation time tnav = O(lg2 lg n/ lg lg lg n) for both suffix trees. We also
create a predecessor data structure to store the out-going suffix link of each
node of the suffix tree constructed by Weiner’s algorithm. To sum up, adding
these predecessor data structures takes O(n) words of space in total.

Finally, our last ingredient is a dynamic LCA data structure with O(n) words
that performs querying and modification operations in constant time [53]. The
LCA of two suffix tree leaves with suffix numbers j and k is the node whose

67

3 Lempel-Ziv Factorizations

string depth is equal to the longest common extension of T [j . . i] and T [k . . i].12

Building this data structure on the suffix tree of the text T and on the suffix
tree of the reversed text allows us to compute LCE queries in both directions in
constant time.

Given the text T [1 . . i] = F1 · · ·Fy up to the i-th character, the entries of
LPF[1 . . |F1 · · ·Fy−2|+ 1] are fixed (i.e., they will not change when appending
new characters). To see this, we use the property that the LPF values of the
leaves of the implicit suffix tree are fixed: It suffices to show that all suffixes
T [j . .] are represented as leaves for each integer j with 1 ≤ j ≤ |F1 · · ·Fy−2|+ 1].
Since T [1 . . i] = F1 · · ·Fy is already factorized in y LZ77 factors, the (y − 1)-th
factor cannot change due to the greedy nature of the LZ77 factorization. By
definition, the substring Fy−1T [1 + |F1 · · ·Fy−1|] (which is Fy−1 enlarged by its
succeeding character) has no occurrence in T starting before Fy−1. Since all
suffixes are prefixes of nodes in the implicit suffix tree, Ukkonen’s algorithm
creates a leaf for the suffix T [1 + |F1 · · ·Fy−2| . .] starting with Fy−1 on reading
the character T [1 + |F1 · · ·Fy−1|]. Remembering the aforementioned invariants
of this algorithm, each leaf with suffix number j is present in the suffix tree, for
1 ≤ j ≤ 1 + |F1 · · ·Fy−2|.

We let the semi-dynamic RMQ data structure grow with LPF, but only up
to those LPF values that are already fixed. Similarly, the text positions from
1 up to |F1 · · ·Fy−2|+ 1 are represented as leaves in both suffix trees. To sum
up, our data structures support LCE queries and RMQs on LPF in the range
[1 . . |F1 · · ·Fy−2|+ 1] in constant time.

We adapt the algorithm of Sect. 3.5.3 by switching the order of the loops
(cf. Lines 4 and 6 in Algo. 6) like in the original version [121]. The algorithm
first fixes an LZ77 factor Fx and then searches for squares with an arm length
between one and |Fx|+ |Fx+1|. Unfortunately, we would need an extra bit vector
for each arm length so that we can track all found leftmost occurrences. Instead,
we use the predecessor data structure of Beame and Fich [26] storing the found
occurrences of squares as pairs of starting positions and lengths. These pairs
can be stored in lexicographic order (first sorted by starting position, then
by length). The predecessor data structure contains at most occ elements,
hence takes O(occ) = O(n) words of space. An insertion or a search costs us
O(lg2 lg n/ lg lg lg n) time.

Suppose that we have computed the set for T [1 . . i− 1], and that the LZ77
factorization of T [1 . . i − 1] is F1 · · ·Fy−1. In the case that appending a new
character T [i] results in a new factor Fy, we check for squares of Types 1 and 2
at the borders of Fy−2. Duplicates are filtered by the predecessor data structure
storing all already reported leftmost occurrences. The algorithm outputs only
the leftmost occurrences with the aid of LPF, whose entries are fixed up to the
last two factors (this is sufficient since we search for the starting position of the

12 Remember that we consider the text T up to the position i, hence T [j . . i] is (currently)
the j-th suffix.

68

3.5 Application: Distinct Squares

1

2

12

$

3

a

4

11

$

5

a

6

5

a

b

a

b

a

$
7

6

b

a

b

a

$

8

b

a

9

9

$

10

3

a

a

b

a

b

a

$

11

b

a

12

7

$

13

1

a

a

b

a

b

a

$

14

b

a

15

10

$

16

4

a

a

b

a

b

a

$

17

b

a

18

8

$

19

2

a

a

b

a

b

a

$

5,aa

17,baba

11,abab

Fig. 3.24: Decorat-
ing the suffix tree of
T = ababaaababa$ with
all its squares. Decorated
nodes are highlighted in
blue (). The label of
each decorated node v is
composed of v’s pre-order
number and the square
equal to its string label.

leftmost occurrence of a square of Type 1 only in T [1 . . |F1 · · ·Fy−2|], including
right rotations). In total, we need O((|Fy−2|+ |Fy−1|) lg2 lg n/ lg lg lg n) time.

3.5.8 Decorating the Suffix Tree with All Squares
Gusfield and Stoye described a representation of the set of all distinct squares
by a decoration of the suffix tree, like the highlighted nodes (additionally
annotated with its respective square) shown in the suffix tree of Fig. 3.24. This
decoration has applications on its own, as we will see at the end of this section
how to compute all common squares or the longest square of a set of texts.
It requires a set of pairs of the form (node, length) as input such that each
square T [i . . i+ 2p− 1] is represented by a pair (v, 2p), where v is the highest
node whose string label has T [i . . i+ 2p− 1] as a (not necessarily proper) prefix.

We show that we can compute this set of pairs in linear time by applying
the Phase II algorithm [121] sketched in Sect. 3.5.2 to our computed set of all
distinct squares. The Phase II algorithm takes a list Li storing squares starting

69

3 Lempel-Ziv Factorizations

at text position i, for each integer i with 1 ≤ i ≤ n. Each of these lists has to
be sorted in descending order with respect to the squares’ lengths. It is easy to
adapt our algorithm to produce these lists: On reporting a square (i, 2p), we
insert it at the front of Li. By doing so, we can fill the lists without sorting,
since we iterate over the arm length in the outer loop, while we iterate over all
LZ77 factors in the inner loop.

Finally, we can conduct Phase II. In the original version, the goal of Phase II
was to decorate the suffix tree with the endpoints of a subset of the original
leftmost covering set. We show that exactly the same operations applied to the
set of the leftmost occurrences of all squares decorate the suffix tree with all
squares directly. We first augment the suffix tree leaf with suffix number i with
the list Li, for each 1 ≤ i ≤ n. Subsequently, we follow Gusfield and Stoye [121]
by processing every node of the suffix tree with a bottom-up traversal. During
this traversal we propagate the lists of squares from the leaves up to the root:
An internal node u inherits the list of the child whose subtree contains the leaf
with the smallest suffix number among all leaves in the subtree rooted at u. If
the edge to the parent node contains the ending position of one or more squares
in the list (these candidates are stored at the front of the list), we decorate
the edge with these squares, and remove them from the list. According to [121,
Thm. 8], there is no square of the set L′ (defined in Sect. 3.5.2) neglected during
the bottom-top traversal. The same holds if we exchange L′ with our computed
set of all distinct squares:

Lemma 3.29. By feeding the algorithm of Phase II with the above constructed
lists Li containing the leftmost occurrences of the squares starting at the text
position i, it decorates the suffix tree with all distinct squares.

Proof. We adapt the algorithm of Sect. 3.5.3 to build the lists Li. These lists
contain the leftmost occurrences of all squares. In the following we show that
no square is left out during the bottom-up traversal. Let us take a suffix tree
node u. Let v be the child of u whose subtree contains the leaf with the smallest
suffix number among all leaves that are descendants of u. Assume, for the
sake of contradiction, that there is another child w of u whose list contains the
occurrence of a square (i, 2p) at the time when we pass the list of v to its parent u.
The length 2p is smaller than v’s string depth, otherwise it would already have
been popped off from the list. However, since v’s subtree contains a leaf whose
suffix number j is the smallest among the suffix numbers of all leaves contained
in the subtree of w, the square occurs before at T [j . .j+2p−1] = T [i. .i+2p−1],
a contradiction to the distinctness of the set computed in Sect. 3.5.3.

Lemma 3.29 concludes the correctness of the modified algorithm. We imme-
diately get:

Theorem 3.30. Given LPF, LCE↔ with O(tLCE) query time, and the suffix tree
of T , we can decorate the suffix tree with all squares of the text in O(ntLCE)

70

3.5 Application: Distinct Squares

time. Asides from these data structures, we use (occ + 2n) lg n+ z lg z+ min(n+
o(n), z lg n) +O(lg n) bits of additional working space.

Proof. We need (occ + 2n) lg n bits for storing the lists Li (occ lg n bits for
storing the lengths of all squares in an integer array, and 2n lg n bits for the
pointers to the first element and the size of each list). The array Z uses z lg z
bits. The LZ77 factors are represented in the coding described in Fig. 3.4.

Corollary 3.31. We can compute the suffix tree and decorate it with all squares
of the text in O(n/ε) time using (3n+ occ + 2nε) lg n+ z lg z +O(n) bits, for a
constant 0 < ε ≤ 1.

Proof. We use Lemma 3.22 and Thm. 3.9 to store the succinct suffix tree and
LPF in (1 + ε)n lg n + O(n) bits, supporting LCE queries with tLCE = O(1/ε)
according to Cor. 3.10. We additionally build the succinct suffix tree on the
reversed text. Finally, we endow LPF with an RMQ data structure for the right
rotations.

All Common Squares. As an application, we consider the common squares
problem: Given a set of non-empty texts with a total string length of n, we
want to find all squares that occur in every string in O(n) time. Our main tool
is the generalized suffix tree. The generalized suffix tree built on a set of texts
is the suffix tree built on the concatenation of all texts, where we assume that
each text Tj ends with a special delimiter that appears only in Tj[|Tj|] and in
no other text. We solve the common squares problem by first decorating the
generalized suffix tree built on all texts with the distinct squares of all texts.
Subsequently, we apply the O(n) time solution of Hui [127] that annotates each
internal suffix tree node v with the number of texts that contain v’s string label.
This solves our problem since we can simply report all squares corresponding to
nodes whose string labels are found in all texts. This also solves the problem
asking for the longest common square of all texts in O(n) time, analogously to
the longest common substring problem [120, APL4].

Theorem 3.32. Given a set of non-empty texts with a total string length of n,
we can find all their common squares and the longest common square in O(n)
time while using O(n) words of working space.

The following and last section is dedicated to another application of our suffix
tree decoration:

3.5.9 On the Tree Topology of the MAST
A modification of the suffix tree is the minimal augmented suffix tree (MAST) [11].
Given a string S, the MAST of a text T can retrieve the number of all non-
overlapping occurrences of S in T . The MAST differs from the suffix tree by the
facts that

71

3 Lempel-Ziv Factorizations

1

2

12

$

3

a

4

11

$

5

a

6

5

a

b

a

b

a

$
7

6

b

a

b

a

$

8

b

a

9

9

$

10

3

a

a

b

a

b

a

$

11

b

a

12

7

$

13

1

a

a

b

a

b

a

$

14

b

a

15

10

$

16

4

a

a

b

a

b

a

$

17

b

a

18

8

$

19

2

a

a

b

a

b

a

$

4
4

7

7

1

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 3.25: The MAST of T =
ababaaababa$. Its topol-
ogy differs from the suffix
tree in that it has an addi-
tional node with string la-
bel ab. Each node (except
the root) is labeled with the
number of non-overlapping
occurrences of its string la-
bel in T . Nodes whose
string labels are equal to
the arm of a square of T are
highlighted in blue ().

• the arm of each square is the string label of a MAST node, and

• each internal node is augmented with the number of the non-overlapping
occurrences of its string label.

The MAST nodes obey the property that the stored numbers of the nodes on
the path from a leaf to the root are strictly increasing. Figure 3.25 shows an
example.

Having the MAST, we can retrieve the number of the non-overlapping oc-
currences of a substring S of T in O(|S| tnav) time, where tnav is the time to
navigate from a node to one of its children. We proceed as follows: We traverse
the MAST from the root downwards while reading S from the edge labels. If
there is a mismatch, S cannot be found in the text. Otherwise, we end at
reading the label of an edge (u, v); let u be v’s parent. Then the node v is the
highest node whose string label has S as a (not necessarily strict) prefix. By
returning the number stored in v we are done, since this number is the number
of non-overlapping occurrences of S in T .

72

3.5 Application: Distinct Squares

The MAST can be built in O(n lg n) time [38]. In this section, we show how to
compute the tree topology of the MAST in linear time. We do this by computing
a list storing the information about where to insert the missing nodes. The list
stores pairs consisting of a node v and a length 2p; we use this information later
to create a new node w splitting the edge (u, v) into (u,w) and (w, v), where
u is the (former) parent of v. We label (w, v) with the last 2p characters and
(u, v) with the rest of the characters of the edge label of (u, v).

This is done as follows: We explore the suffix tree with a top-down traversal
while locating the arms of the squares in the order of their lengths. To locate the
arms of the squares in linear time we use two data structures. The first one is a
semi-dynamic lowest marked ancestor data structure [4]. It supports marking
a node and querying for the lowest marked ancestor of a node in constant
amortized time. We use it to mark the area in the suffix tree that has already
been processed for finding the arms of the squares.

The second data structure is a list L storing pairs of the form (node, length).
We compute these pairs as described in Sect. 3.5.8, where each pair (v, 2p)
consists of the length 2p of a square T [i . . i+ 2p− 1] and the highest suffix tree
node v whose string label has T [i . . i + 2p − 1] as a (not necessarily proper)
prefix. We sort L with respect to the square lengths with a linear time integer
sorting algorithm (e.g. Lemma 2.7).

Finally, we explain the algorithm locating the arms of all squares. We
successively process all pairs of L, starting with the shortest square length.
Given a pair of L containing the node v and the length 2p, we want to split an
edge on the path from the root to v and insert a new node whose string depth
is p. To this end, we compute the lowest marked ancestor u of v. If u’s string
depth is smaller than p, we mark all descendants of u whose string depths are
smaller than p, and additionally the children of those nodes (this can be done
by a depth-first or a breadth-first search). If we query for the lowest marked
ancestor of u again, we retrieve an ancestor w (a) whose string depth is at least
p, and (b) whose parent has a string depth less than p. We report w and the
subtraction of p from w’s string depth (if p is equal to the string depth of w,
then w’s string label is the arm of the square equal to v’s string label, i.e., we
do not have to report it).

If the suffix tree has a pointer-based representation, it is easy to add the new
nodes by splitting each edge (u, v), where v is a node contained in the output
list.

Theorem 3.33. We can compute the tree topology of the MAST in linear time
using linear number of words.

Proof. By maintaining no longer needed nodes in a semi-dynamic lowest marked
ancestor data structure, we visit a node as many times as we have to insert
nodes on the edge to its parent, plus one. This gives O(n+ 2 occ) = O(n) time,
where occ is the number of all distinct squares.

73

3 Lempel-Ziv Factorizations

a a a b a b a a a b a a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1,1)

(1,1) (3,2)

(1,5)

(3,3)

Coding: a(1,1)(1,1)b(3,2)(1,5)(3,3)$

(a) Non-Overlapping LZ77

a a a b a b a a a b a a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1,1)

(2,1) (1,1)

(1,4)

(2,3)

(3,2)

Coding: a(1,1)(2,1)b(1,1)(1,4)(2,3)(3,2)$

(b) Non-Overlapping Reversed LZ77

a a a b a b a a a b a a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1,2)

(1,5) (2,3)

(3,2)

(c) Overlapping Reversed LZ77

Fig. 3.26: Factorizations of Sect. 3.6 applied to our running example.

While we have seen that the LZ77 factorization is helpful for detecting squares,
there are variants of the LZ77 factorization that are used for detecting other
regular structures. The following section sheds a light on these factorizations:

3.6 Variants of the LZ77 Factorization
We study three variants of the LZ77 factorization, which were already considered
by Crochemore et al. [64]:

• the non-overlapping LZ77 factorization (Sect. 3.6.1),

• the non-overlapping reversed LZ77 factorization (Sect. 3.6.2), and

• the overlapping reversed LZ77 factorization (Sect. 3.6.3).

Figure 3.26 illustrates each factorization applied to our running example string.
Crochemore et al. [64] can compute each variant in O(n) time with O(n) words
of space. For each variant, they show how to compute an LPF table adapted
to the respective variant. Here, we show that we adapt our LZ77 factorization
algorithms to compute each variant in at least the same time and space bounds
as Crochemore et al. do.

3.6.1 Non-Overlapping LZ77
The non-overlapping LZ77 factorization is a powerful tool for finding approximate
repetitions [162], periods [71], and other regular structures (see [178]). It is
defined as follows (see Fig. 3.26a for an example):

74

3.6 Variants of the LZ77 Factorization

Definition 3.34. A factorization F1 · · ·Fz = T is called the non-overlapping
LZ77 of T if Fx = argmax {|S| | S ∈ Σ∗ occurs in T [1 . . j] or S ∈ Σ} for all 1 ≤
x ≤ z with j = |F1 · · ·Fx−1|.

Analogously to the LPF table (see Sect. 3.4.4), there are algorithms [45, 46,
60, 64] computing the table of the longest previous non-overlapping factors,
the last one [64] running in linear time. With this table, we can compute the
factorization of Def. 3.34 in the same way as the LZ77 factorization with the
LPF table (remember Sect. 3.4.4).

We present an adaptation of our previously introduced LZ77 factorizations,
from which we borrow the notion of fresh factors, and adapt the notion of
referencing factors having a referred position in the following way: The referred
position of a factor T [i . . i+ `− 1] is the smallest text position j with j + ` ≤ i
and T [j . . j+ `− 1] = T [i . . i+ `− 1]. The additional restriction j+ ` ≤ i makes
the computation of the referred positions more technical: Let j be the referred
position of a factor T [i . . i+ `− 1], and let S be the longest substring starting
before i that is a prefix of T [i . .]. We associate the factor T [i . . i+ `− 1] with
one of the following three types:

Type 1: T [j . . j + `− 1] = S (this situation is the same as in the standard LZ77
variant),

Type 2: T [j . . j + `− 1] is shorter than S, but T [j + `] 6= T [i+ `] (then there is
a suffix tree node that has the string label T [i . . i+ `− 1]), or

Type 3: T [j + `] = T [i+ `] (then j + ` = i, otherwise the factor T [i . . i+ `− 1]
could be extended to the right).

An example is a|b|
3

ab|
1

a|
2

a|
1

a|$, where (a) the factor borders are symbolized by
the vertical bar |, and (b) the referencing factors are labeled with their types
(fresh factors are not labeled). For a factor T [i . .] of Type 3, the suffixes T [j . .]
and T [i . .] share more than ` characters such that T [i . . i+ `− 1] is not a string
label of any suffix tree node in general, but is at least a prefix of the string label
of a node. This is the case for the third factor in the aforementioned example,
as can be seen in Fig. 3.27.

Despite this increased complexity, the factorization can be computed with
the suffix tree in O(n lg σ) time using O(n lg n) bits of space [120, APL16]. We
adapt the algorithms of Sect. 3.4 computing the overlapping LZ77 factorization
to compute the non-overlapping factorization by following the approach of
Gusfield [120].

Witnesses. Like in Sect. 3.4, we use witnesses to create a connection between
corresponding leaves and their referred positions. The witness of a leaf λ
corresponding to a factor F is the lowest node whose subtree contains λ and a
leaf with suffix number j such that T [j . . j + |F | − 1] is the largest substring

75

3 Lempel-Ziv Factorizations

1

2

8

$

3

a

4

7

$

5

a

6

6

$

7

5

a

$
8

b

a

9

3

a

a

$

10

1

b

a

a

a

$

11

b

a

12

4

a

a

$

13

2

b

a

a

a

$

3

8

9

7

6

a b a b a a a $
1 2 3 4 5 6 7 8

(1,2)

(1,1) (1,1)

(1,1)

Coding: ab(1,2)(1,1)(1,1)(1,1)$

Fig. 3.27: Left: Suffix tree of the text T = ababaaa$ with the witness nodes and
the corresponding leaves of the non-overlapping LZ77 factorization (Def. 3.34)
highlighted in red () and in green (), respectively. We additionally marked
the string ab with an implicit node () whose string label is equal to the factor
with Type 3. Right: Non-overlapping LZ77 factorization of T .

of T [1 . . sufnum(λ)− 1] that is a prefix of T [sufnum(λ) . .] (see also Figs. 3.27
and 3.28). Then j is the referred position of F (we always select the smallest
such j).

In what follows, we present our modification, which solely consists of a
modification of Pass (a). Pass (b) of Sect. 3.4.2, or Pass (b) and Pass (c) of
Sect. 3.4.3 are identical to the standard variants (e.g., marking visited nodes in
BV). In Pass (a) of all LZ77 algorithms, we determine the witnesses. The goal of
Pass (a) is either to output the coding directly (in the streaming-output variant),
or to mark and store the witnesses in a bit vector BW. When working in multiple
passes with the succinct suffix tree, we additionally have to store information
about the witnesses to find them later. That is because we determine them in
our modification with the suffix array, which we delete in the following passes
of Sect. 3.4.3 to free up space.

Pass (a). (a)Instead of performing leaf-to-root traversals, we traverse from the
root to a specific leaf. We perform such a traversal by level ancestor queries
such that visiting a node takes constant time. We perform these traversals only
for all corresponding leaves since the other leaves are not useful for determining

76

3.6 Variants of the LZ77 Factorization

1

2

15

$

3

a

4

14

$

5

a

6

a

b

a

7

7

a

b

a

$

8

1

b

a

a

a

b

a

a

b

a

$

9

b

a

10

11

$

11

8

a

b

a

$

12

2

b

a

a

a

b

a

a

b

a

$

13

b

a

14

12

$

15

a

16

5

a

b

a

a

b

a

$

17

9

b

a

$

18

3

b

a

a

a

b

a

a

b

a

$

19

b

a

20

13

$

21

a

22

6

a

b

a

a

b

a

$

23

10

b

a

$

24

4

b

a

a

a

b

a

a

b

a

$

2

7

8

12

14

16

18

24

3

13

9

6
Fig. 3.28: Suf-
fix tree of T =
aaababaaabaaba$
with the witness
nodes and the cor-
responding leaves of
the non-overlapping
LZ77 factorization
(Sect. 3.6.1) high-
lighted in red ()
and green (),
respectively.

a factor. Given a node v on the path from the root to a leaf λ corresponding to
a factor F , let jv be the smallest suffix number among all leaves belonging to v’s
subtree. Further let Iv := [jv . . jv + str depth(v)− 1] and Iλ,v := [sufnum(λ) . .
sufnum(λ) + str depth(v) − 1] be two intervals. These two intervals have the
property that T [Iv] = T [Iλ,v]. We compute the values of jv, Iv and Iλ,v for
every node v on the path from the root to λ until reaching a node v such that
the intervals Iv and Iλ,v overlap (cf. Line 9 in Algo. 7). Let u be the parent of
v. Then the edge (u, v) determines the factor F : We consider the following two
cases that determine whether F is a fresh or referencing factor, and whether the
witness and the referred position of F are u and ju, or v and jv, respectively, in
case F is referencing:

• If jv = sufnum(λ), there is no leaf in v’s subtree with a suffix number
smaller than sufnum(λ).

77

3 Lempel-Ziv Factorizations

– If u is the root, then there is no candidate for a referring position
available, i.e., F is a fresh factor (cf. Line 13 in Algo. 7).

– Otherwise, str depth(u) > 0 and Iu ∩ Iλ,u = ∅ (since we reached the
edge (u, v) instead of the previous edge (parent(u), u) on the path
from the root to λ). Hence, the longest substring occurring before
sufnum(λ) that is a prefix of T [sufnum(λ) . .] has an occurrence in
T [1 . . sufnum(λ) − 1] (Type 1). One of those occurrences starts
at position ju. This means that the referred position is ju, and
the witness of λ is u; the length of F is str depth(u) (cf. Line 17 in
Algo. 7).

• If jv < sufnum(λ), the length of F is in the interval [str depth(u) . .
str depth(v)− 1]. If the factor F refers to the position jv, then its length
is the minimum of sufnum(λ)− jv and the length of the LCP of the suffixes
starting at jv and sufnum(λ). Let us denote the value of this minimum
by `, which determines whether F refers to jv or ju:

– If ` = str depth(u), then the referred position of F is actually the
suffix number of a leaf contained in u’s subtree (Type 2). In this
case, the length of F is |Iu| = str depth(u) because Iu ∩ Iλ,u = ∅.
The witness of λ is u, and ju is the referred position (cf. Line 21 in
Algo. 7).

– Otherwise, str depth(u) < |F | < str depth(v), hence F is not the
string label of any suffix tree node (Type 3). The node v is the
highest node whose string label has F as a prefix. We conclude that
the witness, the referred position and the length of F are v, jv, and
`, respectively (cf. Line 23 in Algo. 7).

To determine the value of jv, we require an RMQ data structure on SA
(similar to Thm. 3.11). According to Lemma 2.5, such a data structure can be
constructed in O(tSAn) time. A query needs access to SA and costs tSA time.
We can access SA in O(1/ε) time and in O(lgεσ n) time with the succinct and
the compressed suffix tree (with Lemma 3.6), respectively. Since the number
of visited nodes is at most the factor length of a corresponding leaf λ during
a root-to-leaf traversal to λ, and ∑z

x=1 |Fx| = n, we conclude that the RMQ
queries take O(ntSA) time in total, where tSA is the time to access SA.

For each root-to-leaf traversal to a leaf corresponding to a factor F , we stop at
an edge (u, v), and compute the length of the LCP of T [jv . .] and T [sufnum(λ) . .]
by näıvely comparing O(|F |) characters. The number of compared characters is
O(∑z

x=1 |Fx|) = O(n). Altogether, a pass takes O(ntSA) time, since all applied
tree navigational operations take constant time.

In the output-streaming scenario, we can directly output the referred position
and the length of the factor corresponding to λ. In the other scenario, we need
to store additional information for retrieving the witness w in a later pass, since

78

3.6 Variants of the LZ77 Factorization

Algorithm 7: Pass (a) of the non-overlapping LZ77 algorithm of Sect. 3.6.1.
The function report(w, j, `) either outputs the referred position j and the
length ` of the respective referencing factor, or marks the witness w and
the starting position of the next factor (determined by `) in BW and in
BT, respectively, and appends the unary value of depth(w) to BL.
1 λ← smallest leaf . invariant: λ is always corresponding leaf
2 repeat
3 d← 1 . depth counter for level anc(λ, d)
4 `← 0 . length of the factor corresponding to λ
5 while d 6= depth(λ) do
6 v ← level anc(λ, d)
7 jv ← SA

[
SA.RMQ[leaf rank(lmost leaf(v)),

leaf rank(rmost leaf(v))]
]

. jv is the smallest suffix number of all leaves of v’s subtree
8 `← str depth(v)− 1
9 if [jv . . jv + `] ∩ [sufnum(λ) . . sufnum(λ) + `] = ∅ then

10 incr d
11 continue
12 u← parent(v)
13 if jv = sufnum(λ) then . λ has smallest suffix number in v’s subtree
14 if u is the root then . λ corresponds to a fresh factor
15 `← 1 and output fresh factor
16 break
17 `← str depth(u) . Type 1
18 report(u, ju, `) . ju was already computed in previous iteration
19 break
20 `← min(lce(jv, sufnum(λ)), sufnum(λ)− jv)
21 if ` ≤ str depth(u) then . Type 2
22 `← str depth(u) and report(u, ju, `)
23 else report(v, jv, `) . Type 3
24 break
25 λ← next leaf(`)(λ) . move to the next corresponding leaf
26 until λ = smallest leaf

79

3 Lempel-Ziv Factorizations

SA (and hence the RMQ data structure built on SA) is only available in Pass (a)
when working with the succinct suffix tree. Although we mark each witness in
the bit vector BW, there can be multiple nodes marked in BW on the path from
the root to a corresponding leaf. In the standard LZ77 factorization we take the
invariant for granted that the witness of a leaf λ is the lowest ancestor of λ that
is marked in BV, given that BV marks all ancestors of the leaves with a suffix
number smaller than sufnum(λ). Due to the existence of factors of Types 2
and 3, this invariant does not hold for the non-overlapping factorization.

For the later passes, we want a data structure that finds the witness w of a
leaf λ based on sufnum(λ) in constant time. Fortunately, w is determined by λ
and its depth due to w = level anc(λ, depth(w)). To remember the depth of
each witness, we maintain a bit vector BL that stores the depth of each witness
in unary coding sorted by the suffix number of the respective corresponding leaf.
Given that we find the witness w of a leaf λ in Pass (a) during the traversal
from the root to λ, we store the unary code 0d1 in BL, where d = depth(w).
For a leaf corresponding to a fresh factor, we store the unary code 1 in BL.
Like BD in Pass (b) of Sect. 3.4.3, we do not need to add a select-support to
BL, since we process the corresponding leaves always sequentially in text order.
Given a corresponding leaf λ, we can jump to its witness (or to the root if
it corresponds to a fresh factor) with a level ancestor query from λ with the
depth BL.select1(sufnum(λ) + 1)−BL.select1(sufnum(λ))− 1.

With Lemma 3.6 we finally obtain:

Theorem 3.35. We can compute the non-overlapping LZ77 factorization

• in O(ε−1n) time using (1 + ε)n lg n+O(n) bits, or

• in O(n lgεσ n) time using O(ε−1n lg σ) bits.

3.6.2 Non-Overlapping Reversed LZ77
The non-overlapping reversed LZ77 factorization was introduced by Kolpakov
and Kucherov [163]. The authors introduced this factorization as a helpful tool
for detecting gapped palindromes. It is defined as follows:

Definition 3.36. A factorization F1 · · ·Fz = T is called the non-overlapping
reversed LZ77 factorization of T if

Fx = argmax {|S| | S ∈ Σ∗ occurs in T [1 . . j]ᵀ or S ∈ Σ}

for all 1 ≤ x ≤ z with j = |F1 · · ·Fx−1|.

The reversed LZ77 factorization can be computed in O(n lg σ) time using
O(n lg n) bits of space [163]. There is an online algorithm running in O(n lg2 σ)
time using O(n lg σ) bits of space [225]. The factorization can be computed with
a table storing the longest previous non-overlapping reverse factor for each text

80

3.6 Variants of the LZ77 Factorization

position, like the LPF table (see Sect. 3.4.4). There are algorithms [18, 43, 44]
computing this table in linear time for strings whose characters are drawn from
alphabets with constant sizes, which got finally generalized by Crochemore
et al. [64] and Dumitran et al. [70, Thm. 1] to integer alphabets. We present an
alternative approach based on our algorithms of Sect. 3.4. Our approach runs
with the same space and time bounds as [64]. Since it needs O(n) words of space,
we can use either the succinct suffix tree or the pointer-based representation.

Like for the standard LZ77 factorization, the factors of the reversed LZ77
factorization are coded either as fresh factors or as referencing factors. Given
that the x-th factor is referencing, its referred position j must end before the
text position 1+ |F1 · · ·Fx| such that T [j . . j + |Fx| − 1]ᵀ = T [|F1 · · ·Fx−1|+1 . .
|F1 · · ·Fx|]. To find this position, we propose an approach based on the suffix
tree of the concatenation T [1] · · ·T [n]T [n − 1] · · ·T [1]# = T (T [1 . . n− 1])ᵀ#,
where # 6∈ Σ ∪ {$} is a new character that is smaller than every character
in Σ∪{$}. With this suffix tree we conduct the passes like for the standard LZ77
factorization. We use again the concept of witnesses, adapted to the reversed
LZ77 factorization:

Witnesses. A witness w of a leaf λ corresponding to a referencing factor is
the LCA of λ and a leaf with suffix number 2n− j (1 ≤ j ≤ n− 1) such that
T [j . . j + str depth(w)− 1] is the longest substring in T [1 . . sufnum(λ)− 1] that
is a suffix of T [sufnum(λ) . .]ᵀ. The smallest such j is the referred position of λ
that we want to compute.

Passes. Similarly to Sect. 3.4, we greedily parse the factors from left to right
in T . The difference is that we maintain all possible referred positions by scan-
ning the reversed text from right to left. We scan the reversed text sequentially
by processing the leaves with suffix numbers n + 1, . . . , 2n − 1 of the suffix
tree in reversed text order while marking visited nodes in a bit vector BV. We
can conduct a pass in reverse text order by exchanging next leaf with prev leaf,
where prev leaf(λ) returns the leaf with suffix number sufnum(`)− 1 (or the leaf
with the largest suffix number in case that λ = smallest leaf). The idea is to
actually perform two passes simultaneously: We mingle the processing of the
leaves with suffix number 1, . . . , n− 1 in text order with the processing of the
leaves with suffix number n+1, . . . , 2n−1 in reverse text order. After processing
a leaf with suffix number i (1 ≤ i ≤ n − 1), we subsequently process the leaf
with suffix number 2n− i. The leaves with a suffix number smaller than n can
be corresponding leaves, whose suffix numbers are the starting positions of the
factors.

Pass (a). (a)In this pass, we determine the witnesses with leaf-to-root traversals
(see Fig. 3.29 for an example and Algo. 8 for the pseudo code). We create
the bit vector BV marking the nodes that are visited during the leaf-to-root

81

3 Lempel-Ziv Factorizations

1

2

30

#

3

15

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

4

a

5

29

#

6

14

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

7

a

8

28

#

9

a

10

27

#

11

b

a

12

7

a

b

a

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

13

b

a

a

a

14

21

#

15

1

b

a

a

b

a

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

16

b

a

17

11

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

18

a

19

18

a

b

a

b

a

a

a

#

20

8

b

a

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

21

b

a

a

a

22

22

#

23

2

b

a

a

b

a

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

24

b

a

25

12

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

26

a

27

a

28

25

#

29

b

a

30

5

a

b

a

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

31

19

b

a

a

a

#

32

b

a

33

9

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

34

16

a

a

b

a

b

a

a

a

#

35

b

a

a

a

36

23

#

37

3

b

a

a

b

a

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

38

b

a

39

13

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

40

a

41

a

42

26

#

43

b

a

44

6

a

b

a

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

45

20

b

a

a

a

#

46

b

a

47

10

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

48

17

a

a

b

a

b

a

a

a

#

49

b

a

a

a

50

24

#

51

4

b

a

a

b

a

$

a

b

a

a

b

a

a

a

b

a

b

a

a

a

#

15

23

30

37

39

44

47

51

3

4

40

41

38

Fig. 3.29: Suffix tree of T (T [1 . . n− 1])ᵀ# used in Sect. 3.6.2, where T =
aaababaaabaaba$. The witnesses are colored in red (), the leaves correspond-
ing to factors are colored in green ().

82

3.6 Variants of the LZ77 Factorization

traversal from each leaf with suffix number n+ 1, . . . , 2n− 1. Initially, we mark
the root in BV. We use the variables λ and λᵀ pointing to the leaves that we
currently process in text order and in reverse order, respectively. Given that
we currently process text position i for 1 ≤ i ≤ n− 1, the leaves λ and λᵀ have
suffix numbers i and 2n − i, respectively. At this point, the ancestors of the
leaves with suffix numbers 2n − i + 1, . . . , 2n − 1 are already marked in BV.
We start with processing λ, and then subsequently process λᵀ. If λ is not a
corresponding leaf, we skip it. Otherwise, given that λ is corresponding to a
factor F , we perform a leaf-to-root traversal from λ (without marking visited
nodes). We stop the traversal on visiting a node w that is marked in BV. If w is
the root, then F is a fresh factor. Otherwise, w has already been visited during
a leaf-to-root traversal from a leaf with suffix number 2n− j (1 ≤ j ≤ i− 1).
The smallest possible value for j is the referred index of λ. Consequently, the
witness and the length of F are w and str depth(w), respectively. Whether or
not λ is a corresponding leaf, we subsequently perform a leaf-to-root traversal
from λᵀ, and mark all visited nodes during this traversal in BV. By doing so,
we make the text position i a candidate for a referred position of the succeeding
factors. Finally, we select the leaf succeeding λ and the leaf preceding λᵀ with
respect to text order, and continue iterating until λ = λᵀ (that is the case when
sufnum(λ) = n). In this case we output the fresh factor Fz = $, and are done.

Having a range maximum query data structure on SA available, we can directly
output the factorization in one pass as in Sect. 3.4.1 (cf. Line 10 in Algo. 8).
Otherwise, we only mark the witnesses and the factor lengths in bit vectors BW

and BT, respectively, like in Pass (a) of the multi-pass algorithms. For the
other passes, we follow the same approach as in the multi-pass algorithms to
determine the referred positions.

Unfortunately, a node can be visited Ω(n2) times since we do not mark
nodes in BV during the leaf-to-root traversals from the leaves with suffix num-
bers 1, . . . , n−1 (an example is T = an). To obtain linear time, we use a marked
ancestor data structure:

Theorem 3.37. We can compute the reversed LZ77 factorization in linear time
with O(n) words.

Proof. We augment BV with a marked ancestor data structure (see [4, Table 1]
or [7, Sect. 3.1]) such that a marking of a node in BV marks the respective
node in this data structure. The data structure supports marking and jumping
to the lowest marked node from a leaf in O(1) amortized time. We use this
data structure to directly jump to a marked node in each leaf-to-root traversal
from the corresponding leaves that are processed in text order. The leaf-to-root
traversals in reverse text order take linear time overall because these leaf-to-root
traversals stop on visiting an already visited node.

83

3 Lempel-Ziv Factorizations

3.6.3 Overlapping Reversed LZ77
Last but not least, Crochemore et al. [64] and Sugimoto et al. [225] also consid-
ered the overlapping reversed LZ77 factorization:

Definition 3.38. A factorization F1 · · ·Fz = T is called the overlapping reversed
LZ77 factorization of T if Fx = argmax{|S| | S ∈ Σ∗ is a suffix of T [i . .]ᵀ for an
i with 1 ≤ i ≤ |F1 · · ·Fx−1|, or S ∈ Σ} for all 1 ≤ x ≤ z.

Unfortunately, this factorization cannot be expressed in a compact LZ77 coding
that stores enough information to restore the original text. To see this, take
a palindrome P , and compute the overlapping reversed LZ77 factorization of
aPa. The factorization creates the two factors a and Pa. The second factor
refers to the first text position. Its reverse is aP = (Pa)ᵀ. However, a coding
of the second factor needs to store additional information about P to support
restoring the characters of this factor.

In the following, we show that we can compute this factorization in linear
time (but without a coding). The idea is to adapt the algorithm in Sect. 3.6.2
computing the non-overlapping reversed LZ77 factorization for our problem.
Each time it determines a factor, we try to extend the factor if it starts within
a maximal palindrome. To know the locations of the maximal palindromes
within T , we compute them in a precomputation step with Lemma 2.4. We store
the starting position b(P) and the length |P | of each maximal palindrome P
as a pair in a list L, and sort L with respect to the starting positions with a
linear-time integer sorting algorithm (e.g., with Lemma 2.7).

The actual computation performs exactly one pass, as described for the non-
overlapping variant. Additionally to the leaf λ, we maintain the palindrome P
of L whose intersection with the segment T [sufnum(λ) . .] is the largest among
all other palindromes (set P and b(P) to Λ and 0, respectively, if no palindrome
intersects with T [sufnum(λ) . .]). Given that the non-overlapping reversed
LZ77 factorization creates a factor shorter than b(P) + |P | − sufnum(λ), we
extend the factor to T [sufnum(λ) . . b(P) + |P | − 1]. We can do that because
T [sufnum(λ) . . b(P) + |P | − 1] is a suffix of the palindrome P , and P starts
before sufnum(λ). By the definition of P , it is impossible to extend this factor
even further.

Maintaining the palindrome P is done as follows: When we advance the
variable λ to a leaf with suffix number j (1 ≤ j ≤ n) during the pass, we
check whether j is the starting position of a maximal palindrome S. If |S| >
b(P) + |P | − j, then S covers more positions of T [j . .] than P ; hence we set P
to S. This can be done in constant time by maintaining a pointer to the
palindrome in L whose starting position is the smallest among all palindromes
whose starting positions are at least j.

84

3.7 LZ78 with Space-Efficient Suffix Trees

Algorithm 8: Computing the non-overlapping reversed LZ77 factorization.
1 ST← suffix tree of T (T [1 . . n− 1])ᵀ#
2 λᵀ ← prev leaf(prev leaf(smallest leaf)) . sufnum(λᵀ) = 2n− 1
3 λ← smallest leaf
4 repeat
5 if λ is corresponding then
6 foreach node v on the path from λ to the root do
7 if v is the root then output fresh factor
8 else if v is marked then . v is the witness of λ
9 output length str depth(v)

10 output referred position 2n−
SA
[
SA.RMQ[leaf rank(lmost leaf(v)),

leaf rank(rmost leaf(v))]
]

11 break

12 foreach node v on the path from λᵀ to the root do
13 if v is marked then break
14 mark v
15 λ← next leaf(λ)
16 λᵀ ← prev leaf(λᵀ)
17 until λ = λᵀ . it is left to output Fz = $

3.7 LZ78 with Space-Efficient Suffix Trees
A natural way to compute the LZ78 factors is to build the LZ trie (recall
Sect. 3.3.1) dynamically. The dynamic LZ trie supports the creation of a
node, the navigation from a node to one of its children, and the access to the
labels of the nodes. The folklore algorithm computing the LZ78 factorization
with the dynamic LZ trie works as follows: Given that the LZ trie stores the
factors F0, F1, . . . , Fx−1 (with F0 = Λ), the factor Fx is determined by the
longest factor Fy (with y ≤ x) that is a prefix of the suffix T [1 + |F1 · · ·Fx−1| . .],
such that Fx is equal to FyT [1 + |F1 · · ·Fx−1|+ |Fy|]. To find Fy, the algorithm
traverses the LZ trie, following an edge from a node to one of its children as
many times as Fy is long, which sums up to n. Overall, it searches z times for
such a longest factor Fy, and it inserts z times a new leaf into the LZ trie.

However, all (deterministic) dynamic trie implementations have a (log-)loga-
rithmic dependence on σ (or n) for top-down-traversals (recall Fig. 3.1 in the
introduction). Our trick is to superimpose the suffix trie (which contains the LZ
trie) on the suffix tree such that we can navigate top-down in the LZ trie with
level ancestor queries from the suffix tree leaves to get rid of this dependence
(like we did in Sect. 3.6.1). This superimposition is given in Fig. 3.30 for our

85

3 Lempel-Ziv Factorizations

1

2

15

$

3

a

4

14

$

5

a

6

a

b

a

7

7

a

b

a

$

8

1

b

a

a

a

b

a

a

b

a

$

9

b

a

10

11

$

11

8

a

b

a

$

12

2

b

a

a

a

b

a

a

b

a

$

13

b

a

14

12

$

15

a

16

5

a

b

a

a

b

a

$

17

9

b

a

$

18

3

b

a

a

a

b

a

a

b

a

$

19

b

a

20

13

$

21

a

22

6

a

b

a

a

b

a

$

23

10

b

a

$

24

4

b

a

a

a

b

a

a

b

a

$

Fig. 3.30: The
suffix tree of
aaababaaabaaba$
superimposed by
the suffix trie. The
suffix trie is obtained
(conceptually) by
exchanging every
suffix tree edge e with
edge length(e) − 1
new suffix trie nodes.
These new suffix trie
nodes are represented
by the small rounded
nodes (). They
represent the implicit
suffix tree nodes,
while the remaining
suffix tree nodes
represent the explicit
suffix tree nodes.

running example. How we superimpose the suffix trie (and hence the LZ trie)
on the suffix tree is topic of the next section.

3.7.1 Storing the LZ Trie Topology
To ease explanations, we associate a suffix tree edge (u, v) from a node u to
a node v uniquely with v such that each suffix tree node v except the root is
associated with an edge (u, v).

We borrow the technique from Nakashima et al. [191] to represent the LZ
trie with the superimposition of the suffix trie on the suffix tree. In this
context, we think of the LZ trie as a connected subgraph of the suffix trie
containing its root (see Fig. 3.31). Transferred to the suffix tree, the LZ (trie)
nodes are either already represented by a suffix tree node (explicit) or lie

86

3.7 LZ78 with Space-Efficient Suffix Trees

1

2 15$

3

a

4 14$

5

a

6

a b a 7 7

a b a $

8 1

b a a a b a a b a $

9

b a

10 11$

11 8

a b a $

12 2

b a a a b a a b a $

13b a

14 12$

15a

16 5

a b a a b a $

17 9

b a $

18 3

b a a a b a a b a $

19b a

20 13$

21a

22 6

a b a a b a $

23 10b a $

24 4

b a a a b a a b a $

n
6
=

1

1

3

5

13

19

2

i
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

SA
15

14
7

1
11

8
2

12
5

9
3

13
6

10
4

B
C

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0

Pr
eo

rd
er

1
3

5
6

9
13

15
19

21

B
V

0
1

1
0

0
1

0
1

0

Th
e

ho
riz

on
ta

lb
ar

sg
ro

up
st

he
en

tr
ies

of
B

C
in

to
in

te
rv

al
s;

ea
ch

in
te

r-
va

ls
to

re
s

th
e

ex
pl

or
at

io
n

co
un

te
r

of
its

re
sp

ec
tiv

e
pa

rt
ia

lly
ex

pl
or

ed
no

de
.

In
ea

ch
su

ch
in

te
rv

al
,t

he
rig

ht
m

os
t

bi
t

is
in

te
rp

re
te

d
as

th
e

lea
st

-s
ig

ni
fic

an
t

bi
t.

Th
e

ed
ge

wi
tn

es
s

wi
th

pr
eo

rd
er

nu
m

be
r

6
is

no
t

a
wi

tn
es

s,
sin

ce
ne

ith
er

its
ex

pl
or

at
io

n
co

un
te

rw
as

in
cr

em
en

te
d

tw
ice

no
r

we
re

an
y

ex
pl

or
at

io
n

co
un

te
rs

of
its

ch
ild

re
n

in
cr

em
en

te
d.

Fi
g.

3.
31

:L
ef

t:
Th

e
su

ffi
x

tr
ie

of
Fi

g.
3.

30
su

pe
rim

po
se

d
by

th
e

LZ
tr

ie.
Bl

ue
(

)c
ol

or
ed

no
de

s
re

pr
es

en
tt

he
no

de
s

of
th

e
LZ

tr
ie

.
Ri

gh
t:

T
he

bi
t

ve
ct

or
s
B

C
an

d
B

V
as

ex
pl

ai
ne

d
at

th
e

en
d

of
Se

ct
.3

.7
.1

.

87

3 Lempel-Ziv Factorizations

on a suffix tree edge (implicit). An implicit LZ node on an edge (u, v) is
represented by a node v and its rank within all implicit LZ nodes lying on
the same edge (u, v). For our LZ78 factorization algorithm it is important to
address the lowest LZ nodes on the paths from the suffix tree leaves to the root.
Therefore, we keep track of how many implicit LZ nodes are already associated
with an edge: For an edge e = (u, v), we define the exploration counter nv
with 0 ≤ nv ≤ edge length(e) storing how far e is explored, i.e., how many
implicit LZ nodes are associated with e. Adding a factor to the LZ trie results
in incrementing one exploration counter. If nv = 0, then the factorization has
not (yet) explored e, whereas nv = edge length(e) tells us that we have already
reached v, i.e., v represents an explicit LZ node.

Like for the LZ77 factorization, we mark again certain nodes as witnesses.
Here, a witness w will be used for storing the referred indices of factors whose
corresponding LZ nodes are on the incoming edge of w. In order to save space,
we are interested in a certain type of suffix tree nodes: A witness is

• a suffix tree node whose exploration counter is incremented at least twice
while building the LZ trie, or

• a node (whose incoming edge e can have a length edge length(e) = 1)
having a child whose exploration counter is incremented at least once
during the parsing.

Algorithm 9: Determining the highest edge (u, v) on the path from the
root to λ that is not yet fully explored.

input : leaf λ
1 function find edge
2 d← 0 . counter for node depth, the depth of the root is zero
3 repeat . find first edge on path from root to λ that is not fully explored
4 incr d
5 v ← level anc(λ, d)
6 until v = λ or BV[v] = 0
7 u← parent(v)
8 return (u, v)

LZ78 Passes. An LZ78 pass builds the LZ trie topology implicitly by increment-
ing the exploration counters and marking (in a bit vector BV) which edges were
fully explored. As in Sect. 3.3.4, a pass processes all leaves of the suffix tree in
text order. For the LZ78 factorization, we only care about the corresponding
leaves. Starting with smallest leaf, which corresponds to the first factor, we
compute the length of the factor corresponding to the currently processed leaf

88

3.7 LZ78 with Space-Efficient Suffix Trees

u
$

v

b

a

λ
$ a

a

b

a

$ λ′

b

a

$

b

$

Fig. 3.32: Computing edge length(u, v) with the
compressed suffix tree in the setting of Sec-
tion 3.7.1. The two leaves λ and λ′ have v as their
LCA whose parent is u. The idea is to compute
edge length(u, v) = str depth(v)− str depth(u).

so that we know the distance (in text positions) to the next corresponding
leaf. Given a corresponding leaf λ, we want to find the first edge (u, v) from
a node u to its child v on the path from the root to λ that is not yet fully
explored. The node u is the lowest node on the path that has been marked
in BV (cf. Algo. 9). To find u, we traverse the tree downwards along the path
from the root to λ by level ancestor queries. After having found u at depth d,
we know that its child v = level anc(λ, d + 1) is not yet fully explored, i.e.,
nv < edge length(u, v). We add a new factor by incrementing nv by one. If the
edge e becomes fully explored (checking this condition is the topic of the next
paragraph), we additionally mark v in BV.

Whether the edge e was fully explored or not can be checked as follows: If
we use the succinct suffix tree, then we have access to edge length(e), giving
us the maximum value of an exploration counter. Otherwise (when using the
compressed suffix tree), we first check if v is a leaf, because then the edge (u, v)
can be explored at most once due to the following lemma:

Lemma 3.39. Given u be a suffix tree node with a child v, the exploration
counter nv is at most min(edge length(u, v), s), where s is the number of leaves
of the subtree rooted at v.

Proof. Let S be the string of the edge labels on the path from the root to v.
Then S occurs exactly s times in T . The exploration counter nv can only be
incremented for a factor having S as a prefix. Therefore, nv ≤ s.

Otherwise (if v is an internal node), we check whether edge length(u, v) = nv
holds, similarly to the computation of str depth as described in Sect. 3.3.3.1:
We select a leaf λ′ such that v is the LCA of λ and λ′ (see Figure 3.32). The
idea is that str depth(v) is the length of the LCP of two suffixes corresponding
to two leaves having v as their LCA (e.g., λ and λ′). We can compare the
m-th character of both suffixes by applying next leaf m times on both leaves
before using head. With m := str depth(u) + nv + 1 we can check whether the

89

3 Lempel-Ziv Factorizations

u
a

v

a

b

a

λ

b

a...
$

v′

v′′

λ′
u v′ λ′ v′′ v

u e w w w w
v e e w w
λ e e e

Fig. 3.33: Juxtaposition of witnesses
and edge witnesses. Assume that
the LZ78 factorization explores the LZ
nodes u, v′, λ′, v′′, and v belonging
to the subtree (left) of the suffix trie
in this order (we implicitly map suffix
tree nodes to LZ nodes). The right tab-
ular figure classifies chronologically the
nodes u, v, and λ in witnesses (‘w’),
edge witnesses (‘e’), or plain suffix tree
nodes (empty). In each column we cre-
ate a new LZ78 factor by exploring an
LZ node (top row).

edge (u, v) is fully explored. This process also determines the length of the
current corresponding factor, which is m. Although we apply next leaf as many
times as the factor length, we still get linear time overall, because the lengths
of all factors add up to n.

Overall, an LZ78 pass is conducted in O(n) time, since we query for a level
ancestor at most n times. That is because the depth of a suffix tree node is at
most its string depth. The number of level ancestor queries is bounded by the
sum of the lengths of all factors, which is n.

The suffix tree nodes that we explore during an LZ78 pass are the important
nodes for the factorization. The suffix tree node whose exploration counter
becomes incremented during a traversal from the root to a leaf λ is called the
edge witness of λ. A witness is an edge witness, but not necessarily vice versa.
Also, while witnesses are always internal nodes, edge witnesses can also be leaves
(cf. Fig. 3.33). By definition, the parent of an edge witness is a witness or the
root. The set of witnesses with the root and the set of edge witnesses with the
root induce a connected subgraph of the suffix tree, respectively.

Bookkeeping the Exploration Counters. Storing the exploration counters in
an integer array for all edges costs 2n lg n bits. Our idea is to choose different
representations of the exploration counters depending on the state (not, fully,
or partially explored). First, there is no need to represent nv for a node v with
parent u until u’s incoming edge is fully explored. Second, as the fully explored
edges are marked in a bit vector BV, we do not need to store their exploration
counters. The third and last type of nodes are those nodes whose parents are
fully explored but they are not. In the following, we call them partially explored
nodes, and show how to maintain their exploration counters in n bits.

The subtrees of all partially explored nodes are disjoint, i.e., each leaf has
at most one partially explored ancestor. We associate each partially explored
node v with an interval Iv = [leaf rank(lmost leaf(v)) . . leaf rank(rmost leaf(v))].

90

3.7 LZ78 with Space-Efficient Suffix Trees

These intervals are pairwise disjoint, and the sum of their lengths is at most n.
The idea is now to partition a bit vector BC of length n into these intervals
such that we store the exploration counter of a partially explored node v in
the space of BC[Iv]. This space is sufficient since nv ≤ |Iv| due to Lemma 3.39.
By storing nv in binary coding using the first lg |Iv| bits of BC[Iv], we can
lookup and increment nv in constant time. After fully exploring the edge of v
(nv = edge length(u, v), where u is v’s parent), we clear (the first lg |Iv| bits of)
BC[Iv]. As a side effect, this approach resets the counter nu of every child u
of v (the children of v become partially explored on having v fully explored).

Applying this procedure during a pass, we can determine the fully explored
edges and maintain nv of each partially explored node v. The right side of
Fig. 3.31 shows BC after building the LZ trie on our running example, where we
stored the exploration counter of the node with preorder number 6 at positions 3
and 4 in BC.

3.7.2 Alphabet-Sensitive Algorithm
We present two LZ78 factorization variants working with the compressed suffix
tree. The first variant is an output-streaming algorithm outputting the coding
in text order. For our running example, the output is the list of pairs (0,a),
(1,a), (0,b), (1,b), (2,a), (3,a), (4,a), (0,$), cf. Fig. 3.5.

The other variant builds the LZ trie explicitly in such a way that we can
return a factor (its referred index and the character at its end), and perform
navigations in the LZ trie in constant time. As an application, we will show that
our representation can be enhanced with a data structure (see Lemma 3.44) to
support lookups of small substrings of T (which is useful when T is unavailable)
in constant time.

Algorithm 10: Pass (a) of the alphabet sensitive LZ78 algorithm of
Sect. 3.7.2.
1 λ← smallest leaf
2 repeat
3 (u, v)← find edge(λ)
4 s← str depth(u)
5 if v = λ then
6 λ← next leaf(s+1)(λ)
7 continue
8 BW[v]← 1 . v is an edge witness
9 m← explore(v, λ) . m← nv;nv ← nv + 1

10 λ← next leaf(m+s+1)(λ)
11 until λ = smallest leaf
12 shrink witness() . see Algo. 12

91

3 Lempel-Ziv Factorizations

Algorithm 11: Pass (b) of the alphabet sensitive LZ78 algorithm of
Sect. 3.7.2.
1 BW.add rank support
2 nv ← 0 for each node v . reset exploration counters
3 zW ← BW.rank1(n)
4 W ← array of size zW lg z bits
5 x← 1
6 λ← smallest leaf
7 repeat
8 (u, v)← find edge(λ)
9 s← str depth(u)

10 if BW[v] = 0 then . v is not a witness
11 if v is a child of the root then the x-th factor is a fresh factor
12 else the x-th factor refers to W [BW.rank1(parent(λ))]
13 else the x-th factor refers to W [BW.rank1(v)]
14 incr x
15 if v = λ then
16 λ = next leaf(s)[λ]
17 output character head(λ) belonging to the (x− 1)-th factor
18 λ = next leaf(λ)
19 continue
20 m← explore(v, λ) . m← nv;nv ← nv + 1
21 λ = next leaf(m+s)(λ)
22 output character head(λ) belonging to the (x− 1)-th factor
23 λ = next leaf(λ)
24 until λ = smallest leaf

3.7.2.1 Output-Streaming Variant

Equipped with the compressed suffix tree of T we do two passes:

(a) create BW to mark the witnesses (see Algo. 10), and

(b) stream the output by using a helper array mapping witness ranks to factor
indices (see Algo. 11).

Pass (a). The goal of this pass is to determine the witnesses. Our idea is to
alter the LZ78 pass described in Sect. 3.7.1 in the following way on accessing an
edge witness v: If v is an internal suffix tree node whose exploration counter
was already incremented, we make v a witness (if it is not yet a witness) by
marking v in BW. If the parent u of v is not the root, we make u a witness if it

92

3.7 LZ78 with Space-Efficient Suffix Trees

Algorithm 12: Filtering the set of edge witnesses to obtain the set of
witnesses.

input : bit vector BW, exploration counters
1 function shrink witness
2 foreach node u with BW[u] = 1 do
3 if nu ≥ 2 then continue
4 if exists child v of u with nv ≥ 1 then continue
5 BW[u]← 0

has not yet been one.13 A concrete approach is shown in Algo. 10, where we first
mark all edge witnesses in BW (Line 8), and then subsequently run Algo. 12 to
unmark all edge witnesses in BW that are no witnesses.

Pass (b). In this pass, we compute the referred indices and the characters at
the factor endings in text order. We first focus on the referred indices. We
compute them indirectly by assigning each witness to a referred position. Since
the witnesses were already found during Pass (a), we can create an array W
with zW lg z bits to store a factor index for each witness (represented by its
witness rank). We fill W in such a way that the referred index of a referencing
factor F can be looked up in the entry in W belonging to its witness at the
time when processing the leaf corresponding to F . Initially all entries of W are
set to ⊥ (a fixed chosen invalid value).

Before conducting the pass, we reset the exploration counters and BV. We
keep BW, which we endow with a rank-support to access the witness ranks in
constant time.

Assume that we visit the leaf λ corresponding to the x-th factor during the
pass, i.e., λ is the x-th visited corresponding leaf. As in Pass (a), we first
determine the edge witness v of λ. Then we determine the referred index of the
x-th factor by distinguishing two cases (cf. Line 10 in Algo. 11):

• If v is a witness and y := W [BW.rank1(v)] 6= ⊥, then the x-th factor refers
to the y-th factor (the y-th factor is represented by an LZ node that is the
parent of the LZ node representing the x-th factor).

• Otherwise (there is no entry in W for v), we have two cases regarding the
parent of v:

– If v is a child of the root, then the x-th factor is a fresh factor.
– Otherwise (v’s parent is a witness), the x-th factor refers to W [BW.

rank1(parent(v))] (the x-th factor is represented by an LZ node that
is the first node on the edge from parent(v) to v).

13 This can only happen if edge length(parent(u), u) = 1.

93

3 Lempel-Ziv Factorizations

Afterwards, if v is a witness, we update W by setting W [Bw.rank1(v)] to x.
Up to now, we can output the referred index of the x-th factor during

this pass in text order. Finally, the last character of the x-th factor can be
obtained by head(λ′), where λ′ is the leaf that occurs in text order before the
leaf corresponding to the (x+ 1)-th factor (cf. Lines 17 and 22 in Algo. 11).

We summarize the result of this algorithm in the following theorem:

Theorem 3.40. Given the compressed suffix tree of T , we can compute the
LZ78 factorization in O(n) time using 3n+ z lg z + o(n) bits of working space
when streaming the output.

Proof. Maintaining the exploration counters as described in Sect. 3.7.1 with
the bit vector BC takes n bits. With the space of BV and BW this sums up to
3n+ o(n) bits of space. The array W uses z lg z bits. It can be allocated after
Pass (a), which determines z.

Corollary 3.41. We can compute and stream the LZ78 factorization of a text
of length n in O(n) time using O(n lg σ) bits of space.

Proof. Analogous to Cor. 3.14.

3.7.2.2 Explicitly Storing the LZ Trie

In some applications we are interested in the LZ trie instead of the LZ78 fac-
torization. We provide such an application in Lemma 3.44 that shows a data
structure built on top of the LZ trie retrieving small substrings of T efficiently.
It is easy to compute the LZ trie after having computed the LZ78 factorization
with the approach in Sect. 3.7.2.1. We can modify it to build a pointer-based
tree data structure storing the LZ trie in O(z lg z) bits. Here, we present a
succinct variant of the LZ trie. It is composed of three data structures:

• a BP sequence storing the LZ trie topology,

• an array W ′ with z lg z bits storing the factor indices, and

• an array with z lg σ bits storing the last character of each factor, i.e., the
labels of the LZ trie edges (see Fig. 3.35).

In this section, we show that the succinct LZ trie can be computed in O(n) time
by altering the approach of Sect. 3.7.2.1. The difference is that (1) we exchange
Pass (b) with a pass that computes W ′ instead of the LZ78 factorization, and
that (2) we perform an Euler tour on the suffix tree to compute the other two
data structures.

94

3.7 LZ78 with Space-Efficient Suffix Trees

1

2

15

$

3

a

4

14

$

5

a

6

a

b

a

7

7

a

b

a

$

8

1

b

a

a

a

b

a

a

b

a

$

9

b

a

10

11

$

11

8

a

b

a

$

12

2

b

a

a

a

b

a

a

b

a

$

13

b

a

14

12

$

15

a

16

5

a

b

a

a

b

a

$

17

9

b

a

$

18

3

b

a

a

a

b

a

a

b

a

$

19

b

a

20

13

$

21

a

22

6

a

b

a

a

b

a

$

23

10

b

a

$

24

4

b

a

a

a

b

a

a

b

a

$

3

5

13

19

2

6

(a) Suffix Tree with Highlighted Edge Wit-
nesses

1

2

15

$

3

a

4

14

$

5

a

6

a

b

a

7

7

a

b

a

$

8

1

b

a

a

a

b

a

a

b

a

$

9

b

a

10

11

$

11

8

a

b

a

$

12

2

b

a

a

a

b

a

a

b

a

$

13

b

a

14

12

$

15

a

16

5

a

b

a

a

b

a

$

17

9

b

a

$

18

3

b

a

a

a

b

a

a

b

a

$

19

b

a

20

13

$

21

a

22

6

a

b

a

a

b

a

$

23

10

b

a

$

24

4

b

a

a

a

b

a

a

b

a

$

3

5

2

(b) Superimposed LZ Trie with Highlighted
Nodes Marked in BLZ

i

1 1 1 1 1 1 1 1 1 1 2 2 2 2 21 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

BE 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

(c) Bit Vector BE

i 01 234 56 78
BP (()((())(()))(()))
BLZ 1 111 10 10

(d) Bit Vector BLZ

Fig. 3.34: The suffix tree (a) and the LZ trie superimposed on the suffix tree (b).
The shaded suffix tree nodes in the left image () and the shaded LZ nodes in
the right image () are the ones marked in (c) BE and (d) BLZ, respectively, as
explained in Sect. 3.7.2.2. The rows labeled with i are the pre-order numbers
of (c) the suffix tree nodes or (d) the LZ nodes, respectively. The bit vectors
BE and BLZ mark the same number of nodes. In particular, there is a bijection
between the suffix tree nodes marked in BE and the LZ nodes marked in BLZ.

95

3 Lempel-Ziv Factorizations

0

8

$

1

a

3

b

2

a

4

b

6

a

5

a

7

a

(a) LZ Trie

Preorder Enumeration 01 234 56 78
Balanced Parentheses (()((())(()))(()))
W ′ 8 125 47 36
Array of Characters $ aaa ba ba

(b) Representation of the LZ Trie in Sect. 3.7.2.2

Fig. 3.35: The LZ trie (a) represented by three data structures (b). The BP
sequence represents its topology, the array of factor indices W ′ stores the labels
of the LZ nodes, and the array of characters stores the edge labels (we identify
an edge with its incoming node).

In more detail, we build the BP sequence after Pass (a) of Sect. 3.7.2.1. We
keep the exploration counters computed during Pass (a) in memory, i.e., we
do not clear/erase the exploration counters after the phase has finished. With
the exploration counters we can construct the LZ trie since there are exactly nv
LZ nodes on the suffix tree edge of a node v to its parent u. The exploration
counter nv is either

• equal to zero if v’s parent u is not fully explored,

• equal to edge length(u, v) if v is fully explored, or

• stored in BC in case that v is a partially explored node (cf. Sect. 3.7.1).

u

v

a

b

a

a

b

u′

v′

λ

a b

a...
$

To build the BP sequence, we perform an Euler tour on the suffix
tree, i.e., we traverse the suffix tree with a depth first search starting
at the root. We write nv open (resp. close) parenthesis when visiting
a suffix tree node v on walking down (resp. climbing up) during the
Euler tour. Although looking up edge length(u, v) for a fully explored
node v takes O(str depth(v)) time, this time is bounded by the length
of an LZ78 factor whose edge witness is v. An Euler tour can be
performed in O(n) time, since the suffix tree can compute child(1),
next sibling(), and parent() in constant time (recall Sect. 3.3.3).

During the Euler tour we build the z lg σ-bits array storing the
LZ trie edge labels: Suppose that we create the LZ nodes u′ and v′

on the suffix tree edge (u, v), where u′ is the parent of v′. We can
obtain the character of the edge (u′, v′) by invoking next leaf and
head: Given that s is the string depth of u′ in the LZ trie, applying
next leaf s times to a leaf λ in the subtree rooted at v returns a
leaf λ′ whose head(λ′)-value is the label in question. Overall, we can compute
the BP representation and the edge labels in O(n) time taking 2z + z lg σ + o(z)
bits (o(z) bits for the navigational component [197]).

To compute the array W ′ storing the factor indices we will exchange Pass (b)

96

3.7 LZ78 with Space-Efficient Suffix Trees

with an alternative LZ78 pass: Suppose that we increment the exploration
counter of a node v while processing the x-th factor during this pass. This
means that the x-th factor is represented by the nv-th LZ node on the edge
between v and v’s parent. Our task is to store the factor index x in W ′ at the
position equal to the preorder number of this LZ node. To compute this preorder
number in constant time, we do the following precomputation step, which is
the topic of this paragraph: We compute an isomorphic mapping between the
edge witnesses and a subset of LZ nodes such that the mapping maps an edge
witness v to an LZ node v′ with the following properties: First, the LZ trie
parent of v′ is an explicit LZ node that is represented by the suffix tree parent
of v (v has a parent since the root is not an edge witness). The parent of v is a
witness. Second, there are nv − 1 LZ nodes below v′ forming a (unary) path,
where the value of nv is determined after Pass (a).

To compute this mapping in constant time, we create a bit vector BE of
length 2n− 1 marking suffix tree nodes (including the suffix tree leaves) and a
bit vector BLZ of length z marking LZ nodes, see Fig. 3.34. The former marks
the edge witnesses, the latter marks the LZ trie children of every explicit LZ
node. The last thing we do is adding a rank-support to BE, and a select-support
to BLZ.

Now we can map an edge witness v to the LZ node v′ with v′ := BLZ.select1(
BE.rank1(v)) (conceptually BLZ.rank1(v′) = BE.rank1(v)) such that v′ satisfies
the above described properties of the mapping.

Finally, we explain the last pass.

Pass (b’). (b’)We recompute BV and the exploration counters. We count the
current factor index with a variable x. Suppose that we visit the leaf λ
corresponding to the x-th factor. Let v be the edge witness of λ. We as-
sign the label x to the LZ node corresponding to the x-th factor by setting
W ′[BLZ.select1(BE.rank1(v)) + nv − 1] to x (after incrementing nv by one like
in a standard LZ78 pass). In this operation, we select the LZ node v′ :=
BLZ.select1(BE.rank1(v)) corresponding to the edge witness v, and select the LZ
trie descendant of v′ at depth depth(v′) + nv − 1 by adding nv − 1 to the (LZ
trie) preorder number of v′ (the next nv − 1 descendants of v′ are on a unary
path below v′, thus the preorder numbers of all those descendants are direct
successors of the preorder number of v′).

The array W ′ is the last component of our data structure. The following
theorem sums up our achieved result:
Theorem 3.42. Given the compressed suffix tree of T , we can build the LZ
trie and store it in RAM taking z(lg σ + lg z + 2) + o(z) bits. The construction
algorithm takes 5n+ z + o(n) additional bits of working space and runs in O(n)
time.
Proof. Maintaining the exploration counters as described in Sect. 3.7.1 takes n
bits. With the space of BV (n bits), BW (n bits) and BE (2n+ o(n) bits), this

97

3 Lempel-Ziv Factorizations

(a) (b) Interim (M)

X ISA L L|W Referred Indices
Y SA - - -

Fig. 3.36: Chronological table of the LZ78 factorization in Sect. 3.7.3, structure
equivalent to Fig. 3.13. Having |X| = n lg n bits and |Y | = εn lg n bits, the
suffix array stored initially in Y can only be used in conjunction with ISA stored
initially in X.

sums up to 5n+ o(n) bits of space. The bit vector BLZ takes z + o(z) bits. The
BP sequence needs 2z + o(z) bits. Each of the z LZ nodes stores a factor index
using lg z bits and an ending character using lg σ bits.

Corollary 3.43. We can compute the LZ trie of a text of length n in O(n) time
using O(n lg σ) bits of space.

Proof. Analogous to Cor. 3.41.

Lastly, we introduce an application of our constructed LZ trie sketched in the
beginning of this section:

Lemma 3.44 ([219, Lemma 2.6]). Given the LZ trie of T , but not necessarily
T , there is a data structure built on top of the LZ trie that can recover a
substring of T of length O(logσ n) in constant time. It takes z lg z + 3z lg σ +
5z+O(n3/4 lg2 n)+o(z) additional bits of space, and can be constructed in-place
in linear time.

The data structure of Sadakane and Grossi [219] needs an LZ trie representa-
tion that slightly differs from the one that we have computed: It needs an array
that maps a factor index to the preorder number of its corresponding LZ node.
This array is the inverse of W ′ (W ′ is a permutation of integers). In addition,
it needs a bit vector BT marking the starting positions of the factors. This bit
vector can be computed during Pass (b’) by setting BT[sufnum(λ)] to 1 for each
corresponding leaf.

Corollary 3.45. Given a text T , the data structure of Lemma 3.44 can be
computed in linear time with O(n lg σ) bits of working space. It takes 2z lg z +
4z lg σ + 7z +O(n3/4 lg2 n) + o(z) bits of space in total (including the LZ trie).

3.7.3 Alphabet-Independent Algorithm
In this variant we store the referred indices in the array X and mark the starting
positions of the factors in a bit vector BT of length n such that the referred index

98

3.7 LZ78 with Space-Efficient Suffix Trees

Algorithm 13: Pass (b) of the alphabet independent LZ78 algorithm of
Sect. 3.7.3.

result :L[x] = edge witness of the x-th factor
1 λ← smallest leaf
2 L← X[1 . . z] . L is a pointer to ISA[1 . . z]
3 repeat
4 (u, v)← find edge(λ) . u ∈ BV, v 6∈ BV

5 L[sufnum(λ)]← v

6 s← str depth(u)
7 if v = λ then
8 λ = next leaf(s+1)(λ)
9 BT[sufnum(λ) + s+ 1]← 1

10 continue
11 BW[v]← 1 . v is an edge witness
12 m← explore(v, λ) . m← nv;nv ← nv + 1
13 BT[sufnum(λ) + s+ 1 +m]← 1
14 λ = next leaf(m+s+1)(λ)
15 until λ = smallest leaf
16 shrink witness() . see Algo. 12

Algorithm 14: Matching (M) in the alphabet independent LZ78 algorithm
of Sect. 3.7.3.

result :L[x] = referred index of the x-th factor
1 BW.add rank support
2 zW ← BW.rank1(n)
3 W ← X[z + 1 . . n] . L is a pointer to ISA[1 . . z]
4 for 1 ≤ x ≤ z do
5 v ← L[x] . v is the edge witness of the x-th factor
6 if BW[v] = 0 or W [BW.rank1(v)] = 0 then
7 if v is a child of the root then
8 L[x]← 0 . x-th factor is a fresh factor

9 else L[x]← W [BW.rank1(parent(v))]
10 else L[x]← W [BW.rank1(v)]
11 if BW[v] = 1 then W [BW.rank1(v)]← x

99

3 Lempel-Ziv Factorizations

and the last character of the x-th factor are X[x] and T [BT.select1(x+ 1)− 1],
respectively.

Having O(n) bits of working space on top of the space used by the succinct
suffix tree, our idea is to overwrite the array X to free up space. We will
overwrite X multiple times during the factorization (see Fig. 3.36). After
overwriting X (storing ISA initially), we will no longer have access to SA and
therefore cannot evaluate edge length needed to decide whether an edge is fully
explored. Fortunately, it is sufficient to know the maximum exploration counter
of every witness — a node that is not a witness has an exploration counter of
either zero (not touched during an LZ78 pass) or one (represented as an LZ78 trie
leaf). We therefore aim at storing the maximum value of the exploration counter
of every witness before overwriting X. The maximum values can be determined
in one pass. We can store them in a bit vector BL of length at most z+zW, since
we increment the exploration counters exactly z times. Technically speaking, we
store the exploration value nw unary with 0nw1 in BL for every witness w; hence
BL has zW-many ones. We store the values sorted by the preorder numbers of
the witnesses such that BL.rank1(BW.rank1(w))−BL.rank1(BW.rank1(w)−1)−1
returns nw (we stipulate that rank1(0) := 0).

The algorithm is divided into two passes and a matching phase:

(a) Determine the witnesses and mark them in BW. Write the maximum
exploration counters of each witness in BL unary.

(b) Mark the starting positions of the factors in a bit vector BT, and create
an array L[1 . . z] storing the preorder number of the edge witness of each
factor (see Algo. 13).

(M) Use the witness ranks (a subset of the ranks of the edge witnesses) stored
in the array L[1 . . z] to identify the referred indices (see Algo. 14).

Pass (a). After performing a single LZ78 pass we have determined the witnesses
and the edge witnesses (this can be done as in Algo. 10). The goal of this
pass is to create the bit vector BL by determining the exploration counter of
every witness. Due to our bookkeeping method of the exploration counters
in Sect. 3.7.1, we know the exploration counter of all partially explored edges.
Further, the maximum exploration counter of a fully explored node v is equal
to the value of edge length(u, v), where (u, v) is the edge between the node v
and its parent u. Altogether we have the information needed to create the bit
vector BL. The exploration values stored in BL are computed by an Euler tour
on the suffix tree in depth first order: If a witness w is marked in BV, then nw
is equal to edge length(u,w), where u is the parent of w. Otherwise (w is not
marked in BV), nw is stored in the bit vector BC (nw > 0 since w is a witness).

With BL we no longer need access to SA (e.g., for accessing edge length).
This is crucial, since we can access SA only when the arrays X and Y are left

100

3.7 LZ78 with Space-Efficient Suffix Trees

z #internal-nodes #leaves
zF α β
zR γ δ

Fig. 3.37: Contingency table depicting the partitioning of all factors in the proof
of Lemma 3.46. The columns #internal-nodes and #leaves are defined as the
number of internal nodes and the number of leaves in the LZ trie, respectively.

untouched (X stores ISA and Y stores the data structure of Lemma 3.7). In
the next pass, we will overwrite the ISA entries stored in X after they are no
longer used.

Pass (b). The main goal of this pass is the creation of the array L. We create
its contents sequentially during the pass: When performing a traversal from
a leaf λ corresponding to the x-th factor, we write v to L[x], where v is the
edge witness of λ (cf. Line 5 of Algo. 13). With L it is easy to find the referred
index y of a referencing factor Fx. That is because either (a) Fy shares the edge
witness with Fx, or (b) L[y] is the parent node of L[x]. The latter condition
always holds if nL[x] = 1, in particular if L[x] is a leaf because we can create at
most one LZ78 node on the edge to a leaf (recall Lemma 3.39).

Since L takes z lg n bits, we can store L in the first z positions of the array X.
Although X stores ISA, necessary for next leaf, we will visit the same leaf never
again such that we can sequentially overwrite X[x] with L[x] for all 1 ≤ x ≤ z
in increasing order.

We can compute BT simultaneously: Given the leaf λ corresponding to a
factor F , the length of F is computed by summing up the lengths of the edge
labels on the traversed path from the root to its edge witness v (i.e., the length
of the string label of v), and adding nv’s value.

Matching (M). Matching the factors with their references can now be done
with L in a straightforward manner. Let us consider a referencing factor Fx
having the referred factor Fy. We have two cases: Whenever Fy is explicitly
represented by a node v (i.e., by Fy’s witness), v is the parent of Fx’s witness.
Otherwise, Fy has an implicit representation and hence has the same witness as
Fx: If L[x] does not occur in L[1 . . x− 1], then Fy is determined by the largest
position y with y < x and L[y] = parent(L[x]); otherwise (L[x] is not the first
occurrence of L[x] in L), the referred factor of Fx is determined by the largest
y with y < x and L[x] = L[y].

Remember that we store L in X[1 . . z], leaving us X[z+ 1 . . n] as free working
space that will be occupied by a new array W , storing for each witness w the
index of the most recently processed factor whose witness is w. Fortunately,
this space is sufficient due to the following lemma:

Lemma 3.46. z + zW ≤ n.

101

3 Lempel-Ziv Factorizations

Proof. Let α and β be the number of fresh factors that are internal LZ nodes
and LZ trie leaves, respectively. Also, let γ and δ be the number of referencing
factors that are internal LZ nodes and LZ trie leaves, respectively. Obviously,
α + β + γ + δ = z (see Fig. 3.37). With respect to the factor length, each
referencing factor has a length at least 2, while each fresh factor is exactly one
character long. Hence n ≥ 2(γ + δ) + α+ β = z + γ + δ. Since each LZ trie leaf
that is counted by δ has an internal LZ node of depth one as ancestor (counted
by α), α ≤ δ holds. Since the number of witnesses is bounded by the number of
internal LZ nodes, we obtain z + zW ≤ z + α + γ ≤ z + γ + δ ≤ n.

Finally, we describe how to convert L (stored in X[1 . . z]) to the referred
indices, such that in the end X[x] contains the referred index of Fx for 1 ≤ x ≤ z.
We scan L = X[1 . . z] from left to right (cf. Algo. 14). During the scan, for
each witness v, we keep track of the index of the most recently visited factor F
whose witness is v by storing F ’s index in W [BW.rank1(v)].

Suppose that we process Fx with v := L[x] (cf. Line 5 in Algo. 14).

• If v is not a witness or W [BW.rank1(v)] is empty, we check the parent of v.
If v is a child of the root, then Fx is a fresh factor. Otherwise, its referred
index is W [BW.rank1(parent(v))].

• Otherwise (v is a witness and W [BW.rank1(v)] has a value), the referred
index of Fx is W [BW.rank1(v)].

In either case, if v is a witness, we update W by writing the current factor index
x to W [BW.rank1(v)]. After processing Fx, we no longer need the value X[x].
Hence, we can write the referred index of Fx to X[x] (if it is a referencing factor)
or set X[x] to 0 (if it is a fresh factor). In the end, X[1 . . z] stores the referred
indices of the referencing factors. Overall we obtain the following result:

Theorem 3.47. Allowing the succinct suffix tree of T to be rewritable, we can
overwrite it with the LZ78 factorization in O(n) time using 3n + o(n) bits of
working space.

Proof. Maintaining the exploration counters as described in Sect. 3.7.1 with BC

takes n bits. With the space of BT marking the starting positions of the factors
and BL storing the maximum exploration values of the witnesses, this sums up
to 3n+ o(n) bits of space.

Corollary 3.48. We can compute the LZ78 factorization of a text of length n
in O(n/ε) time using (1 + ε)n lg n+O(n) bits of space. The factors are stored
in-place.

Proof. We create the succinct suffix tree of Thm. 3.9 to compute the LZ78
factorization. During the factorization, we overwrite the space of X (used
for representing ISA) to compute the LZ78 factorization in-place according to
Thm. 3.47.

102

3.8 Practical LZ78 and LZW Computation

Note that the representation of the LZ78 factorization using O(n) bits still
needs the text to be present for accessing the last character of a factor (see
Sect. 3.3.4).

3.8 Practical LZ78 and LZW Computation
Although we proposed two linear time algorithms computing the LZ78 factoriza-
tion in Sect. 3.7, none of them will become practical without having a practical
suffix tree implementation available. Instead of constructing the suffix tree,
practical LZ78 factorization algorithms maintain the LZ trie with a dynamic trie
data structure (see the beginning of Sect. 3.7). We follow this approach, and
present a thorough study on dynamic trie data structures subject to computing
the LZ78 factorization. Within this section, we drop the requirement of the
input text T to end with the delimiter $. To emphasize on that, we carry on
our running example without the delimiter $ such that our running example of
this section becomes T = aaababaaabaaba.

Additionally to the LZ78 factorization, we shed a light on the LZW factorization.
If we stipulate that F0 and Fz+1[1] are the empty string, we can formulate the
definition of the LZW factorization as follows:

Definition 3.49 ([242]). A factorization F1 · · ·Fz = T is called the LZW
factorization [242] of T if, for all 1 ≤ x ≤ z, Fx = FyFy+1[1] with Fy =
argmaxS∈{Fy′ |1≤y′≤x−1} |S|, or Fx = c ∈ Σ if no such Fy exists. If Fx = FyFy+1[1]
for an integer y with 1 ≤ y ≤ x− 1, we call y the referred index of the factor Fx.
Otherwise, Fx = c for a c ∈ Σ; we set its referred index to −c < 0.

We transform the list of LZW factors to a list of integer values as follows:
We linearly process each factor Fx for 1 ≤ x ≤ z. If Fx’s referred index is not
positive, Fx is equal to a character c, and we output the value −c. Given a factor
Fx = FyFy+1[1] with a referred index y > 0, we output y. The LZW factorization
of T = aaababaaabaaba as defined in Def. 3.49 is T =

1

a|
2

aa|
3

b|
4

a|
5

ba|
6

aab|
7

aaba.
We output it as -1|1|-2|-1|3|2|6. Remembering Def. 3.3, the LZ78 factorization
of T is T =

1

a|
2

aa|
3

b|
4

ab|
5

aaa|
6

ba|
7

aba, where the vertical bars separate the factors.
The LZ78 factorization is output as a|(1,a)|b|(1,b)|(2,a)|(3,a)|(4,a). We
observe that each LZW factor is coded by a single integer, whereas the LZ78
coding produces tuples for the referencing factors.

Like the LZ78 factorization, the LZW factors can be represented in an LZ trie.
Each LZW factor Fx, except the last one, is represented by a trie node v labeled
with x (1 ≤ x ≤ z − 1) such that the parent u of v is labeled with y if y is the
referred index of Fx. The edge (u, v) is then labeled with the first character of
Fx+1. A juxtaposition of the LZ78 and LZW tries built on T = aaababaaabaaba
is given in Fig. 3.38. The focus of the rest of this section is on analyzing
different trie representations. All representations are subject to the LZ78 or LZW

103

3 Lempel-Ziv Factorizations

0

1

a

3

b

2

a

4

b

6

a

5

a

7

a

(a) LZ78-Trie

0

-1

a

-2

b

1

a

3

a

5

a

4

b

2

b

6

a

(b) LZW-Trie

Fig. 3.38: LZ78 trie (a) and LZW trie (b) of T = aaababaaabaaba.

factorization, which we compute with the algorithm described at the beginning
of Sect. 3.7.

3.8.1 LZ-Trie Representations
We present five representations, each providing different trade-offs for speed and
memory consumption. All representations have in common that they work with
dynamic arrays. When working with dynamic arrays, one has to think about
how to resize them efficiently.

Resize hints. The usual strategy for dynamic arrays is to double the size of an
array when it gets full. To reduce the memory consumption, a hint on how large
the number of factors z might become is advantageous to know for a dynamic
LZ trie data structure. We provide such a hint based on the following lemma:

Lemma 3.50 ([74, Sect. C],[20, Lemma 1]). The number of LZ78 factors z is
at least

√
2n+ 1/4− 1/2.

At the beginning of the factorization, we let a dynamic trie reserve enough
space to store at least

√
2n elements without resizing. On enlarging a dynamic

trie, we usually double its size. However, if the number of remaining characters r
to parse is below a certain threshold, we try to scale the data structure up to a
value for which we expect that all factors can be stored without resizing the data
structure again. Let z′ be the currently computed number of factors. If r > n/2
we use z′+3r/ lg r as an estimate (the number 3 is chosen empirically14), derived
from z−z′ = O(r/ logσ r) based on Lemma 3.4, otherwise we use z′+z′r/(n−r)
derived from the expectation that the ratio between z′ and n− r will be roughly
the same as between z and n (interpolation).
14 There are artificial texts like an for which we overestimate the number of factors.

104

3.8 Practical LZ78 and LZW Computation

i 1 2 3 4 5 6 7

First Child 2 5 6 7
Next Sibling 3 4
Character a a b b a a a

Fig. 3.39: Array data structures
of binary storing the LZ78 factor-
ization of the example given in
Fig. 3.38.

3.8.1.1 Deterministic LZ Tries

We first recall two trie implementations using arrays to store the node labeled
with x at position x, for each x with 1 ≤ x ≤ z.

Binary search trie. The first-child next-sibling representation binary maintains
its nodes in three arrays. A node stores a pointer to one of its children, and a
pointer to one of its siblings. It additionally stores the label (i.e., a character)
of the edge to its parent. The trie binary takes 2z lg z + z lg σ bits when storing
z nodes. We do not sort the nodes in the trie according to the character on
their incoming edge, but store them in the order in which they are inserted.15

Figure 3.39 gives an example. To navigate from a node v to its child with
label c ∈ Σ, we take the first child of v and then sequentially scan all its next
siblings until finding a node storing the character c.

Ternary search trie. The ternary search trie [30] ternary differs from binary
in that a ternary node stores one more pointer to a sibling: A node of ternary
stores a character, a pointer to one of its children, a pointer to one of its
smaller siblings, and a pointer to one of its larger siblings. The trie ternary takes
3z lg z + z lg σ bits when storing z nodes. Similar to binary, we do not rearrange
the nodes. To navigate from a node v to its child with label c ∈ Σ, we take
the pointer to one of its children and then binary search for the sibling storing
the character c (given that we are at a node storing a character d, we take its
smaller sibling if c < d, otherwise its larger sibling).

3.8.1.2 LZ Tries with Hashing

We use a hash table H[0 . .M−1] for a natural number M , and a hash function h
to store key-value pairs. We determine the position of a pair (k, v) in H by
the initial address h(k) mod M ; we handle collisions with linear probing. We
enlarge H when the maximum number of entries m := αM is reached, where α
is a real number with 0 < α < 1.

A hash table can simulate a trie as follows: Given a trie edge (u, v) with
label c, we use the unique key c + σ` to store v, where ` is the label (factor
index) of u (the root is assigned the label 0). This allows us to find and create
15 We found this faster in our experiments.

105

3 Lempel-Ziv Factorizations

nodes in the trie by simulating top-down-traversals. This trie implementation is
called hash in the following.

Table size. We choose the hash table size M to be a power of two. Having
M = 2k for k ∈ N, we can compute the remainder of the division of a hash
value by the hash table size with a bitwise AND operation, i.e., h(x) mod 2k =
h(x) & (2k − 1), which is practically faster16.

If the aforementioned resize hint suggests that the next power of two is
sufficient for storing all factors, we set α ← 0.95 (which turned out to be a
good value in the experiments) before enlarging the size (if necessary). We
also implemented a hash table variant that changes its size to fit the provided
hint. This variant then cannot use the fast bit mask to simulate the operation
mod M . Instead, it uses a practical alternative that scales the hash value h(k)
of a key k by M and divides this value by the largest possible hash value17, i.e.,
Mh(k)/(maxk′ h(k′)). We mark those hash table variants with a plus sign, e.g.,
hash+ is the respective variant of hash.

Reasons for linear probing. Linear probing inserts a tuple with key k at the
first free entry, starting at the initial address. Probing for the free entry closest
to the initial address is cache-efficient since the probing scans linearly the entries
starting at the initial address. Using large hash tables and small keys, the
cache-efficiency can compensate the chance of higher collisions [17, 123]. Linear
probing excels if the load ratio is below 50%, and it is still competitive up to
a load ratio of 80% [34, 180]. Nevertheless, its main drawback is clustering:
Linear probing creates runs, i.e., entries whose hash values are equal. With a
sufficient high load, it is likely that runs can merge such that long sequence of
entries with different hash values emerge. When trying to look up a key k, we
have to search the sequence of succeeding elements starting at the initial address
until finding a tuple whose key is k, or ending at an empty entry. Fortunately,
the expected time of a search is rather promising for an α not too close to one:
Given that the used hash function h distributes the keys independently and
uniformly, we get O(1/(1− α)2) expected time for a search [154, Sect. 6.4]. In
practice, even weak hash functions (like the ones we use in this section) tend to
behave as truly independent hash functions [48]. These properties convinced us
that linear probing is a good candidate for our representations of the LZ trie
using a hash table.

16 http://blog.teamleadnet.com/2012/07/faster-division-and-modulo-operation.
html

17 http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-
with-tiny-memory-footprints/

106

http://blog.teamleadnet.com/2012/07/faster-division-and-modulo-operation.html
http://blog.teamleadnet.com/2012/07/faster-division-and-modulo-operation.html
http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/
http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/

3.8 Practical LZ78 and LZW Computation

3.8.1.3 Compact Hashing

In terms of memory, hash is at a disadvantage compared to binary, because the
key-value pairs consist of two factor indices and a character; for an α < 1, hash
always takes more space than binary. To reduce the size of the stored keys, we
introduce the representation cht using compact hashing.

The idea of compact hashing [77, 154] is to use a bijective hash function
such that when storing a tuple with key k in H, we only store the value and
the quotient bh(k)/Mc in the hash table. The original key of an entry of H
can be restored by knowing the initial address h(k) mod M and the stored
quotient bh(k)/Mc. To address collisions and therefore the displacement of a
stored entry due to linear probing, Cleary [50] adds two bit vectors, each of
length M , with which the initial address can be restored. (One bit vector marks
the initial addresses of all stored elements, and the other marks the boundaries
of groups of elements having the same initial address.)

For the bijective hash function h, we consider two classes:

Linear Congruential Generators The class of linear congruential generators
(LCGs) [42] contains all functions lcga,b,p : [0. .p−1]→ [0. .p−1], x 7→ (ax+b)
mod p with p ∈ N, 0 < a < p, 0 ≤ b < p. If p and a are relative
prime (gcd(p, a) = 1), then there exists a unique modular multiplicative
inverse a−1 ∈ [1. .p−1] of a such that aa−1 mod p = 1. Then lcg−1

a,b,p : y 7→
(y − b)a−1 mod p is the inverse of lcga,b,p. If p is prime, then a−1 = ap−2

mod p due to Fermat’s little theorem. Otherwise, the extended Euclidean
algorithm can compute two numbers a−1 and y such that aa−1 + py =
gcd(p, a) = 1, i.e., aa−1 = 1 mod p.

Xorshift Functions The xorshift hash function class [185] contains functions
that use shift and exclusive OR (XOR) operations. Let ⊕ denote the
binary XOR operator and w the number of bits of the input integer. For
an integer j < −bw/2c or j > bw/2c, the xorshift operation sxorw,j :
[0 . .2w−1]→ [0 . .2w−1], x 7→ (x⊕ (b2jxc mod 2w)) mod 2w is inverse
to itself: sxorw,j ◦ sxorw,j = id.

It is possible to create a bijective function that is a concatenation of functions
of both families18.

A compact hash table can use less space than a traditional hash table if the
size of the keys is large: If the largest integer key is u, then all keys can be
stored in dlg ue bits, whereas all quotients can be stored in dlg(maxu h(u)/M)e
bits. By choosing a hash function h with M ≤ maxu h(u) ≤ cM for a constant
c > 1, it is possible to store the quotients in a number of bits independent of
the number of the keys.
18 Popular hash functions like MurmurHash 3 (https://github.com/aappleby/smhasher)

use a post-processing step that applies multiple LCGs lcga,0,264 with a as a predefined odd
constant, and some xorshift-operations.

107

https://github.com/aappleby/smhasher

3 Lempel-Ziv Factorizations

Enlarging the hash table. On enlarging the hash table, we choose a new hash
function, and rebuild the entire table with the new size and a newly chosen hash
function. We first choose a hash function h out of the aforementioned bijective
hash classes and adjust h’s parameters such that h maps from [0 . . 2mσ − 1] to
[0 . . 2mσ − 1] (m already has its new size). This means that

• we select a function lcga,b,p with a prime mσ < p < 2mσ (such a prime
exists [233] and can be precomputed for all M = 2k, 1 ≤ k ≤ lg n) and
0 < a, b ≤ p randomly chosen, or that

• we select a function sxorw,j with lg(mσ) ≤ w ≤ lg(2mσ) and j arbitrary.

Note that although the domain of h is [0 . . 2mσ − 1], we apply h only to keys
belonging to [0 . . mσ − 1].

The hash table always stores trie nodes with labels that are at most m; this is
an invariant due to the following fact: before inserting a node with label m+ 1
we enlarge the hash table and hence update m. Therefore, the key of a node can
be represented by a dlg(mσ)e-bit integer (we map the key to a single integer with
[0. .m−1]×[0. .σ−1]→ [0. .mσ−1], (y, c) 7→ (σy+c). Since h is a bijection, the
function [0 . .mσ−1]→ [0 . .M−1]× [0 . . b(2mσ − 1)/Mc], i 7→ (h1(i), h2(i)) :=
(h(i) mod M, bh(i)/Mc) is injective. The value of h1 determines the initial
address of an entry. When we want to store a node with label x and key yσ + c
in the hash table, we put x and h2(σy + c) in an entry of the hash table. The
entry is determined by h1, the linear probing strategy, and a re-arrangement
with the bit vectors. It stores x using lgm bits and h2(σy + c) using lg(2ασ)
bits. In total, we need M (lg(2ασ) + lgm) + 2M bits to store m elements in a
compact hash table of size M . Since m ≤ 2z − 1, there is a power of two such
that M = 2blg(z/α)c+1 ≤ (2z − 1)/α. On termination, the compact hash table
takes at most M(2 + lg(2ασm)) ≤ (2z − 1)(3 + lg(ασz))/α bits.

Lemma 3.51. There is a randomized algorithm computing the LZ78 and LZW
factorization online with at most z(3 lg(zσα) + 11)/α bits of working space, for
a fixed α with 0 < α < 1 and linear expected running time.

Proof. The memory peak is reached when we have to copy the data from the
penultimate table to the final hash table with the above size. It is at most
M(3 + lg(mασ)) + (M/2)(2 + lg(mασ)) ≤ (2z − 1)(11 + 3 lg(zασ))/2α.

Comparing the memory peak of cht with the approach using a classic hash
table (where we need to store the full key), we see that hash has a memory peak
of M(lgm+ lgm+ lg σ) + (M/2)(lg(m/2) + lg(m/2) + lg σ) ≤ 3(2z − 1)(4/3 +
lg(σz2))/α bits.

Theorem 3.52. We can compute the LZ78 and LZW factorization online with a
Las Vegas algorithm using O(n/ε) time and O((1 + ε)z lg(σz)) bits of working
space, for a constant ε with 0 < ε ≤ 1.

108

3.8 Practical LZ78 and LZW Computation

Trie Space Best Case Space Worst Case

binary 3z(lg(z2σ)− 2/3)/2 3z(lg(z2σ) + 4/3)
ternary 3z(lg(z3σ)− 1)/2 3z(lg(z3σ) + 2)
hash 3z(lg(z2σ)− 2/3)/2α 6z(lg(z2σ) + 4/3)/α
cht 3z(lg(αzσ) + 8/3)/2α 3z(lg(αzσ) + 11/3)/α
rolling 3z(w + lg(z)− 1/3)/2α 6z(w + lg(z) + 2/3)/α

Fig. 3.40: Upper and lower bounds of the maximum memory (measured in bits)
used during an LZ78/LZW factorization with z factors. The size of a fingerprint
is w bits.

For the evaluation, we use a preliminary version of the implementation
of Poyias et al. [207] that is based on [50] with the difference that Cleary uses
bidirectional probing ([207] uses linear probing).

3.8.1.4 Rolling Hashing

Here, we present an alternative trie representation with hashing, called rolling.
The idea is to maintain the Karp-Rabin fingerprints [149] of all computed factors
in a hash table such that the navigation in the trie is simulated by matching
the fingerprint of a substring of the text with the fingerprints in the hash table.
Given that the fingerprint of the substring T [i . . i+`−1] matches the fingerprint
of the string read on the path from the LZ trie root to a node u, we can compute
the fingerprint of T [i . . i+ `] to find the child of u that is connected to u by an
edge with label T [i+ `] (with high probability). To compute the fingerprints,
we choose one of the two rolling hash function families:

• The function ID37(T) = ∑|T |
i=1 h(T [i])37|T |−i mod 2w, where w is the word

size and h is a hash function that maps the alphabet uniformly to the range
[0 . .232−1]. It belongs to the randomized Karp-Rabin ID37 family [172]19.

• The function fermat(T) = ∑|T |
i=1(T [i] − 1)(σ + 1)|T |−i mod 2w, where w

is the word size. The modulo by the maximum value 2w that fits into a
word surrogates the integer overflow. The value T [i]− 1 is in the range
[0 . . σ − 1]. In the case of a byte alphabet, σ + 1 = 28 + 1 = 257 is a
Fermat prime [212]. We compute fermat(T) with Horner’s rule.

Both rolling hash functions discard the classic modulo operation with a prime
number in favor of integer overflows due to performance reasons; this trick was
already suggested in [113]. The LZ78/LZW computation using rolling is a Monte
Carlo algorithm, since the computation can produce a wrong factorization if
the computed fingerprints of two different strings are the same (because the
fingerprints are the hash table keys).
19 https://github.com/lemire/rollinghashcpp

109

https://github.com/lemire/rollinghashcpp

3 Lempel-Ziv Factorizations

Compressors

Coder wrapper encode
BWT [40] bwt
LCPComp [69, Sect. 3.2] lcpcomp
LZSS (Def. 3.1) lzss lcp
LZSS with CST (Sect. 3.4.2) lzsscics
LZW [242] lzw
LZ78 (Def. 3.3) lz78
LZ78 with CST (Sect. 3.7.2) lz78cics
Move-To-Front mtf
Run-Length-Encoding rle

Coders

Bit-Compact bit
Elias-γ [73] gamma
Elias-δ [73] delta
Huffman [243, Sect. 2.3] huff

Fig. 3.41: A selection of compressors and the coders implemented in tudocomp.
Each compressor and coder receives an identifier (right column of each table).
The output of a compressor can be processed by a coder to produce a smaller
compressed file.

3.8.1.5 Summary of All Dynamic Trie Data Structures

We summarize the description of the trie data structures in this and the previous
section by Fig. 3.40 showing the maximum space consumption of each described
trie. The maximum memory consumption is due to the peak at the last
enlargement of the dynamic trie data structure, i.e., when the trie enlarges its
space such that z ≤ m ≤ 2z − 1 (where m is the number of elements it can
maintain).

3.8.2 Practical Results
Having explained our LZ trie representations, we present a thorough experimental
study of all tries for the LZ78 and LZW compression. The experiments are
conducted with the tudocomp framework [69], whose strength is to facilitate (a)
the implementation of compression algorithms and (b) the comparison between
compression algorithms.

tudocomp. The framework is a lossless compression framework written in
C++14. It supports building a pipeline of modules that transforms an input to
a compressed binary output. This pipeline is flexible: appending, exchanging
and removing a module in the pipeline in a plug-and-play manner is in the
main focus of the design of tudocomp. A module can be further refined into
submodules.

On the topmost abstraction level, tudocomp defines the abstract types
Compressor and Coder. A compressor transforms an input into an output

110

3.8 Practical LZ78 and LZW Computation

101 102
0

200

400

600

binary

rolling+

ternary

cht

bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZ78 pc-english

101 102
0

200

400

600

binary

rolling+

ternary

cht

bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZW pc-english

Fig. 3.42: Evaluation of LZ78 (left) and LZW (right) on pc-english.

so that the input can be losslessly restored from the output by the correspond-
ing decompressor. A coder takes an elementary data type (e.g., a character)
and writes it to a compressed bit sequence. As with compressors, each coder is
accompanied by a decoder taking care of restoring the original data from its
compressed bit sequence. By design, a coder can take the role of a compressor,
but a compressor may not be suitable as a coder (e.g., a compressor that needs
random access on the whole input). Figure 3.41 shows a selection of compressors
and coders available in the framework.

The behavior of a compressor or coder can be modified by passing different
parameters. A parameter can be an elementary data type like an integer, but it
can also be an instance of a class that specifies certain subtasks like integer coding.
For instance, the compressors lz78(trie, coder) and lzw(trie, coder) take
a dynamic trie data structure trie and a coder (to code an LZ78/LZW factor)
as parameters. The first parameter trie can also be parametrized. For instance,
hash requests a hash function and the load factor α. The coder is supplied as
a parameter such that the respective compressor can call the coder directly
(instead of alternatively piping the output of lz78 or lzw to a coder). For our
experiments, we selected the coder bit such that a call is lz78(trie, bit)
or lz78(trie, bit), where trie is one of the implemented trie data structures,
e.g., binary.

Experimental setup. We implemented our LZ tries of Sect. 3.8.1 in the tudo-
comp framework.20 As already mentioned before, we selected the coder bit.
This coder stores the referred index y (with y > 0) of a factor Fx in dlg xe bits.
That is because the factor Fx can have a referred index y only with y < x. We
can restore the coded referred index on decompression since we know the index
of the factor that we currently process and hence the number of bits used to
20 The source code of our implementation is freely available at https://github.com/

tudocomp, except for cht and bonsai due to copyright restrictions.

111

https://github.com/tudocomp
https://github.com/tudocomp

3 Lempel-Ziv Factorizations

101 102
0

200

400

600

binary

rolling+

ternary

cht
bonsai

hash+

cedar
judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZ78 pcr-cere

101 102
0

200

400

600

binary

rolling+

ternary

cht

bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZW pcr-cere

Fig. 3.43: Evaluation of LZ78 (left) and LZW (right) on pcr-cere.

101 102
0

200

400

600

binary

rolling+

ternary

cht
bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

o
ry

(M
iB
)

LZ78 pc-dna

101 102
0

200

400

600

binary

rolling+

ternary

cht

bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZW pc-dna

Fig. 3.44: Evaluation of LZ78 (left) and LZW (right) on pc-dna.

101 102
0

200

400

600

binary

rolling+

ternary

cht

bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZ78 hashtag

101 102
0

200

400

600

binary

rolling+

ternary

cht

bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZW hashtag

Fig. 3.45: Evaluation of LZ78 (left) and LZW (right) on hashtag.

112

3.8 Practical LZ78 and LZW Computation

store its referred index.21 This yields ∑z
i=1 dlg ie = z dlg ze − (lg e)z +O(lg z)

bits according to Stirling’s formula for storing the (positive) referred indices.
For LZW, we have to cope with the negative integer values: We add the

value σ to all output values such that its output consists of non-negative
integers. Now the x-th factor costs dlg(x+ σ)e bits. By splitting up the sum∑z
i=1 dlg(i+ σ)e = ∑z+σ

i=1 dlg ie −
∑σ
i=1 dlg ie we get the total number of bits of

the LZW output by the previous formula. For LZ78, the additional characters
are output näıvely as dlg σe-bit integers.

The LZ78 and LZW compressor are independent of the LZ trie implementation,
i.e., all trie data structures described in the previous sections can be plugged into
the LZW or LZ78 compressor easily. We additionally incorporated the following
trie data structures into tudocomp:

cedar: the Cedar trie [245], representing a trie using two arrays.

judy: the Judy array, advertised to be optimized for avoiding cache misses
(cf. [179] for an evaluation).

bonsai: the m-Bonsai (γ) trie [206] representing a trie whose nodes are not
labeled. It uses a compact hash table, but unlike our approach, the key
consists of the position of the parent in the hash table (instead of the label
of the parent) and the character. Due to this fact, we need to traverse the
complete trie for enlarging the trie. We store the labels of the trie nodes
in an extra array.

All data structures are implemented as C++ classes. We added a lightweight
wrapper around each class providing the same interface for all tries.

Filter. Given an input stream with known length, we evaluate the online com-
putation of the LZ78 and LZW compression for different LZ trie representations.
On computing a factor, we encode it and output it instantaneously. This makes
our compression program a filter [188], i.e., it processes the input stream and
generates an output stream, buffering neither the input nor the output.

Implementation details. The keys stored by hash are 40-bit integers, the
fingerprints of rolling are 64-bit integers, and the values stored by hash, rolling
and bonsai are 32-bit integers. For all variants working with hash tables, we
initially set α to 0.3.

Hash function. We use cht with a hash function of the LCG family. Our
hash table for hash uses an xorshift hash function22 derived from [223]. It is
21 This approach is similar to the description of an LZW file compressor found at http:

//www.cplusplus.com/articles/iL18T05o.
22 http://xorshift.di.unimi.it/splitmix64.c

113

http://www.cplusplus.com/articles/iL18T05o
http://www.cplusplus.com/articles/iL18T05o
http://xorshift.di.unimi.it/splitmix64.c

3 Lempel-Ziv Factorizations

slower than simple multiplicative functions, but more resilient against clustering.
Alternatives are sophisticated hash functions like CLHash [173] or Zobrist
hashing [171, 248]. These are even more resilient against clustering, but have
practical higher computation times in our experiments.

Datasets. We evaluated the combinations of the aforementioned tries with the
LZW and LZ78 algorithms on the 200 MiB text collections described in Sect. 3.5.6.
We assume that the input alphabet can be represented in bytes (i.e., σ = 28).
The indices of the factors are represented with 32-bit integers. Figure 3.48 shows
the number of factors produced by LZ78, LZW and LZ77 (we used the variant
with overlapping) on each text collection. We plotted the memory consumption
against the time (in logarithmic scale) for all datasets in Figs. 3.42 to 3.45. To
avoid clutter, we selected one hash function per rolling hash table: We chose
fermat with rolling and ID37 with rolling+ for the plots.

Overall evaluation. The evaluation shows that the fastest option is rolling.
The size of its fingerprints is a trade-off between space and the probability of a
correct output. When space is an issue, rolling with 64-bit fingerprints is not
competitive with the other trie data structures. hash is the second fastest LZ
trie in the experiments. With 40-bit keys it uses less memory than rolling, but
is slightly slower. Depending on the quality of the resize hint, the variants
hash+ and rolling+ take from 50% up to 100% of the size of hash and rolling,
respectively. hash+ and rolling+ are always slower than their respective standard
variants, sometimes slower than the deterministic data structures ternary and
binary. binary’s speed excels at texts with very small alphabets, while ternary
outperforms binary texts with larger alphabets. Only cht can compete with
binary in terms of space, but is slower by magnitudes than most alternatives.
The third party data structures cedar, bonsai and judy could not make it to the
Pareto front.

Evaluation of rolling. The hash table with the rolling hash function fermat
is slightly faster than with a function of the ID37 family, but the hash table
with fermat tends to have more collisions (cf. Fig. 3.46). It is significantly
slower at less compressible texts like pc-proteins due to the large number of
collisions. The number of collisions can drop if we post-process the output of
fermat with a hash function that is more collision resistant. Applying an evenly
distributing hash function on fermat speeds up the computation only if the
number of collisions is sufficiently high (e.g., rolling+ with fermat in Fig. 3.46).
In the experiments, we apply the xorshift hash function used by hash to the
output of fermat for determining the initial address. We denote this variant
with a ⊕ as suffix of either fermat⊕ or rolling⊕.

According to the birthday paradox, the likelihood that the fingerprints of two
different substrings match is anti-proportional to the number of bits used for

114

3.8 Practical LZ78 and LZW Computation

Trie #Collisions M Memory Time

rolling with
- ID37 36 M 33.6 M 576.0 MiB 11.6 s
- fermat 137 M 33.6 M 576.0 MiB 11.4 s
- fermat⊕ 36 M 33.6 M 576.0 MiB 11.8 s
rolling+ with
- ID37 140 M 24.0 M 466.9 MiB 14.7 s
- fermat 938 M 24.0 M 466.9 MiB 21.0 s
- fermat⊕ 142 M 24.0 M 466.9 MiB 15.8 s
hash 36 M 33.6 M 432.0 MiB 15.3 s
hash+ 137 M 24.0 M 350.2 MiB 19.1 s

Fig. 3.46: Detailed eval-
uation of the tries us-
ing hashing (defined in
Sect. 3.8.1). We evalu-
ated the number of col-
lisions and the final ta-
ble size M (measured in
millions) for the LZ78 fac-
torization of 200 MiB pc-
english. An entry in
rolling costs 64 + 32 bits,
an entry in hash 40 + 32
bits.

storing a fingerprint if we assume that the used rolling hash function distributes
uniformly. This means that the domain of the Karp-Rabin fingerprints can be
made large enough to be robust against collisions when hashing large texts. In
our case, we used 64-bit fingerprints because, unlike 32-bit and 40-bit fingerprints,
the factorization produced by rolling are correct for all test instances and all
tested rolling hash functions. Nevertheless, this bit length can be considered
as too weak for processing massive datasets: Given that the used rolling hash
function is uniform, the probability of a collision is 1/264. Although this number
is very small, processing 109 datasets, each 200 MiB large, would give a collision
probability of roughly 1%. This probability can be reduced by enlarging the bit
length, and hence improving the correctness probability by sacrificing working
space. We reran our experiments with 64-bit and 128-bit fingerprints, and
measured time and space usage in Fig. 3.49. There, we can see that switching
to a larger bit length slightly degrades the running time, but severely degrades
the space usage.

Another option to sustain a correct computation is to check the output
factorization. This check can be done by reconstructing the text with the built
LZ trie. However, a compression with rolling combined with a decompression
step takes more time than other approaches like hash or binary. Hence, a Las
Vegas algorithm based on rolling is practically not interesting.

Variations of Hash Tables. The trie representation hash can be generalized to
be used with any associative container. The easiest implementation is to use the
balanced binary tree std::map or the hash table std::unordered map provided
by the standard library of C++11. The hash table std::unordered map is
conform to the interface of the C++ standard library, but therefore sacrifices
performance. It uses separate chaining that tends to use a lot of small memory
allocations affecting the overall running time (see Fig. 3.50). Another pitfall is
to use the standard C++11 hash function for integers that is just the identity

115

3 Lempel-Ziv Factorizations

function. Although this is the fastest available hash function, it performs poorly
in the experiments. There are two reasons. The first is that k 7→ k mod M
badly distributes the tuples if M is not a prime. The second is that the input
data is not independent: In the case of LZ78 and LZW, the composed key c+ `σ
of a node v connected to its parent with label ` by an edge with label c holds
information about the trie topology: all nodes whose keys are `σ+ d for a d ∈ Σ
are the siblings of v. Since ` is smaller than the label of v (` is the referred index
of the factor corresponding to v), larger keys depend on the existence of some
keys with smaller values. Both problems can be tackled by using a hash function
with an avalanche effect property, i.e., flipping a single bit of the input changes
roughly half of the bits of the output. In Fig. 3.50 we evaluated the identity
and the xorshift hash function as hash functions for the hash table flathash,
which seems to be very sensitive for hash collisions. We selected the LZ trie
of the LZ-index [193] as an external competitor in Fig. 3.50: We terminated
the execution of the LZ-index algorithm after producing the LZ trie of the LZ78
factorization. We did not integrate this data structure into tudocomp. The
only interesting configuration is hash with the hash table sparsehash, since it
takes 4.1 MiB less space than binary while still being faster than cht at the LZ78
factorization of pcr-cere.

3.9 Conclusion
We presented novel approaches for the LZ77 and the LZ78 factorizations. Our
main idea was based on two different representations of the suffix tree that are
especially trimmed on a small memory footprint during their construction. The
text was only needed during the computation of our two suffix tree representa-
tions. For computing the factorizations we used head to retrieve a character of
the text.

We found the LZ77 factorization to be valuable for various applications like
computing the LPF table or all distinct squares. Although we were careful about
the choice of the suffix tree representations, they are still the bottlenecks in
terms of the working space. We therefore hope that our algorithms could work
with less space in the light of future achievements in suffix tree construction
algorithms. While tackling all the problems addressed in this chapter, we
gathered plenty of open problems:

Rightmost parsing. The referred position of a referencing factor F is not
uniquely determined by Def. 3.1. In terms of the suffix tree topology, we
can choose the suffix number of all already visited leaves belonging to the
subtree of F ’s witness. From all possible referred positions, our algorithms
in Sect. 3.4 choose the smallest one. Many compression programs encode F ’s
referred position j by the difference between F ’s starting position and j with a
coder favoring small numbers (cf. [79]). Since a universal coder favors small

116

3.9 Conclusion

numbers, we can optimize its output by choosing the largest of all possible
referred positions, also called the rightmost one. The best known algorithm is by
Belazzougui and Puglisi [27]. Their algorithm runs in O(n(1 + lg σ/

√
lg n)) time

while using O(n lg σ) bits of working space. Unfortunately, it seems impossible
to adapt our LZ77 factorization algorithms in Sect. 3.4 to compute the rightmost
parsing without worsening the running time. It is clear that the rightmost
parsing and the standard LZ77 factorization produce the same factors, since
only the referred positions differ. This means that we only have to reason about
how to find the referred positions.

An idea would be to use a semi-dynamic RMQ data structure on an array A,
where A is allowed to have not-initialized entries, which can be initialized later.
The idea is to create the array A of length n, and to built on top of A a
semi-dynamic range maximum query (RMQ) data structure that retrieves the
maximum entry within a given range. All entries of A are uninitialized at the
beginning (the same as setting A[i]← −∞ for 1 ≤ i ≤ n). In one single LZ77
pass, we can identify the referred positions while initializing entries of A with the
suffix numbers of the visited leaves. Within this pass, we set A[leaf rank(λ)]← j
after visiting a leaf λ with suffix number j. On visiting a leaf corresponding to a
witness w, we query the semi-dynamic RMQ data structure for the entry with the
maximum value in the range [leaf rank(lmost leaf(w)) . . leaf rank(rmost leaf(w))].
Unfortunately, we are not aware of any semi-dynamic RMQ data structure,
tailored to the setting of (a) performing n updates, and (b) answering z queries
efficiently. The closest solution is a fully dynamic RMQ data structure, for
which Brodal et al. [39] presented a solution performing each operation within
O(lg n/ lg lg n) amortized time.

An alternative approach would be to compute the rightmost parsing online
with a modification of the algorithm of Gusfield [120, Sect. 7.17.1] that computes
the non-overlapping LZ77 factorization. The idea of this algorithm is to build the
suffix tree with Ukkonen’s algorithm [236] online. Remembering how all distinct
squares are computed online in Thm. 3.28, whenever this suffix tree construction
algorithm creates a new leaf λ, the invariant holds that sufnum(λ) is fixed (i.e.,
it will not change), and that all leaves with smaller suffix numbers are already
present in the suffix tree. To compute the rightmost parsing, we only consider
leaves corresponding to a referencing factor. Given such a leaf λ, our problem is
to find the leaf λ′ with the second largest suffix number among all leaves that are
in the subtree of λ’s parent u. That is because λ′ had the largest suffix number
among all leaves in u’s subtree before adding λ. Approaches like a semi-dynamic
RMQ data structure (supporting to set values only once) require an integer array,
in which we can store the suffix numbers of the leaves. Unfortunately, this is
only possible if we know the order of the suffixes in advance (and hence, the
algorithm cannot work online any longer). It would be interesting to study ways
on how to devise a semi-dynamic RMQ data structure on the suffix numbers of
the suffix tree leaves that are created online.

117

3 Lempel-Ziv Factorizations

LZ77 with O(z) words. Computing the LZ77 or LZ78 factorization within O(z)
words of space in optimal time is still an open problem.23 For nearly incom-
pressible texts with z = Θ(n/ logσ n), Cor. 3.14 already provides an algorithm
running in O(n) time using O(z) words of space. For general z, there are two
algorithms in literature that can work efficiently within O(z) words of working
space:

The first algorithm is due to Fischer et al. [88], which approximates the LZ77
factorization: It computes at most (1 + ε)z factors while using O(z) words of
working space and O((n/ε) lg2 n) time. We obtain the LZ77 factorization with
two runs of the algorithm: In the first run, we set ε← 1 to obtain z′ phrases
with z ≤ z′ ≤ 2z. For the second run, we set ε← 1/(δz′) for a real constant δ
with δ > 1. The second run produces (1 + ε)z = z + z/(δz′) < z + 1 factors, i.e.,
it produces exactly the same number of factors as LZ77. The overall running
time is O(nz lg2 n).

The second algorithm is due to Kosolobov [168]. It runs in O
(
(n/ε)

(
lg σ +

lg((lg n)/ε)
))

time with O(εn/ lg n) words of working space for a trade-off
parameter ε with 0 < ε < 1. We determine an estimate of z with the first
run of [88] as above and set ε ← (z lg n)/n. This gives O(n lg2 n + n2(lg σ +
lg(n/z))/(z lg n)) time and O(z) words of working space. This running time is
better than O(nz lg2 n) time when z = Ω(

√
n(lg(n/z) + lg σ)/ lg3/2 n). In this

case, the algorithm runs in O(n3/2 lg n) time.

Engineering a practical LZ77 algorithm. The LZ77 algorithm does not use
many properties of the suffix tree. One could build just SA, LCP, and a previous-
/next-smaller-value data structure on top of LCP to support the parent-operation.
In this suffix tree representation, nodes are represented as pairs of integers,
known as LCP intervals [2]. The main challenge is to map these pairs to plain
numbers such that we can mark, rank, and select nodes efficiently.

Computing the LPF table in linear time with compressed space. We wonder
whether it is possible to compute the LPF table in linear time with O(n lg σ) bits
of space. The solution is easy when we are allowed to maintain an array X with
n lg n bits, in which we will store the LPF table as a plain array at the end: In
that case, we first construct SA in X like in the succinct suffix tree representation.
Following Lemma 3.22, we can construct LPF in the representation of Cor. 3.21
in linear time. Finally, we copy LPF into X.

If we want to compute LPF within a working space of O(n lg σ) bits, it seems
hard to achieve linear running time. That is because we need access to the
string depth of the suffix tree node w for each entry LPF[i], where w is the
lowest node having the leaf λ with suffix number i and a leaf with a suffix
number less than i in its subtree. Recall that we compute str depth(w) by (a)
23 The idea of this problem was worked out together with Moshe Lewenstein.

118

3.9 Conclusion

taking λ and another leaf λ′ with lca(λ, λ′) = w and (b) recursively applying
next leaf on λ and λ′ to finally move to leaves whose string labels differ in
the first character. Let v := lca(next leaf(λ), next leaf(λ′)) be the node whose
string label is yielded by removing the first character from the string label
of w. Let w′ be the lowest node having the leaf λ′ with suffix number i + 1
and a leaf with a suffix number less than i + 1 in its subtree. If w′ = v, then
LPF[i+1] = LPF[i]−1. Otherwise, str depth(v) < str depth(w′). Suppose that we
have computed LPF[i] = str depth(w) = str depth(v)+1 (which can be computed
in O(str depth(w)) time according to Fig. 3.9). Given that LPF[i+ 1] ≥ LPF[i],
our goal is to compute LPF[i+1] = str depth(w′) inO(str depth(v)−str depth(w′))
time by knowing LPF[i] and v (which is found by the algorithm described in
Lemma 3.22). If we can achieve that, then it follows by Lemma 3.20 that we
need O(n) time in total.

Memory efficient reversed LZ77 factorization. The space bounds of Thm. 3.37
computing the reversed LZ77 factorization (overlapping and non-overlapping) are
due to a marked ancestor data structure. Actually, we deal with a specialized
version of the marked ancestor problem: the semi-dynamic fringe marked
ancestor problem24, in which updates are restricted to marking a node that is a
child of an already marked node. We seek for a succinct data structure that
solves the semi-dynamic fringe marked ancestor problem by answering queries
in amortized constant time, but spends O(lg n/ lg σ) time for marking. Without
the need of the O(n) words for the marked ancestor data structure, it becomes
interesting to think how the parsing can be done with our two introduced suffix
tree representations (recall Sect. 3.3.2), for which we have to explain how to
conduct a pass in reverse text order. To reverse the order, we need the function
prev leaf(λ) that returns (a) the leaf with suffix number sufnum(λ)− 1 or (b)
the leaf with the largest suffix number if λ = smallest leaf. It can be computed
as follows:

• With the succinct suffix tree, prev leaf(λ) is leaf select(ISA[sufnum(λ)− 1])
if sufnum(λ) ≥ 2.

• With the compressed suffix tree, we can compute prev leaf(λ) with a
backward search step with BWT introduced in the FM-index [78]. For the
backward search we need, additionally to BWT, an array Acc that stores in
Acc[c] the first position i of SA with T [SA[i]] = c, for each character c ∈ Σ.
Fortunately, BWT and Acc are part of the compressed suffix tree [190], such
that we can compute prev leaf(λ) with Acc[c]+BWT.rankc(leaf rank(λ)−1),
where c := BWT[leaf rank(λ)]. The running time is O(trank), where trank
is the time for querying a wavelet tree (e.g., trank = O(lg lg σ) with the
wavelet tree of Barbay et al. [23] using O(n lg σ) bits of space).

24 Coined by Breslauer and Italiano [36], who introduced the fully-dynamic variant of this
problem.

119

3 Lempel-Ziv Factorizations

Computing all distinct squares faster. There is one practical bottleneck for
the offline variant, and one time-theoretical bottleneck of the online variant, for
computing all distinct squares faster:

RMQs Remembering Sect. 3.5.5, our algorithm for computing all distinct
squares depends on an RMQ data structure. Unfortunately, RMQ data
structures are practically slow [202]. We wonder whether we can avoid
the use of any RMQ without loosing linear running time.

Predecessor Dictionaries Theorem 3.28 describes the online algorithm running
in O(n lg2 lg n/ lg lg lg n) time, where the factor O(lg2 lg n/ lg lg lg n) is
due to the data structure of Beame and Fich [26]. This is also the current
bottleneck of the online algorithm with respect to the running time. Future
predecessor data structures could improve the overall performance of our
online algorithm. For Weiner’s suffix tree construction algorithm [241],
it is possible to use the data structure of Fischer and Gawrychowski [84,
Appendix A] to speed up a navigational operation to O(lg2 lg σ/ lg lg lg σ)
time. However, it is unclear whether the data structure can be used in
conjunction with Ukkonen’s algorithm, too.

Building the MAST in linear time. In Thm. 3.33, we left it open to compute
the number of the non-overlapping occurrences of the string labels of the MAST
nodes in linear time. A linear time algorithm computing these values would
improve the running time of the greedy compression algorithm of Apostolico
and Lonardi [10].

More sophisticated hashing techniques. Considering the trie representation
with the hash table hash of Sect. 3.8.1.2, an interesting option is to switch from
the linear probing scheme to a more sophisticated scheme whose running time is
stable for high loads, too [180]. This could be especially beneficent if the resize
hint provides more accurate bounds on the number of factors.

Speaking of novel hash tables, we can combine the compact hash table cht
of Sect. 3.8.1.3 with the memory management of Google’s sparse hash table25,
which leads us to the compact sparse hash table26. The compact sparse hash
table is a blend of the techniques of both hash tables. It is more memory
friendly than the compact hash table in case that the table is sparsely filled.
The compact sparse hash table differs from cht in that we do not allocate an
array with M entries. Instead, it consists of arrays that grow by doubling their
sizes. The entries of the hash table are mapped to entries of the arrays with bit
vectors.

In more detail, we partition the hash table in M/b sections, where b is a
(small) constant. We assure that M is divisible by b such that all sections
25 https://github.com/sparsehash/sparsehash
26 https://github.com/tudocomp/compact_sparse_hash

120

https://github.com/sparsehash/sparsehash
https://github.com/tudocomp/compact_sparse_hash

3.9 Conclusion

have the same length b. For instance, this is the case when M and b are a
power of two (with b < M). We store in an array of length M/b pointers to
the sections. Given that we want to access the k-th element of the hash table
(1 ≤ k ≤M), there are integers i and j with 1 ≤ i ≤ b and 1 ≤ j ≤M/b such
that k = i+ (j − 1)b (set i := (k + b− 1 mod b) + 1 and j := dk/be). Then the
k-th entry of the hash table corresponds to the i-th entry of the j-th section.
The j-th section is represented by a bit vector Bj of length b and a dynamic
array Aj . We maintain Bj and Aj such that the i-th entry of the j-th section is
stored at position Bj.rank1(i) in Aj. For a sufficiently small b, the rank query
can be answered with a single CPU instruction (of a modern CPU architecture)
on the bit vector Bj without the need of a (dynamic) rank-support.

Suppose we want to insert an entry in the j-th section. We can do that by
altering Bj and rearranging the elements in Aj. Rearranging Aj can be done
efficiently if the elements of Aj (which can be at most b many) fit into the CPU
cache. Whenever we want to insert an element into a full array, we double its
size. Initially, all arrays Aj are empty. We need M bits and (M/b)(lg n+ lg b)
bits for all bit vectors Bj and all arrays Aj (consisting of a pointer with lg n bits
and a counter with lg b bits maintaining its size), respectively. We additionally
need (M/b) lg n bits for the array of pointers to the sections, summing up to
(M/b)(2 lg n+ lg b) + 3M bits of space in total, where the additional 2M bits
are for the two bit vectors of the compact hash table by Cleary [50].

Dynamic succinct trie library. Current research articles [15, 140, 206] focus
on dynamic, yet succinct, trie representations. A more wide-ranging idea than
Sect. 3.9 is to bundle the trie data structures presented in Sect. 3.8 within a
programming library focussing on dynamic succinct trie data structures. A
new challenge is to additionally think about the delete operation, which is not
needed for building the LZ trie. Asides from that, the trie data structures can be
used to evaluate different flavors of LZ78 like [15, 117], which work with dynamic
tries.

121

3 Lempel-Ziv Factorizations

3.
10

La
nd

sc
ap

e
O

rie
nt

ed
Fi

gu
re

s

C
ol

le
ct

io
n

σ
m

ax
L

C
P

av
g L

C
P

B
W

T
ru

ns
z

m
ax

x
|F
x
|

H
0

H
3

ha
sh

ta
g

17
9

54
,0

75
84

63
,0

14
k

13
,7

21
k

54
,0

56
4.

59
2.

46
pc

-d
bl

p.
xm

l
97

10
84

44
29
,5

85
k

70
35

k
10

60
5.

26
1.

43
pc

-d
na

17
97
,9

79
60

12
8,

86
3k

13
,9

70
k

97
,9

66
1.

97
1.

92
pc

-e
ng

li
sh

22
6

98
7,

77
0

93
90

72
,0

32
k

13
,9

71
k

98
7,

76
6

4.
52

2.
42

pc
-p

ro
te

in
s

26
45
,7

04
27

8
10

8,
45

9k
20
,8

75
k

45
,7

03
4.

20
4.

07
pc

r-
ce

re
6

17
5,

65
5

35
41

10
,4

22
k

14
47

k
17

5,
64

3
2.

19
1.

80
pc

r-
ei

ns
te

in
.e

n
12

5
93

5,
92

0
45
,9

83
15

3k
49

6k
90

6,
99

5
4.

92
1.

63
pc

r-
ke

rn
el

16
1

2,
75

5,
55

0
14

9,
87

2
27

18
k

77
5k

2,
75

5,
55

0
5.

38
2.

05
pc

r-
pa

ra
6

72
,5

44
22

68
13
,5

76
k

19
27

k
70
,6

80
2.

12
1.

87
pc

-s
ou

rc
es

23
1

30
7,

87
1

37
3

47
,6

51
k

11
,5

42
k

30
7,

87
1

5.
47

2.
34

ta
gm

e
20

6
12

81
26

65
,1

95
k

13
,8

41
k

12
79

4.
90

2.
60

w
ik

i-a
ll

-v
it

al
20

5
86

07
15

80
,6

09
k

16
,2

74
k

86
07

4.
56

2.
45

Fi
g.

3.
47

:D
at

as
et

s
of

siz
e

20
0M

iB
us

ed
du

rin
g

th
e

ev
al

ua
tio

ns
.

W
e

w
rit

e
1k

fo
r

10
3 .

T
he

al
ph

ab
et

siz
e
σ

in
cl

ud
es

th
e

de
lim

ite
r$

.
Th

e
ex

pr
es

sio
ns

m
ax

L
C

P
an

d
av

g L
C

P
ar

e
th

e
m

ax
im

um
an

d
th

e
av

er
ag

e
va

lu
e

of
LC

P.
Th

e
nu

m
be

ro
fL

Z7
7

fa
ct

or
s

is
z.

T
he

nu
m

be
r

of
ru

ns
co

ns
ist

in
g

of
on

e
ch

ar
ac

te
r

in
th

e
B

W
T

is
ca

lle
d

B
W

T
ru

ns
.

122

3.10 Landscape Oriented Figures

LZ
78

LZ
W

LZ
77

C
ol

le
ct

io
n

σ
z

z
dl

g(
zσ

)e
|o

ut
pu

t|
z

z
dl

g(
z

+
σ

)e
|o

ut
pu

t|
z

2z
lg
n

pc
-e

ng
li

sh
22

6
21
.4

M
83
.8

M
iB

80
.2

M
iB

23
.5

M
70
.1

M
iB

66
.1

M
iB

14
.0

M
93
.3

M
iB

pc
r-

ce
re

6
15
.8

M
50
.0

M
iB

58
.2

M
iB

17
.1

M
50
.9

M
iB

46
.9

M
iB

1.
4M

9.
7M

iB
pc

-d
na

17
16
.4

M
54
.8

M
iB

60
.5

M
iB

17
.8

M
52
.9

M
iB

48
.9

M
iB

13
.9

M
92
.1

M
iB

ha
sh

ta
g

17
9

18
.9

M
73
.4

M
iB

70
.6

M
iB

21
.1

M
62
.9

M
iB

58
.9

M
iB

13
.7

M
90
.4

M
iB

Fi
g.

3.
48

:P
ro

pe
rt

ie
s

of
th

e
te

xt
co

lle
ct

io
ns

an
d

th
ei

r
fa

ct
or

iz
at

io
ns

.
Ea

ch
co

lu
m

n
|o

ut
pu

t|
sh

ow
s

th
e

siz
e

of
th

e
re

sp
ec

tiv
e

(c
om

pr
es

se
d)

ou
tp

ut
.T

he
siz

es
z
dl

g(
zσ

)e
≤
z
dl

gz
e+

z
dl

gσ
e

bi
ts

,z
dl

g(
z

+
σ

)e
bi

ts
an

d
2z

lg
n

bi
ts

ar
e

th
e

ou
tp

ut
siz

e
of

th
e

LZ
78

,L
ZW

an
d

LZ
77

fa
ct

or
iz

at
io

n
fo

r
th

e
re

sp
ec

tiv
e

nu
m

be
r

of
fa

ct
or

s
z

w
he

n
st

or
in

g
th

e
ou

tp
ut

in
ar

ra
ys

of
fix

ed
bi

t
w

id
th

.

123

3 Lempel-Ziv Factorizations

LZ
78

LZ
W

64
bi

t
12

8
bi

t
64

bi
t

12
8

bi
t

T
im

e
Sp

ac
e

T
im

e
Sp

ac
e

T
im

e
Sp

ac
e

T
im

e
Sp

ac
e

pc
-e

ng
li

sh
(s

ee
al

so
Fi

g.
3.

42
)

ro
lli

ng
11
.4

s
57

6.
0M

iB
12
.1

s
96

0.
0M

iB
11
.8

s
57

6.
0M

iB
12
.7

s
96

0.
0M

iB
ro

lli
ng
⊕

11
.9

s
57

6.
0M

iB
13
.7

s
96

0.
0M

iB
12
.3

s
57

6.
0M

iB
14
.1

s
96

0.
0M

iB
ro

lli
ng

+
21
.0

s
46

6.
9M

iB
24
.1

s
77

8.
1M

iB
68
.8

s
56

5.
1M

iB
52
.6

s
98

4.
6M

iB
ro

lli
ng

+
⊕

15
.8

s
46

6.
9M

iB
18
.3

s
77

8.
1M

iB
24
.9

s
56

5.
1M

iB
22
.5

s
98

4.
6M

iB

pc
r-

ce
re

(s
ee

al
so

Fi
g.

3.
43

)
ro

lli
ng

9.
0s

57
6.

0M
iB

9.
5s

96
0.

0M
iB

9.
2s

57
6.

0M
iB

9.
8s

96
0.

0M
iB

ro
lli

ng
⊕

9.
5s

57
6.

0M
iB

10
.8

s
96

0.
0M

iB
9.

6s
57

6.
0M

iB
11
.2

s
96

0.
0M

iB
ro

lli
ng

+
11
.1

s
44

3.
9M

iB
12
.6

s
73

9.
7M

iB
11
.4

s
45

0.
9M

iB
13
.8

s
75

1.
6M

iB
ro

lli
ng

+
⊕

11
.2

s
44

3.
9M

iB
13
.9

s
73

9.
7M

iB
11
.7

s
45

0.
9M

iB
15
.0

s
75

1.
6M

iB

pc
-d

na
(s

ee
al

so
Fi

g.
3.

44
)

ro
lli

ng
9.

4s
57

6.
0M

iB
10
.0

s
96

0.
0M

iB
9.

5s
57

6.
0M

iB
10
.2

s
96

0.
0M

iB
ro

lli
ng
⊕

9.
8s

57
6.

0M
iB

11
.5

s
96

0.
0M

iB
10
.0

s
57

6.
0M

iB
11
.6

s
96

0.
0M

iB
ro

lli
ng

+
11
.6

s
50

9.
3M

iB
13
.5

s
74

5.
3M

iB
12
.0

s
51

8.
4M

iB
14
.5

s
75

6.
7M

iB
ro

lli
ng

+
⊕

11
.7

s
50

9.
3M

iB
14
.7

s
74

5.
3M

iB
12
.2

s
51

8.
4M

iB
15
.6

s
75

6.
7M

iB

ha
sh

ta
g

(s
ee

al
so

Fi
g.

3.
45

)
ro

lli
ng

13
.4

s
57

6.
0M

iB
15
.6

s
96

0.
0M

iB
19
.8

s
57

6.
0M

iB
25
.3

s
96

0.
0M

iB
ro

lli
ng
⊕

10
.8

s
57

6.
0M

iB
12
.6

s
96

0.
0M

iB
11
.1

s
57

6.
0M

iB
12
.9

s
96

0.
0M

iB
ro

lli
ng

+
15
.4

s
53

0.
9M

iB
18
.0

s
76

6.
3M

iB
21
.8

s
54

9.
7M

iB
25
.6

s
77

9.
6M

iB
ro

lli
ng

+
⊕

14
.1

s
53

0.
9M

iB
17
.2

s
76

6.
3M

iB
15
.8

s
54

9.
7M

iB
18
.9

s
77

9.
6M

iB

Fi
g.

3.
49

:P
er

fo
rm

an
ce

co
m

pa
ris

on
of

64
-b

it
an

d
12

8-
bi

t
fin

ge
rp

rin
ts

ge
ne

ra
te

d
by

fe
rm

at
.

124

3.10 Landscape Oriented Figures

pc
-e

ng
li

sh
pc

r-
ce

re
LZ

78
LZ

W
LZ

78
LZ

W

Tr
ie

T
im

e
Sp

ac
e

T
im

e
Sp

ac
e

T
im

e
Sp

ac
e

T
im

e
Sp

ac
e

ha
sh

w
ith

ha
sh

ta
bl

e
st

d:
:u

no
rd

er
ed

ma
p

51
.0

s
85

6.
6M

iB
54
.0

s
93

7.
9M

iB
42
.3

s
70

3.
2M

iB
44
.1

s
76

0.
8M

iB
st

d:
:m

ap
16

1.
2s

98
0.

2M
iB

16
7.

2s
1.

1G
iB

98
.8

s
72

2.
5M

iB
10

4.
6s

78
1.

6M
iB

ri
gt

or
pa

14
.9

s
96

0.
0M

iB
15
.2

s
96

0.
0M

iB
12
.0

s
96

0.
0M

iB
12
.3

s
96

0.
0M

iB
fl

at
ha

sh
b

33
.5

s
24

G
iB

24
.5

s
24

G
iB

18
.5

s
6G

iB
19
.2

s
6G

iB
fl

at
ha

sh
c

15
.1

s
1.

3G
iB

15
.7

s
1.

3G
iB

12
.4

s
1.

3G
iB

13
.0

s
1.

3G
iB

de
ns

eh
as

hd
23
.0

s
57

6.
0M

iB
24
.4

s
57

6.
0M

iB
29
.4

s
57

6.
0M

iB
30
.8

s
57

6.
0M

iB
sp

ar
se

ha
sh

d
49
.1

s
25

5.
7M

iB
52
.2

s
28

0.
0M

iB
68
.6

s
19

1.
3M

iB
72
.4

s
20

6.
1M

iB
LZ

-in
de

x
[1

93
]

24
.6

s
10

47
M

iB
14
.5

s
81

7.
3M

iB

Fi
g.

3.
50

:L
Z7

8
an

d
LZ

W
fa

ct
or

iza
tio

ns
wi

th
th

e
tr

ie
da

ta
st

ru
ct

ur
e

ha
sh

co
m

bi
ne

d
wi

th
di

ffe
re

nt
ha

sh
ta

bl
es

.T
he

se
ap

pr
oa

ch
es

ar
e

co
m

pa
re

d
w

ith
th

e
LZ

78
fa

ct
or

iz
at

io
n

of
th

e
LZ

-in
de

x.
a

ht
tp

s:
//

gi
th

ub
.c

om
/r

ig
to

rp
/H

as
hM

ap
w

ith
α

=
0.

5
ha

rd
co

de
d.

b
ht

tp
s:

//
pr

ob
ab

ly
da

nc
e.

co
m/

20
17

/0
2/

26
/i

-w
ro

te
-t

he
-f

as
te

st
-h

as
ht

ab
le

/,
it

us
es

th
e

id
en

tit
y

as
a

ha
sh

fu
nc

tio
n

an
d

do
ub

le
s

its
siz

e
w

he
n

ex
pe

rie
nc

in
g

to
o

m
uc

h
co

lli
sio

ns
.

c
Se

e
Fo

ot
no

te
b,

bu
t

w
ith

th
e

xo
rs

hi
ft

ha
sh

fu
nc

tio
n.

d
ht

tp
s:

//
gi

th
ub

.c
om

/s
pa

rs
eh

as
h/

sp
ar

se
ha

sh

125

https://github.com/rigtorp/HashMap
https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/
https://github.com/sparsehash/sparsehash

Chapter

4 Sparse Suffix Sorting
A record, if it is to be useful to science,

must be continuously extended,
it must be stored,

and above all it must be consulted.
— Vannevar Bush [41]

Sorting suffixes of a long text lexicographically is an important first step for
many text processing algorithms like the LZ factorization algorithms described
in Chapter 3. The complexity of the problem is quite well understood (see
[209]), as for integer alphabets suffix sorting can be done in optimal linear time
and in-place [114, 177]. In this chapter, we consider a variant of this problem:
instead of computing the order of all suffixes, we are content with sorting certain
specified suffixes. This problem, called sparse suffix sorting problem, is formally
defined as follows: Given a text T [1 . . n] of length n and a set P ⊆ [1 . . n]
of m arbitrary positions in T , the sparse suffix sorting problem asks for the
(lexicographic) order of the suffixes starting at the positions in P . The answer
is encoded by a permutation of P , which is called the sparse suffix array (SSA)
of T (with respect to P) and denoted by SSA(T,P).

Applications are found in external memory LCP array construction algo-
rithms [141] and in the search of maximal exact matches [153, 238], i.e., sub-
strings found in two given strings that can be extended neither to their left nor
to their right without getting a mismatch.

Like the “full” suffix arrays, we can enhance SSA(T,P) with the lengths of
the LCPs between adjacent suffixes in SSA(T,P). These lengths are stored in
the sparse longest common prefix array (SLCP), which we denote by SLCP(T,P).
In combination, SSA(T,P) and SLCP(T,P) store the same information as the
sparse suffix tree, i.e., they implicitly represent a compacted trie over all suffixes
starting at the positions in P. The sparse suffix tree is an efficient index for
pattern matching [164].

Based on classic suffix array construction algorithms [145, 200], sparse suffix
sorting is easily conducted in O(n) time if O(n) words of additional working
space are available. For m = o(n), however, the working space may be too
large, compared to the final space requirement of SSA(T,P). Although some
special choices of P admit space-optimal O(m)-words construction algorithms
(e.g., [144], see also the related work listed in [33]), the problem of sorting
arbitrary suffixes in small space seems to be much harder. We are aware of

127

4 Sparse Suffix Sorting

Time Space Restriction Ref.

O(n lg n) O(n) [183]
O(n) O(n) [155]
O(n lg n) n+O(1) [95]
O(n) n+O(1) [114, 177]
O(τm+ n

√
τ) O(m+ n/

√
τ) [145]

O(n) O(m) P evenly spaced [144]
O(n lg2m) O(m) MC [33]
O(n lg2m+m2 lgm) O(m) LV [33]
O(n) O(m) MC [104]
O(n
√

lgm) O(m) LV [104]
O(n lgm) O(m) MC or LV [130]
O(n) O(m lgm) MC [130]
O(n+m lg2 n) O(m) MC, restore model [208]

Fig. 4.1: Sparse suffix sorting algorithms. MC and LV denote Monte Carlo and
Las Vegas algorithms, respectively. The trade-off parameter τ is in the domain
[1,
√
n]. The space is measured in words, where it is assumed that an integer

with lg n bits fits in one word.

the following results: As a deterministic algorithm, Kärkkäinen et al. [145]
gave a trade-off using O(τm+ n

√
τ) time and O(m+ n/

√
τ) words of working

space, where τ is a trade-off parameter with 1 ≤ τ ≤
√
n. If randomization is

allowed, there is a technique based on Karp-Rabin fingerprints, first proposed
by Bille et al. [33] and later improved by I et al. [130]. Gawrychowski and
Kociumaka [104] presented an algorithm running with O(m) words of additional
space in either O(n

√
lgm) expected time as a Las Vegas algorithm, or in O(n)

expected time as a Monte Carlo algorithm. Most recently, Prezza [208] presented
a Monte Carlo algorithm in the restore model [47] that runs with O(m) words
of space in O(n+m lg2 n) expected time. Figure 4.1 summarizes the running
times and the memory usage of the listed algorithms.

4.1 Algorithm Outline and Our Contribution
We devise our sparse suffix sorting algorithm in the restore model [47], where
algorithms are allowed to overwrite parts of the input, as long as they can
restore the input to its original form at termination. In the case of sparse suffix
sorting, we assume that the text T is stored as a rewritable array of size n lg σ
bits in RAM. Apart from this space, we are only allowed to use O(m) words.
The positions in P are assumed to arrive on-line, implying in particular that
they need not be sorted. We aim at worst-case efficient deterministic algorithms:

Our main algorithmic idea is to insert the suffixes starting at the positions

128

4.1 Algorithm Outline and Our Contribution

of P into a self-balancing binary search tree [134]; since each insertion invokes
O(lgm) suffix-to-suffix comparisons, the time complexity is O(tSm lgm), where
tS is the cost for a suffix-to-suffix comparison. If all suffix-to-suffix comparisons
are conducted näıvely by comparing the characters (tS = O(n/ logσ n) in the
word random-access memory or machine (RAM) model), the resulting worst case
time complexity is O(nm lgm/ logσ n). In order to speed this up, our algorithm
identifies large identical substrings at different positions during different suffix-
to-suffix comparisons. Instead of performing näıve comparisons on identical
parts over and over again, we build a data structure (stored in redundant text
space) to accelerate subsequent suffix-to-suffix comparisons. Informally, when
two (possibly overlapping) substrings in the text are detected to be the same,
one of them can be overwritten.

To accelerate suffix-to-suffix comparisons, we devise a new data structure
called hierarchical stable parsing (HSP) tree that is based on the edit sensitive
parsing (ESP) [55]. HSP trees support LCE queries and are mergeable, allowing
us to build a dynamically growing LCE index on substrings read in the process
of the sparse suffix sorting. Consequently, comparing two already indexed
substrings is done by a single LCE query.

In their plain form, HSP trees need more space than the text itself; to overcome
this space problem, we devise a truncated version of the HSP tree, yielding a trade-
off parameter between space consumption and LCE query time. By choosing
this parameter appropriately, the truncated HSP tree fits into the text space.
With a text space management specialized on the properties of the HSP, we
achieve the result of Thm. 4.1 below.

We make the following definition that allows us to analyze the running time
more accurately. Define C := ⋃

p,p′∈P,p 6=p′ [p . . p+ lcp(T [p . .], T [p′ . .])] as the set
of positions that must be compared for distinguishing the suffixes starting at
the positions of P. Then sparse suffix sorting is trivially lower bounded by
Ω(|C| / logσ n) time. With the definition of C, we now can state the main result
of this chapter as follows:

Theorem 4.1. Given a text T of length n that is loaded into RAM, the SSA and
SLCP of T for a set of m arbitrary positions can be computed deterministically in
O(|C| (

√
lg σ + lg lg n) +m lgm lg n lg∗ n) time, using O(m) words of additional

working space.

Excluding the loading cost for the text, the running time can be sublinear
(when |C| = o(n/(

√
lg σ + lg lg n)) and m lgm = o(n/ lg n lg∗ n)). To the best of

our knowledge, this is the first algorithm that refines the worst-case performance
guarantee. All previously mentioned (deterministic and randomized) algorithms
take Ω(n) time even if we exclude the loading cost for the text. Also, general
string sorters (e.g., forward radix sort [8] or multikey quicksort [30]), which do
not take advantage of the overlapping of suffixes, suffer from the lower bound
of Ω(`/ logσ n) time, where ` is the sum of all LCP values in the SLCP, which is
always at least |C|, but can in fact be Θ(nm).

129

4 Sparse Suffix Sorting

As a result of independent interest, we uncover a flaw in the approximation
bound of the algorithm of Cormode and Muthukrishnan [55] computing the
string edit distance with moves (SEDM) approximatively. There, the authors
postulated that they can approximate the SEDM of two strings of length n with
a factor of O(lg n lg∗ n) with ESP trees. However, there is a flaw in their analysis
of the ESP trees. This flaw leads us to the discovery that the approximation
factor is Ω(lg2 n) in worst case.

4.1.1 Suffix Sorting and LCE Queries
The LCE problem is to preprocess a text T such that subsequent LCE queries
can be answered efficiently. Data structures for LCE and sparse suffix sorting
are closely related, as shown in the following observation:

Observation 4.2. Given a data structure that answers LCE queries inO(τ) time
for τ > 0, we can compute sparse suffix sorting for m positions in O(τm lgm)
time by inserting suffixes into a balanced binary search tree. Conversely, given
an algorithm computing the SSA and the SLCP of a text T of length n for m
positions in O(f(n,m)) time with O(m) words of space for a function f , we can
construct a data structure in O(max(f(n,m), n/m)) time with O(m) words of
space, answering LCE queries on T in O(n2/m2) time.

Proof. The first claim is due to Lemma 2.6. For the second claim, we use the
data structure of [31, Thm. 1a] that answers LCE queries in O(τ) time. The
data structure uses the SSA and SLCP values of those suffixes whose starting
positions are in a difference cover sampling modulo τ . This difference cover
consists of O(n/

√
τ) text positions, and can be computed in O(

√
τ) time [52].

We obtain the claimed bounds on time and space by setting τ := n2/m2.

There has been a great interest in devising deterministic LCE data structures
with trade-off parameters (see Fig. 4.2), or in compressed space [128, 198, 231].
One of the currently best data structures with a trade-off parameter is due to
Tanimura et al. [230], using O(n/τ) words of space and answering LCE queries in
O(τ lg min(τ, n/τ)) time, for a trade-off parameter τ with 1 ≤ τ ≤ n. However,
this data structure has a preprocessing time of O(nτ), and is thus not helpful
for sparse suffix sorting. We develop a new data structure for LCE with the
following properties.

Theorem 4.3. There is a deterministic data structure using O(n/τ) words of
space that answers an LCE query ` := lce(i, j) for two text positions i and j
with 1 ≤ i, j ≤ n on a text of length n in O(lg∗ n(lg(`/τ) + τ lg 3/ logσ n)) time,
where 1 ≤ τ ≤ n. We can build the data structure in O(n(lg∗ n + (lg n)/τ +
(lg τ)/ logσ n)) time with additional O(max(n/ lg n, τ lg 3 lg∗ n)) words during
construction.

130

4.1 Algorithm Outline and Our Contribution

C
on

st
ru

ct
io

n
D

at
a

St
ru

ct
ur

e
T

im
e

W
or

ki
ng

Sp
ac

e
Sp

ac
e

Q
ue

ry
T

im
e

R
ef

.

O
(n
τ
)

O
(n τ

)
O
(n τ

) O
(τ

lg
m

in
(τ,

n τ

))
[2

30
]

O
(n

2+
ε)

O
(n τ

)
O
(n τ

) O
(τ

)
[3

2]
O
(n
(lg
∗
n

+
lg
n τ

+
lg
τ

lo
g σ
n

))
O
(m

ax
(n lg

n
,τ

lg
3

lg
∗
n
))
O
(n τ

) O
(lg
∗
n
(lg

(` τ

) +
τ

lg
3

lo
g σ
n

))
T

hm
.4

.3
O
(n
(lg
∗
n

+
lg
n τ

+
lg
τ

lo
g σ
n

))
O
(τ

lg
3

lg
∗
n
)

O
(n τ

) O
(lg
∗
n
(lg

(n τ

) +
τ

lg
3

lo
g σ
n

))
C

or
.4

.3
3

Fi
g.

4.
2:

D
et

er
m

in
ist

ic
LC

E
da

ta
st

ru
ct

ur
es

wi
th

tr
ad

e-
off

pa
ra

m
et

er
s,

wh
er

e
ε

wi
th
ε
>

0
is

a
co

ns
ta

nt
,a

nd
τ

wi
th

1
≤
τ
≤
n

is
a

tr
ad

e-
off

pa
ra

m
et

er
.

T
he

le
ng

th
re

tu
rn

ed
by

an
LC

E
qu

er
y

is
de

no
te

d
by

`.
Sp

ac
e

is
m

ea
su

re
d

in
wo

rd
s.

T
he

co
lu

m
n

W
or

ki
ng

Sp
ac

e
lis

ts
th

e
wo

rk
in

g
sp

ac
e

ne
ed

ed
to

co
ns

tr
uc

t
a

da
ta

st
ru

ct
ur

e,
w

he
re

as
th

e
co

lu
m

n
Sp

ac
e

lis
ts

th
e

fin
al

sp
ac

e
ne

ed
ed

by
a

da
ta

st
ru

ct
ur

e.

131

4 Sparse Suffix Sorting

The construction time of our data structure has an upper bound of O(n lg n),
and hence it can be constructed faster than the deterministic data structures
in [230] when τ = Ω(lg n).

4.1.2 Outline of this Chapter
We start with Sect. 4.2 introducing the ESP, where we conduct a thorough analy-
sis on its characteristics for comparing two substrings by their ESP trees. Within
this analysis we encounter some drawbacks of the ESP in Sect. 4.2.4, among
others the aforementioned flaw for approximating the SEDM problem. These
drawbacks are our motivation for presenting our novel HSP, whose description
follows in Sect. 4.3. There, it is demonstrated that HSP is immune to the flaw of
the ESP. Subsequently, Sect. 4.3.3 shows the general techniques for answering
LCE queries with the HSP tree. This is followed by Sect. 4.4 introducing our
algorithm for the sparse suffix sorting problem with an abstract data type
dynamic LCE data structure (dynLCE) that supports LCE queries and a merging
operation. The remainder of that section shows that the HSP tree from Sect. 4.3
fulfills all properties of a dynLCE; in particular, HSP trees support the merging
operation. The last part of this chapter is dedicated to the study on how the
text space can be exploited with the HSP technique to improve the memory
footprint. This leads us to truncated HSP trees with a merging operation that is
tailored to working in text space (Sect. 4.5). With the truncated HSP trees we
finally solve the sparse suffix sorting problem in the time and space as claimed
in Thm. 4.1.

4.2 Edit Sensitive Parsing
The crucial technique used in this chapter is the alphabet reduction. The alphabet
reduction is used to partition a string deterministically into blocks. The first
work introducing the alphabet reduction technique to the string context was
done by Mehlhorn et al. [189], who called their approach signature encoding.
The signature encoding is derived from a tree coloring approach [112]. It
supports string equality checks in the scenario where strings can be dynamically
concatenated or split. In the same context, Sahinalp and Vishkin [220] studied
the maximal number of characters to the left and to the right of a substring Z
of Y such that changing one of these characters affects how Z is parsed by
the signature encoding of Y . In a later work, Alstrup et al. [5] enhanced
signature encoding with additional queries like LCE. Recently, an LCE data
structure using signature encoding in compressed space was shown by Nishimoto
et al. [198]. The most recent approach on signature encoding is by Gawrychowski
et al. [109] presenting a mergeable LCE data structure. A slightly modified
version of signature encoding is proposed by Sakamoto et al. [221]. They used

132

4.2 Edit Sensitive Parsing

the alphabet reduction to build a grammar compressor that is approximating
the size of the smallest grammar by a factor of O(lg∗ n lg n).

A modified parsing was introduced by Cormode and Muthukrishnan [55].
They modified the parsing by restricting the block size from two up to three
characters, and named their technique ESP. Initially used for approximating
the SEDM, the ESP technique has been found to be applicable to building self-
indexes [228]. We stick to the ESP technique, because the size of the subtree of
a node in the ESP tree is bounded. In this section, we first introduce the ESP
technique, and then give a motivation for a modification of the ESP technique,
which we call HSP. Before that, we recall the alphabet reduction and the ESP
trees.

4.2.1 Alphabet Reduction
Given a string Y in which no two adjacent characters are the same, i.e., Y [i−1] 6=
Y [i] for every integer i with 2 ≤ i ≤ |Y |, we can partition Y (except at most
the first lg∗ σ positions) into blocks of size two or three with a technique called
alphabet reduction [55, Sect. 2.1.1]. It consists of three steps (see also Fig. 4.3):
First, it reduces the alphabet size to at most eight, in which every character has
a rank from zero to seven. Subsequently, it substitutes characters with ranks
four to seven with characters having a rank between zero and two. By doing so,
it shrinks the alphabet size to three. Finally, it identifies certain text positions
as landmarks that determine the block boundaries.

For reducing the alphabet size, we assume that σ ≥ 9, otherwise we skip this
step. The task is to generate a surrogate string Z on the alphabet {0, 1, 2}
such that the entry Z[i] depends only on the substring Y [i . . i + lg∗ σ], for
1 ≤ i ≤ |Y | − lg∗ σ. To this end, we interpret Y as an array of binary strings,
i.e., we interpret the character Y [i] with its binary representation Y [i] ∈ {0, 1}∗.
By doing so, we have Y [i][`] ∈ {0, 1} for all integers ` with 1 ≤ ` ≤ dlg σe. We
create an array Z of length |Y |−1 storing integers of the domain [0 . .2 dlg σe−1].
For each text position i with 2 ≤ i ≤ |Y |, we compare Y [i] with Y [i− 1]: We
compute ` := lcp(Y [i− 1], Y [i]), and write 2` + Y [i][` + 1] to Z[i] (remember
that we treat Y [i] as a binary string). By doing so, no two adjacent integers are
the same in Z [55, Lemma 1]. Having computed Z, we recurse on Z until Z
stores integers of the domain {0, . . . , 5}. Note that the alphabet cannot be
reduced further with this technique, since 2 dlg xe ≥ x for every integer x with
2 ≤ x ≤ 6. To obtain the final Z, we recurse at most lg∗ σ times. Let r be the
number of recursions. Then we have |Y | = |Z|+ r.

If we skipped this step because of a small alphabet size (σ ≤ 8), then we set
Z[i] to the rank of Y [i] induced by the linear order of Σ (e.g., Z[i] = 0 if Y [i] is
the smallest character, similar to Cor. 2.9). Since |Y | = |Z|, we set r to zero.

To reduce the domain further, we iterate over the values j = 3, . . . , 8 in
ascending order, substituting each Z[i] = j with the lowest value of {0, 1, 2}

133

4 Sparse Suffix Sorting

that does not occur in its neighboring entries (Z[i − 1] and Z[i + 1], if they
exist). Finally, Z contains only numbers between zero and two.

In the final step we create the landmarks that determine the block boundaries.
The landmarks obey the property that the distance between two subsequent
landmarks is greater than one, but at most three. They are determined by local
maxima and minima: First, each number Z[i] that is a local maximum is made
into a landmark. Second, each local minimum that is not yet neighbored by a
landmark is made into a landmark.

Finally, we create blocks by associating each position in Z with its closest
landmark. Positions associated with the same landmark are put into the same
block. As a tie breaking rule we favor the right landmark in case that there are
two closest landmarks. The last thing to do is to map each block covering Z[i. .j]
to Y [i+ r . . j + r].

The tie breaking rule can cause a problem when Z[1] and Z[3] are landmarks,
i.e., the leftmost block contains only one character. We circumvent this problem
by fusing the blocks of the first and second landmark to a single block. If this
block covers four characters, we split it evenly.

Altogether, the alphabet reduction needs O(|Y | lg∗ σ) time, since we perform
r ≤ lg∗ σ reduction steps, while determining the landmarks and computing the
blocks take O(|Y |) time. The steps are summarized in the following lemma:

Lemma 4.4. Given a string Y in which no two adjacent characters are the
same, the alphabet reduction applied on Y partitions Y into blocks, except at
most dlg∗ σe positions at the left. It runs in O(|Y | lg∗ σ) time.

The main motivation of introducing the alphabet reduction is the following
lemma that shows that applying the alphabet reduction on a text Y and on
a pattern X generates the same blocks in X as in all occurrences of X in Y ,
except at the left and right borders of a specific length:

Lemma 4.5 ([55, Lemma 4]). Given a sub-
string X of a string Y in which no two ad-
jacent characters are the same, the alpha-
bet reduction applied to X alone creates
the same blocks as the blocks representing
the substring X in Y , except for at most
∆L := dlg∗ σe+ 5 characters at the left bor-
der, and ∆R := 5 characters at the right
border.

Y =

X =

X

∆L ∆R

Given a block β, we call the substring Y [b(β) −∆L . . e(β) + ∆R] the local
surrounding of β, if it exists (i.e., b(β)−∆L ≥ 1 and e(β) + ∆R ≤ |Y |). Blocks
whose local surroundings exist are also called surrounded. A consequence
of Lemma 4.5 is the following: Given that X is the local surrounding of a
surrounded block β, then the blocking of every occurrence of X in Y is the

134

4.2 Edit Sensitive Parsing

alph. red.

alph. red.

4 7→ 2
mark max.

mark min.

blocking

t s u k u m o g a m i

1 1 1 0 1 0 0 0 0 0 0

0 0 0 1 0 1 1 0 0 1 1

1 0 1 0 1 1 1 1 0 1 0

0 1 0 1 0 0 1 1 0 0 0

0 1 1 1 1 1 1 1 1 1 1

1 2 3 2 7 3 6 2 5 4

Y =

Z =

Y Z

1 0 0 1

2 0 1 0 0

3 0 1 1 1

2 0 1 0 0

7 1 1 1 1

3 0 1 1 4

6 1 1 0 0

2 0 1 0 4

5 1 0 1 1

4 1 0 0 0

t s u k u m o g a m i

1 2 3 2 7 3 6 2 5 4

0 1 0 1 4 0 4 1 0

0 1 0 1 2 0 2 1 0

0 1 0 1 2 0 2 1 0

0 1 0 1 2 0 2 1 0

t s u k u m o g a m i

landmarks

Fig. 4.3: Alphabet reduction applied on the string Y = tsukumogami. We
represent the characters with the five lowest bits of the ASCII encoding. Left: A
single step of the alphabet reduction. The bit representation of each character
Y [i] is shown vertically in the left figure (the most significant bit is on the top).
The alphabet reduction matches the least significant bits (shaded green) of
two adjacent entries, and returns twice the number of matched bits plus the
mismatched bit of the right character (shaded red). The resulting integer
array Z is the last row. Middle: The second step of the alphabet reduction,
where the result of the first alphabet reduction stored in Z is put into Y . Right:
Computation of the blocks. Two steps of the alphabet reduction (seen in the
left and in the middle image) yield a sequence consisting only of integers within
the domain {0, . . . , 4}. Subsequently, all ‘4’s are replaced (in this case by ‘2’
since the neighboring values are ‘0’ and ‘1’ in both cases), and the maxima and
certain minima are made into landmarks (shaded orange). Finally, the boxes
in the last two rows are the computed blocks.

Y = β

X

b(β) e(β)
∆L ∆R

Y = β

X

∆L ∆R

β

X

∆L ∆R

Fig. 4.4: Left: Surrounded block β with local surrounding X contained in a
string Y . Right: Two occurrences of the local surrounding X of a surrounded
block β in the string Y , which is partitioned into blocks (gray rectangles) by
the edit sensitive parsing. Although the occurrences of X can be differently
blocked at their borders, they all have a block equal to β in common.

135

4 Sparse Suffix Sorting

same, except at most ∆L and ∆R characters at the left and right borders,
respectively. We conclude that the blocking of every occurrence of X has a
block X[1 + ∆L . . ∆L + |β|] that is equal to Y [b(β) . . e(β)] (see Fig. 4.4).

4.2.2 Meta-Blocks
Whenever a string Y contains a repetition of a character at two adjacent
positions, we cannot parse Y with the alphabet reduction. A solution is to
additionally use an auxiliary parsing specialized on repetitions of the same
character. With this auxiliary parsing, we can partition Y into substrings,
where each substring is either parsed with the alphabet reduction, or with
the auxiliary parsing. It is this auxiliary parsing where the aforementioned
signature encoding and the edit sensitive parsing (ESP) technique differ. The
main difference is that the ESP technique restricts the lengths of the blocks:
It first identifies so-called meta-blocks in Y , and then further refines these
meta-blocks into blocks of length 2 or 3. The meta-blocks are created in the
following 3-stage process (see also Fig. 4.5 for an example):

(1) Identify runs with smallest period one (i.e., maximal substrings of the form
c` for c ∈ Σ and ` ≥ 2). Such substrings form the Type 1 meta-blocks.

(2) Identify remaining substrings of length at least two (which must be
bordered by Type 1 meta-blocks). Such substrings form the Type 2 meta-
blocks.

(3) Every substring not yet covered by a meta-block consists of a single
character and cannot have Type 2 meta-blocks as its neighbors. Such
characters are fused with a neighboring meta-block. The meta-blocks
emerging from this fusing are called Type M (mixed).

Meta-blocks of Type 1 and Type M are collectively called repeating meta-blocks.
For (3), we are free to choose whether a remaining character should be fused
with its preceding or succeeding meta-block (both meta-blocks are repeating).
We stick to the following tie breaking rule:

Rule (M): Fuse a remaining character Y [i] with its succeeding1 meta-
block, or, if i = |Y |, with its preceding meta-block.

Meta-blocks are further partitioned into blocks, each containing two or three
characters from Σ. Blocks inherit the type of the meta-block they are contained
in. How the blocks are partitioned depends on the type of the meta-block:
1 The original version [55] prefers the preceding meta-block. We comply with Rule (M) as it

behaves better. See Fig. 4.45 for an example with the later introduced HSP trees.

136

4.2 Edit Sensitive Parsing

J J

2

B A A

1

K B

M

L J

2

B I

M

ab ab aaa aa aa baa aaa bab ab aaa aab
blocks
Y =

meta-blocks

Fig. 4.5: ESP of the string Y = ababaaaaaaabaaaaabababaaaaab. The string
is divided into blocks represented by the gray rectangular boxes at the bottom.
Each block gets assigned a new character represented by the capital letters
in the rounded boxes. The white/golden () rectangular boxes on the top
level represent the meta-blocks that group the blocks. Each such box is labeled
with the type of its respective meta-block. The blocks are connected with
red horizontal lines () if they belong to a repeating meta-block, or by green
diagonal lines () if they belong to a Type 2 meta-block.

Repeating meta-blocks. A repeating meta-block is partitioned greedily: create
blocks of length three until there are at most four, but at least two
characters left. If possible, create a single block of length two or three;
otherwise (there are four characters remaining) create two blocks, each
containing two characters.

Type 2 meta-blocks. A Type 2 meta-block µ is partitioned into blocks in O(|µ|
lg∗ σ) time by the alphabet reduction (Lemma 4.4). A block β generated
by the alphabet reduction is determined by the characters Y [max(b(β)−
∆L, b(µ)) . . min(e(β) + ∆R, e(µ))] due to Lemma 4.5. Given the number
of reduction steps r in Sect. 4.2.1, the alphabet reduction does not create
blocks for the first r characters of each meta-block. The ESP technique
blocks the first r characters in the same way as a repeating meta-block.
The border case r = 1 (one character remaining) is treated by fusing the
remaining character with the first block created by the alphabet reduction,
possibly splitting this block in the case that its size is four.

A block is called repetitive if it contains the same characters. All blocks
of a Type 1 meta-block and all blocks except at most the left- or rightmost
block (these blocks can contain a fused character) in a Type M meta-block are
repetitive.

Let esp: Σ∗ → (Σ2 ∪Σ3)∗ denote the function that parses a string by the ESP
technique. We regard the output of esp as a string of blocks.

4.2.3 Edit Sensitive Parsing Trees
Applying esp recursively on its output generates a context free grammar (CFG)
as follows. Let 〈Y 〉0 := Y be a string on an alphabet Σ0 := Σ. The output of
〈Y 〉h := esp(h)(Y) = esp(esp(h−1)(Y)) is a sequence of blocks, which belong to a
new alphabet Σh with h ≥ 1. We call the elements of Σh with h ≥ 1 names, and
use the term symbol for an element that is a name or a character. A block β ∈ Σh

137

4 Sparse Suffix Sorting

Common Dictionary
Rule string(·)
I→ aab a2b
J→ ab ab
K→ baa ba2

L→ bab bab
N→ ba ba

ESP Dictionary
Rule string(·)
A→ aa a2

B→ aaa a3

C→ AA a4

D→ BB a6

E→ BBB a9

F→ DD a12

G→ NN (ba)2

H→ NNN (ba)3

M→ CG a4(ba)2

U→ ANN a2(ba)2

R→ JJJ (ab)3

HSP Dictionary
Rule string(·)
a2 → aa a2

a3 → aaa a3

P→ a3J a4b
Q→ a3I a5b

Fig. 4.6: Names of the ESP (Sect. 4.2.2) and HSP (Sect. 4.3) nodes stored in the
global dictionary of our examples. The common dictionary contains all names
that are used by both ESP and HSP. Each name occurs on the left side only
once across all dictionaries.

contains a string of symbols with length two or three (this string is in Σ2
h−1∪Σ3

h−1).
We maintain an injective dictionary D : Σh → Σ2

h−1 ∪ Σ3
h−1 to map a block to

its symbols. The dictionary entries are of the form β → xy or β → xyz, where
β ∈ Σh and x, y, z ∈ Σh−1. We write D(X) := D(X[1]) · · ·D(X[|X|]) ∈ Σ∗h−1 for
X ∈ Σ∗h. Each block on height h is contained in a meta-block µ on height h− 1,
which is equal to a substring 〈Y 〉h−1[i . . j] ∈ Σ∗h−1. We call the elements of
〈Y 〉h−1[i . . j] ∈ Σ∗h−1 the symbols of µ. Since each application of esp reduces
the string length by at least one half, there is an integer k with k ≤ lg |Y | such
that 〈Y 〉k = esp(〈Y 〉k−1) is a single block τ ∈ Σk. We write V := ⋃

1≤h≤k Σh for
the set of names in 〈Y 〉1, 〈Y 〉2, . . . , 〈Y 〉k. The CFG for Y is represented by the
non-terminals (i.e., the names) V , the terminals Σ0, the dictionary D, and the
start symbol τ . This grammar exactly derives Y .

Throughout this chapter, we comply with the convention to write symbols
in typewriter font, in particular, characters (elements of Σ0) in lowercase and
names (elements of Σh with h ≥ 1) in uppercase letters. All examples use the
same dictionary such that reappearing names are identical (see Fig. 4.6 for the
used dictionary). Names restricted to a particular figure can be written with
Greek letters (a necessity due to the limitation of having only 26 letters in the
English alphabet).

The ESP tree ET(Y) of a string Y is the derivation tree of the CFG defined
above. Its root node is the start symbol τ . The nodes on height h are 〈Y 〉h
for each height h ≥ 1. In particular, the leaves are 〈Y 〉1. Each leaf refers
to a substring in Σ2

0 or Σ3
0. The generated substring of a node 〈Y 〉h[i] is the

138

4.2 Edit Sensitive Parsing

B B B B A A N N

D D C G

F M

τ

aaa aaa aaa aaa aa aa ba baY = Y0 =
Y1 =

Y2 =

...

∈ Σ∗
0 = Σ

∈ Σ∗
1

∈ Σ∗
2

...

Fig. 4.7: The ESP tree of the string Y = aaaaaaaaaaaaaaaababa. Like in
Fig. 4.5, nodes belonging to the same meta-block are connected by red horizon-
tal () or green diagonal lines () in case that they belong to a repeating or a
Type 2 meta-block, respectively.

v = 〈Y 〉h
= 〈Y 〉h−1

= Y = Y0

µ

v

string(v)

Fig. 4.8: 〈Y 〉h with a highlighted node v. The subtree rooted at v is depicted
by the white, rounded boxes. The generated substring string(v) of v is the
concatenation of the white rectangular blocks on the lowest level in the picture.
The meta-block µ, on which v is built, is the rounded golden () rectangle
covering the children of v and all nodes connected by a horizontal hatching ()
on height h− 1.

substring of Y generated by the symbol 〈Y 〉h[i] (applying the h-th iterate of
D to 〈Y 〉h[i], yields a substring of Y , i.e., D(h)(〈Y 〉h[i]) ∈ Σ∗). We denote
the generated substring of 〈Y 〉h[i] by string(〈Y 〉h[i]). For instance, in Fig. 4.7,
string(M) = aaaababa. A node v on height h is said to be built on 〈Y 〉h−1[b . . e]
if 〈Y 〉h−1[b . . e] contains the children of v. Like with blocks, nodes inherit the
type of the meta-block on which they are built. An overview of the definitions
is given in Fig. 4.8.

4.2.3.1 Shortcomings of ESP trees

In what follows, we present two shortcomings of the ESP trees. The first is
that nodes with different names can have the same generated substring, i.e.,
D(h) : Σh → Σ∗0 is not injective for h ≥ 2 in general. The second is that it is not
straight-forward to see which nodes of ET(Y) and ET(Z) are equal when Y is a
substring of Z. Both cause problems when comparing subtrees of two nodes,
which we later do for answering LCE queries.

Given two nodes u and v, it holds that string(u) = string(v) if their names are

139

4 Sparse Suffix Sorting

· · · α β γ δ

· · · ε λ

· · · u

· · · re sl ic ed· · ·X =

(a)

ψ φ δ · · ·
v · · ·

res lic ed · · ·X · · · =
(b)

Fig. 4.9: Excerpts of (a) ET(· · ·X) and (b) ET(X · · ·) with X := resliced.
Under the assumption that lg∗ σ = 8, the common substring X can be blocked
differently in both trees (depending on the characters preceding X in the right
figure).

B B B B B B A A N N N N N

E E C H G

aaa aaa aaa aaa aaa aaa aa aa ba ba ba ba ba

B B B B B B B A N N N N N

E D D U H

aaa aaa aaa aaa aaa aaa aaa aa ba ba ba ba ba

Y =

aY =

prepend a

Fig. 4.10: Excerpt of ET(Y) and ET(aY) (higher nodes omitted), where Y =
a9k+4(ba)3k−1 = a22(ba)5 for k = 2. For all k ≥ 2, there is a unique node in
〈Y 〉2 with the name C. This name does not appear in ET(aY).

equal. However, the other way around is not true in general. With string(u) =
string(v), it is not even assured that u and v are nodes sharing the same height.
Suppose that Σ is a large alphabet with lg∗ σ = 6, and that X := resliced
occurs in the text that we parse with ESP (see Fig. 4.9). We parse an occurrence
of X either (a) with the alphabet reduction if it is within a Type 2 meta-
block, or (b) greedily if it is at the beginning of a Type 2 meta-block. In
the former case (a), we apply the alphabet reduction and end at a reduced
alphabet with the characters {0, 1, 2}. Suppose that this occurrence of X is
reduced to the string in superscript of · ·

1

·
0

r
2

e
1

s
0

l
1

i
2

c
1

e
0

d
1

· · ·. Then ESP creates
the four blocks · · · |re|sl|ic|ed| · · · , whose boundaries are determined by the
alphabet reduction. Further suppose that an application of esp creates two
nodes of these blocks, which are put into a node u by an additional parse such
that string(u) = X. In the latter case (b), ESP creates the first two blocks of
res|lic|ed| · · · greedily. Suppose that an additional parse puts these blocks in
a node v such that string(v) = X. Although string(v) = string(u), the children
of both nodes have different names, and therefore, both nodes cannot have the
same name.

The second shortcoming is that it is not clear how to transfer the property of
the alphabet reduction described in Lemma 4.5 from blocks to nodes. Given a
substring Y of a string Z, the task is to analyze whether a node 〈Y 〉h[i] in ET(Y)

140

4.2 Edit Sensitive Parsing

v height h+ 1
∆L ∆R

∆L ∆R

∆L ∆R

∆L ∆R Fig. 4.11: Lo-
cal surrounding
of a node v at
height h+ 1.

is also present in the tree ET(Z), i.e., we analyze changes of a node 〈Y 〉h[i] when
prepending or appending (pre-/appending) characters to Y . For the sake of
analysis, we distinguish the two terminologies block and node, although a node
is represented by a block: When we analyze a block in esp(X) ∈ Σ∗h for a string
X ∈ Σ∗h−1, we let X to be subject to pre-/appending characters of Σh−1, whereas
when we analyze a node 〈Y 〉h[i] on a height h of ET(Y) of a string Y ∈ Σ∗, we
let Y to be subject to pre-/appending characters of Σ. In this terminology, a
block in esp(X) is only determined by X, whereas 〈Y 〉h[i] is not only determined
by esp(h−1)(Y) ∈ Σ∗h−1, but also by Y itself. The difference is that a surrounded
Type 2 block of esp(X) cannot be changed by pre-/appending characters to X
due to Lemma 4.5, whereas we fail to find integers ∆L,h and ∆R,h such that a
Type 2 node on height h built on 〈Y 〉h−1[∆L,h . . ∆R,h] cannot be changed by
pre-/appending characters to Y . That is because the names inside 〈Y 〉h−1 and
〈aY 〉h−1 for h ≥ 2 can differ at arbitrary positions. This can be seen in the
following example: When parsing the string Y := a9k+4(ba)3k−1 with the names
defined in Fig. 4.6, we obtain esp(esp(Y)) = esp(B3kAAN3k−1) = EkCHk−1G. Let us
focus on the unique occurrence of the name C, which is depicted in Fig. 4.10 for
k = 2. On the one hand, there is a block in 〈Y 〉1 with the name C on height two.
This block is surrounded for a sufficiently large k. Even for k ≥ 1, it is easy to
see that there is no way to change the name of this block by pre-/appending
characters to the string B3kAAN3k−1. On the other hand, there is a unique node
in ET(Y) with name C on height two. Regardless of the value of k, prepending a
to Y changes the name of v: esp(esp(aY)) = esp(B3k+1AN3k−1) = Ek−1DDUHk−1.

In the following, we introduce the notion of surrounded nodes, since they
are helpful to find rules that determine nodes that cannot be changed by
pre-/appending characters.

4.2.3.2 Surrounded Nodes

Analogously to blocks, we classify nodes as surrounded when they are neighbored
by sufficiently many nodes: A leaf is called surrounded if its generated substring
is surrounded. The local surrounding of a leaf is the local surrounding of
the block represented by the leaf. Given an internal node v on height h + 1
(h ≥ 1) whose children are 〈Y 〉h[β], the local surrounding of v is the union
of the nodes 〈Y 〉h[b(β) −∆L . . e(β) + ∆R] and the local surrounding of each
node in 〈Y 〉h[b(β) − ∆L . . e(β) + ∆R]. If all nodes in the local surrounding
of v are surrounded, we say that v is surrounded. Otherwise, we say that v is
non-surrounded. See Fig. 4.11 for an illustration.

141

4 Sparse Suffix Sorting

B B B B B B A A N N N N N

E E C H G

aaa aaa aaa aaa aaa aaa aa aa ba ba ba ba ba

B B B B B B A A N N N N N

E E C H G

aaa aaa aaa aaa aaa aaa aa aa ba ba ba ba ba

B B B B B B A A N N N N N

E E C H G

aaa aaa aaa aaa aaa aaa aa aa ba ba ba ba baY =

Fig. 4.12: ET(Y) of Fig. 4.10 with fragile, semi-stable and stable nodes high-
lighted. The fragile nodes are cross-hatched (), the semi-stable nodes are
dotted (), and the stable nodes have stars attached (). The leftmost nodes
of the tree change their names when prepending one b. When prepending a’s,
we observe that the children of the node with name C change. Assuming that
Σ = {a, b} (and hence |Σ| = 2), only the rightmost node of the meta-block
containing nodes with name N is fragile.

Lemma 4.6. There are at most ∆L + ∆R many non-surrounded nodes on each
height, summing up to O(lg∗ n lg n) non-surrounded nodes in total.

Proof. We show the following claim: A node v on height h is surrounded
if it has ∆L preceding and ∆R succeeding nodes.

v

≥ ∆L ≥ ∆R

≥ 2∆L ≥ 2∆R

This is clear on height one by definition. Under
the assumption that the claim holds for height h−
1, v’s preceding (resp. succeeding) nodes have at
least 2∆L (resp. 2∆R) children in total, where at least
the ∆L rightmost nodes (resp. ∆R leftmost nodes)
are surrounded by the assumption. Hence, v is surrounded.

The examples of Sect. 4.2.3.1 shedding a light on the difference between
blocks and nodes reveal that the property for surrounded blocks as shown on
the right side of Fig. 4.4 cannot be transferred to surrounded nodes directly,
since a surrounded node depends not only on its local surrounding, but also on
the nodes on which it is built. Despite this discovery, we show that surrounded
nodes can help us to create rules that are similar to Lemma 4.5.

4.2.4 Fragile and Stable Nodes in ESP Trees
We now analyze which nodes of ET(Y) are still present in ET(XYZ) for all
strings X and Z. A node 〈Y 〉h[j] in ET(Y) at a height h is said to be stable if, for
all strings X and Z, there exists a node 〈XYZ 〉h[k] in ET(XYZ) with the same
name as 〈Y 〉h[j] and |X|+∑j−1

i=1 |string(〈Y 〉h[i])| =
∑k−1
i=1 |string(〈XYZ 〉h[i])|. We

also consider repeating nodes that are present with slight shifts; a non-stable
repeating node 〈Y 〉h[j] in ET(Y) is said to be semi-stable if, for all strings
X and Z, there exists a node 〈XYZ 〉h[k] in ET(XYZ) with the same name
as 〈Y 〉h[j] and ∑k−1

i=1 |string(〈XYZ 〉h[i])| − |S| < |X| +
∑j−1
i=1 |string(〈Y 〉h[i])| <∑k−1

i=1 |string(〈XYZ 〉h[i])|+ |S|, where S = string(〈Y 〉h[j]) = string(〈XYZ 〉h[k]).
Nodes that are neither stable nor semi-stable are called fragile. By definition,

the children of the (semi-)stable nodes (resp. fragile nodes) are also (semi-)stable

142

4.2 Edit Sensitive Parsing

(resp. fragile). Figure 4.12 shows an example, where all three types of nodes
are highlighted. The rest of this section studies how many fragile nodes exist in
ET(Y).

As a warm-up, we first restrict the ESP tree construction on strings that
are square-free. Since a name of the ESP tree is determined by its generating
substring, ET(Y) cannot contain two consecutive occurrences of the same name
on any height. We conclude that ET(Y) has no repeating nodes, i.e., it consists
only of Type 2 nodes.

Remembering Sect. 4.2.2, the ESP parsing differs from the signature encoding
in the auxiliary parsing used for the repeating meta-blocks and the first O(lg∗ n)
symbols of a Type 2 meta-block. The signature encoding introduces an interme-
diate step where it replaces all runs with smallest period one with a new symbol
such that no symbol occurs at two adjacent positions in the resulting string.
This means that the signature encoding can apply the alphabet reduction on the
entire string after applying this intermediate step. By doing so, the signature
encoding introduces at most O(lg∗ n) fragile nodes on each height [198, Lemma
9]. In the case of a square-free string, the auxiliary parsing is only required
for the O(lg∗ n) leftmost symbols on each height of both parsings (signature
encoding and ESP): (a) the intermediate step of the signature encoding does
not introduce any new symbols, and (b) the ESP creates only a single Type 2
meta-block. Hence in this case, the maximal numbers of fragile nodes (a) in the
signature encoding parse trees and (b) in the ESP tree have the same asymptotic
upper bound. For completeness, we prove this statement explicitly, as the
techniques will be used later to devise an upper bound in the general case. We
start with the following lemma:

Lemma 4.7 ([55, Lemma 8]). A Type 2 node is stable if (a) it is surrounded
and (b) its local surrounding does not contain a fragile node.

With Lemma 4.7 we immediately obtain:

Lemma 4.8. Given a square-free string Y , a fragile node of ET(Y) is a non-
surrounded node.

Proof. According to Lemma 4.7, we can bound the number of fragile nodes by
the number of those nodes that do not satisfy the conditions in Lemma 4.7.
Since ET(Y) only contains Type 2 nodes, we can inductively show that a fragile
node is non-surrounded for all heights of the ESP tree: Surrounded leaves are
stable due to Lemma 4.5. Therefore, the claim holds for h = 1. By definition,
a node v on height h is surrounded if its local surrounding S on height h− 1
is surrounded. Given that the claim holds for h− 1, a node in S can only be
fragile if it is not surrounded. This concludes that v can be fragile only if it is
not surrounded.

Combining Lemma 4.8 with Lemma 4.6 yields the following corollary:

143

4 Sparse Suffix Sorting

Corollary 4.9. The number of fragile nodes of an ESP tree built on a square-free
string of length n is O(lg∗ n lg n). On each height, it contains O(lg∗ n) fragile
nodes.

In the following we present a lower and an upper bound on the number
of fragile nodes. First, we show that the ESP technique can change Ω(lg2 n)
nodes when changing a single character of the input string. The idea is to give
an example that contains a large number of Type M meta-blocks in a specific
constellation. Remembering how the ESP technique parses its input, a remaining
single symbol neighbored by two repeating meta-blocks is fused with one of
them to form a Type M meta-block. We provide examples for Rule (M) and for
the original tie breaking rule for Type M meta-blocks:

Rule (M’): Fuse a remaining character Y [i] with its preceding meta-
block, or, if i = 1, with its succeeding meta-block.

Each example presents a string of length at most n whose ESP tree has Ω(lg2 n)
fragile nodes. These examples contradict Lemma 9 in [55], where it is claimed
that there are O(lg∗ n lg n) fragile nodes in the ESP tree of a text of length n.

µh

µh+1

Fig. 4.13: Basic idea of our two counter examples described in Thms. 4.11
and 4.13. We build a counter example in such a way that the last node of a
certain repeating meta-block µh on height h (a) is fragile (), and (b) is the
child of the first node of a repeating meta-block µh+1 having the same properties
as µh. This property can cause a recursive chain reaction when prepending
a suitable character such that the names of the last and the first block of a
meta-block on height h and a meta-block on height h+ 1 are changed, on each
height h.

4.2.4.1 Fusing with the preceding repeating meta-block Rule (M’)

Consider a Type 1 meta-block µ whose rightmost node is fragile. If the leftmost
node of a repeating meta-block ν is built on µ’s rightmost node, then the
rightmost node of ν can also be fragile.

Having this idea in mind, we build an example consisting of a chain of
repeating meta-blocks, where the leftmost node of a repeating meta-block is
built on the fragile rightmost node of a meta-block of one depth below (Fig. 4.13).
The main idea is the following: Each meta-block of this chain can be of arbitrary
(but sufficiently long) length. Keeping in mind that changing the name of a

144

4.2 Edit Sensitive Parsing

node means that the names of its ancestors also have to change, we can create
an example string whose ESP tree contains fragile nodes appearing on each
height at arbitrary positions. Before giving such an example we introduce a
lemma showing the associativity of esp on a special class of strings, which helps
us proving the lower bound:
Lemma 4.10. Suppose that we comply to Rule (M’). Given a height h and
two strings X, Y that are either empty or have a length of at least 2 · 3h−1,
esp(h)(Xb3iY) = esp(h)(X) esp(h)(b3i) esp(h)(Y) if i ≥ h, b is neither a suffix of X
nor a prefix of Y , and there is no prefix of esp(j)(Y) of the form cdk for some
symbols c, d ∈ Σj with c 6= d, and integers k, j with k ≥ 2 and 0 ≤ j ≤ h− 1.
Proof. The additional requirement for Y is to ensure that the leftmost block
of esp(j)(Y) is not a non-repetitive Type M block that has been fused to its
succeeding meta-block, only because it has no preceding meta-block. Regardless
of which symbols are prepended to esp(j−1)(Y), the first symbol of such a block
would form with its preceding symbols a new block.

For h = 1, esp divides the string Xb3iY into meta-blocks such that there
is one Type 1 meta-block µ that exactly contains the substring b3i . That is
because of the following: If X (resp. Y) is not the empty string, then X (resp.
Y) contains at least two characters. Since we favor fusing with the preceding
meta-block, there is no chance that characters of X can enter µ. Assume that Y
is not the empty string. Since the first block of esp(Y) is neither a non-repetitive
Type M block nor a block starting with b, it is not possible that characters of
this block can enter µ.

Under the assumption that the claim holds for a given h− 1 ≥ 0, we have
esp(h)(Xb3iY) = esp

(
esp(h−1)(Xb3iY)

)
= esp

(
esp(h−1)(X) esp(h−1)(b3i) esp(h−1)(Y)

)
.

The strings esp(h)(X) and esp(h)(Y) are either empty or contain at least two
symbols. Since i ≥ h, esp(h−1)(b3i) is the repetition of the same symbol. This
repetition has a length of at least three such that we can apply the shown
associativity for h = 1 to show the claim.

Theorem 4.11. There is a text of length n whose ESP tree has Ω(lg2 n) fragile
nodes when complying to Rule (M’).
Proof. Let a, b, and c ∈ Σ be three different characters. In the following, we
show that the text

Y := (X0)3k(X1)3k−1(X2)3k−2 · · · (Xk−1)3

with k := blog3(n/ log3 n)c has a length at most n, and its ESP tree has Ω(lg2 n)
fragile nodes, where

X0 := a, and Xi :=

X2
i−1b3i−1 if i is odd,

X2
i−1c3i−1 if i is even,

for i = 1, . . . , k.

145

4 Sparse Suffix Sorting

χ
1

χ
1 δ1 χ

1
χ
1 δ1 β1 β1 β1

χ
2

χ
2 δ2

χ
3

aab aab ccc aab aab ccc bbb bbb bbb

M M 1 M M 1 1

Fig. 4.14: ET(X3) as defined in Thm. 4.11. The subtree of each node with
name χi is equal to ET(Xi). The meta-blocks of the lowest height are labeled
with their types.

For instance, X0 = a, X1 = aab, X2 = aabaabc3, and X3 = X2
2 b9.

We start with determining the length of Y . Since |X0| = 30, under the
assumption that |Xi| = 3i, we obtain that |Xi+1| = 2 |Xi|+ 3i = 3i+1. Therefore,∣∣∣X3k−i

i

∣∣∣ = 3k for all i = 0, . . . , k − 1. We conclude that the length of Y is at
most n, since |Y | = k3k ≤ n log3(n/ log3 n)/ log3 n ≤ n.

We now show that each substring Xi of Y is the generated substring of a
node χi of ET(Y) on height i whose subtree is equal to the perfect ternary
subtree Ti := ET(Xi), for i = 1, . . . , k − 1. This is true for i = 1, 2, 3, as can be
seen in Fig. 4.14. For the general case, we adapt the associativity shown for esp
in Lemma 4.10 to the string Xi:
Sub-Claim. For every i with 0 ≤ i ≤ k − 2 it holds that

(I)
∣∣∣esp(i+1)(Xi+1)

∣∣∣ = 1,

(II) esp(h)(Xi+1) = esp(h)(XiXid3i
i)

= esp(h)(XiXi) esp(h)(d3i
i)

= esp(h)(Xi) esp(h)(Xi) esp(h)(d3i
i), and

(III) esp(h)(Xi+1) starts with a repetition of a symbol,

for every h with 0 ≤ h ≤ i , where di is a character with di = b if i is even,
otherwise di = c.
Sub-Proof. For i = 0 we have

(I)
∣∣∣esp(1)(X1)

∣∣∣ = |esp(aab)| = 1 (aab is put in a Type M meta-block having
exactly one block),

(II) esp(0)(X1) = X1, and

(III) X1 = aab starts with a repetition of the character a.

146

4.2 Edit Sensitive Parsing

Under the assumption that the claim holds for an integer i, we conclude that
it holds for i+ 1 due to

esp(h)(Xi+2) =esp(h)
(
Xi+1Xi+1d3i+1

i+1

)
=esp(h)

(
XiXid3i

i XiXid3i
i d3i+1

i+1

)
(Lemma 4.10,di 6=di+1) =esp(h)

(
XiXid3i

i XiXid3i
i

)
esp(h)

(
d3i+1

i+1

)
(Lemma 4.10,(I) or (III)) =esp(h)(XiXi)esp(h)

(
d3i
i

)
esp(h)(XiXi)esp(h)

(
d3i
i

)
esp(h)

(
d3i+1

i+1

)
(Lemma 4.10,(I) or (III)) =esp(h)

(
XiXid3i

i

)
esp(h)

(
XiXid3i

i

)
esp(h)

(
d3i+1

i+1

)
=esp(h)(Xi+1)esp(h)(Xi+1)esp(h)

(
d3i+1

i+1

)

for 1 ≤ h ≤ i. The conditions of Lemma 4.10 hold because di is neither a prefix
nor a suffix of Xi, di 6= di+1, |XiXi| = 2 · 3i, and esp(h)(XiXi) starts with a
repetition of a symbol due to(III) for h < i, or due to

esp(i)(XiXi) =(II) esp(i)(Xi)esp(i)(Xi) and (I) for h = i.

For h = i+ 1 we use that (I) holds for Xi,
∣∣∣esp(i)(d3i

i)
∣∣∣ = 1, and esp(i)(d3i+1

i+1) is a
repetition of length 3 of the same symbol, to obtain

esp(i+1)(Xi+2) =esp
(
esp(i)(Xi+2)

)
=esp

(
esp(i)(XiXi)esp(i)(d3i

i)esp(i)(XiXi)esp(i)(d3i
i)

esp(i)(d3i+1

i+1)
)

(Lemma 4.10) =esp
(
esp(i)(XiXi)esp(i)(d3i

i)esp(i)(XiXi)esp(i)(d3i
i)
)

esp
(
esp(i)(d3i+1

i+1)
)

(evaluate and reformulate) =esp
(
esp(i)(XiXi)esp(i)(d3i

i)
)

esp
(
esp(i)(XiXi)esp(i)(d3i

i)
)
esp

(
esp(i)(d3i+1

i+1)
)
,

where we used that another application of esp puts esp(i)(XiXi)esp(i)(d3i
i) into

a single Type M meta-block of length three, and that di is neither a prefix
nor a suffix of Xi. This concludes (II). A consequence is (III): For h ≤ i

we have esp(h)(Xi+2) = esp(h)(Xi+1)esp(h)(Xi+1)esp(h)(d3i+1
i+1), and esp(h)(Xi+1)

starts with a repetition of a symbol according to our assumption. For h = i+ 1
we have

esp(i+1)(Xi+2) = esp
(
esp(i)(Xi) esp(i)(Xi) esp(i)(d3i

i)

esp(i)(Xi) esp(i)(Xi) esp(i)(d3i
i) esp(i)(d3i+1

i+1)
)
.

147

4 Sparse Suffix Sorting

Due to (I),
∣∣∣esp(i)(Xi)

∣∣∣ =
∣∣∣esp(i)(d3i

i)
∣∣∣ = 1; hence the last application of esp

creates three blocks, where each of the first two represents the string esp(i)(Xi)
esp(i)(Xi) esp(i)(d3i

i) of length three. Another application of esp yields (I). �
Let βi and γi denote the names of the roots of ET(b3i) and of ET(c3i),

respectively. Set δi := βi if i is even, otherwise δi := γi. Then 〈Xi+1〉i+1 = χi+1
due to Sub-Claim (I), and 〈Xi+1〉i = χiχiδi due to Sub-Claim (II). Consequently,

(4.1)
esp

(
(〈Xi+1〉i)3k−i−1) = esp

(
(χiχiδi)3k−i−1) = (esp(χiχiδi))3k−i−1 = χ3k−i−1

i+1 .

This means that
〈Xi〉3

k−i
h = 〈X3k−i

i 〉h is
a repetition of length 3k−h
consisting of the same name,
for every height h = i, . . . , k.
We conclude that
Ti := ET((Xi)3k−i) is a
perfect ternary tree. X3k

0 X3k−1

1 X3
k−1

height k

ET(Y)

T0 T1 Tk−1· · ·
· · ·Y =

Finally, we show that esp(h)(Y) = esp(h)(X3k
1) · · · esp(h)(X31

k−1) holds for each
height h with 1 ≤ h ≤ k. On the one hand, we have

esp(h)
(
X3k−i
i X3k−i−1

i+1

)
=esp(h)

(
X3k−i−1

i Xi−1Xi−1d3i−1

i−1 X
3k−i−1

i+1

)
(III) with 0≤i≤h−2 =esp(h)

(
X3k−i−1

i Xi−1Xi−1
)
esp(h)

(
d3i−1

i−1

)
esp(h)

(
X3k−i−1

i+1

)
=esp(h)

(
X3k−i−1

i Xi−1Xi−1d3i−1

i−1

)
esp(h)

(
X3k−i−1

i+1

)
=esp(h)

(
X3k−i
i

)
esp(h)

(
X3k−i−1

i+1

)
(4.2)

for 1 ≤ h ≤ i− 1 due to Lemma 4.10. On the other hand, we have

esp(h)
(
X3k−i
i X3k−i−1

i+1

)
=esp(h−i+1)

(
esp(i−1)

(
X3k−i
i X3k−i−1

i+1

))
Eq. (4.2) =esp(h−i+1)

(
esp(i−1)

(
X3k−i
i

)
esp(i−1)

(
X3k−i−1

i+1

))
Eq. (4.1) =esp(h−i)

(
esp

(
(χi−1χi−1δi−1)3k−i

(χi−1χi−1δi−1χi−1χi−1δi−1〈d3i
i 〉i−1)3k−i−1))

(apply esp) =esp(h−i)
(
χ3k−i
i (χiχiδi)3k−i−1)

=esp(h−i−1)
(
esp

(
χ3k−i
i χiχiδi

)
esp

(
(χiχiδi)3k−i−2))

(evaluate and reformulate) =esp(h−i−1)
(
esp

(
χ3k−i
i

)
esp

(
(χiχiδi)3k−i−1))

Eq. (4.1) =esp(h−i−1)
(
esp

(
χ3k−i
i

)
esp

(
χ3k−i−1

i+1

))
(Lemma 4.10) =esp(h−i)

(
χ3k−i
i

)
esp(h−i)

(
χ3k−i−1

i+1

)

(4.3)

148

4.2 Edit Sensitive Parsing

for i ≤ h ≤ k. It is easy to extend the pairwise associativity X3k−i
i X3k−i−1

i+1
for each i with 0 ≤ i ≤ k − 2 to X3k

1 · · ·X31
k−1. This concludes that the root

of Ti has the same name as the i-th leftmost node of ET(Y) on height k.
Figure 4.15(left) shows an excerpt of Ti and Ti+1. The crucial step in Eq. (4.3)
is the re-formulation of the parsing

esp(h−i−1)(esp(χ3k−i
i χiχiδi)︸ ︷︷ ︸

belongs to Ti

esp((χiχiδi)3k−i−2)︸ ︷︷ ︸
belongs to Ti+1

)

= esp(h−i−1)(esp(χ3k−i
i) esp((χiχiδi)3k−i−1)︸ ︷︷ ︸

=:µi+1

)
(4.4)

showing that there is a Type 1 meta-block µi+1 covering all nodes of Ti+1 and
the rightmost node of Ti, on height i+ 1. This meta-block is a repetition of the
symbol esp(χiχiδi) = χi+1 ∈ Σh+1.

Given that µ0 is the first Type 1 meta-block of esp(Y) (covering the prefix
X3h+2

0), we now examine what happens with µi for each i with 0 ≤ i ≤ h− 1
when removing the first a from Y . Let us call the shortened string Y ′, i.e.,
Y = aY ′. On removing the first a from Y , we claim that the meta-block µi
contains one symbol χi less, for every i with 0 ≤ i ≤ h− 1 (cf. Fig. 4.15 showing
the difference between 〈Y 〉i and 〈Y ′〉i on height i with 0 ≤ i ≤ k − 1): For µ0,
this is trivial. For an i ≥ 0, focus on the substring X3k−i

i X3k−i−1
i+1 of Y : We have

esp
(
〈X3k−i

i X3k−i−1

i+1 〉i
)

= esp
(
χ3k−i
i (χiχiδi)3k−i−1)

= esp(χ3k−i
i︸ ︷︷ ︸

suffix of µi

) esp
(
(χiχiδi)3k−i−1)︸ ︷︷ ︸

=µi+1

= esp
(
χ3k−i
i

)
χ3k−i−1

i+1

due to Eq. (4.3). Under the assumption that removing the first character a
from Y causes µi to shrink by one symbol χi ∈ Σi, we get

esp
(
χ3k−i−1
i (χiχiδi)3k−i−1) = esp

(
χ3k−i
i χiδi

)
esp

(
(χiχiδi)3k−i−1−1

)
= esp

(
χ3k−i
i χiδi

)
χ3k−i−1−1
i+1

6= esp
(
χ3k−i−1

i

)
χ3k−i−1

i+1 .

We observe that the length of µi is decremented by one, causing the name of its
rightmost block to change, which is the leftmost node of Ti+1 on height i+1, and
the first symbol of µi+1. Due to the tie breaking rule, this block gets fused with
its preceding meta-block at height i+1, decrementing the length of its succeeding
meta-block µi+1 by one (and hence, this process repeats for all i = 0, . . . , k− 2).
This means that the leftmost node on height i of Ti changes, for 1 ≤ i ≤ k − 1.
Each of these nodes receives a new name such that it is fused with its preceding
Type 1 meta-block to form a Type M meta-block. Since changing a node on

149

4 Sparse Suffix Sorting

ξi+1 · · · ξi+1
χ
i+1

χ
i+1

χ
i+1 · · ·

χ
i
χ
i
χ
i · · · χ

i
χ
i
χ
iχi

χ
iδi χi

χ
iδi χi

χ
iδi ...

height i+ 1
height i

1 1

M M M

belongs to Ti belongs to Ti+1

ξi+1 · · · ξi+1 κi+1 χ
i+1

χ
i+1 · · ·

χ
i
χ
i
χ
i · · · χ

i
χ
i
χ
i χiδi χ

i
χ
iδi χi

χ
iδi ...

height i+ 1
height i

M 1

M M M

Fig. 4.15: Differences between ET(Y) (top) and ET(Y ′) (bottom) on the heights i
and i + 1, where Y = a3k(a2b)3k−1((a2b)2c3)3k−2 · · · and Y = aY ′ (defined
in Thm. 4.11). The names ξi+1 and κi+1 are only used in this figure. The
meta-blocks on height i and i+ 1 are labeled with their types.

height i changes all its ancestors (or removing the first character of Y for i = 0
changes all nodes built on this character), at least k − i nodes are changed in
Ti. In total, at least k + (k − 1) + (k − 2) + · · ·+ 2 = (k2 + k)/2− 1 nodes are
changed. Hence, there is a lower bound of Ω(k2) = Ω(log2

3(n/ log3 n)) = Ω(lg2 n)
fragile nodes.

Note that the later introduced HSP technique (see Sect. 4.3) with the same tie
breaking rule also produces Ω(lg2 n) fragile nodes in this example. However, this
is not the case when complying with Rule (M), as we will see later in Sect. 4.3.1.

4.2.4.2 Fusing with the succeeding repeating meta-block

The idea is similar to the previous example. In particular, we introduce a
corollary of Lemma 4.10:

Corollary 4.12. Given a height h and a string Y that is either empty or has a
length of at least 2 · 3h−1, esp(h)(XY) = esp(h)(X) esp(h)(Y) if a is not a prefix
of Y , where X = b3ia3j with i+ j ≥ h, and a, b ∈ Σ with a 6= b.

In the following example, we build a text whose ESP tree has a specific Type M
meta-block on each height that we want to change. Given a Type M meta-
block µ that emerged from prepending a symbol to a Type 1 meta-block, we can
create a new meta-block by prepending another symbol such that it precedes µ
and absorbs µ’s first symbol (µ then returns to be a Type 1 meta-block). We
can arrange the Type M meta-blocks such that prepending a symbol to the text
changes a Type M meta-block on each height:

Theorem 4.13. There is a text of length n whose ESP tree has Ω(lg2 n) fragile
nodes when complying with Rule (M).

150

4.2 Edit Sensitive Parsing

α1 α1 β1 α1 α1

root of T0 root of T1

baa aaa aaa bbb aaa aaa

M 1 1

µ1

X0 X1

Y =

b3
i

a3
h−3i

µi

i

Fig. 4.16: ET(Y) of the example string Y defined in Thm. 4.13 with k = 1 (left)
and as a schematic illustration (right) with the meta-block µi on height i (due
to space issues the number of nodes/children is incorrect). The meta-blocks of
the lowest height in the left figure are labeled with their types.

Proof. Let k = blog3(n/ log3 n)c be a natural number, and a, b ∈ Σ. Define

Y := X0X1 · · ·Xk with Xi := b3ia3k−3i ,

for 0 ≤ i ≤ k− 1. Figure 4.16 gives an example on its left side. In the following,
we show that |Y | ≤ n, and ET(Y) has Ω(lg2 n) fragile nodes.

Given an integer i with 0 ≤ i ≤ k − 1, we have |Xi| = 3k and |Y | = k3k ≤ n.
Corollary 4.12 yields esp(h)(Xi) = esp(h)(b3i) esp(h)(a3k−3i) for all heights h
with 0 ≤ h ≤ i, since 3k − 3i ≥ 3k − 3k−1 = 2 · 3k−1. Let αi := 〈a3k〉i[1]
and βi := 〈b3k〉i[1] be the nodes on height i with 0 ≤ i ≤ k and, respectively,
string(αi) = a3i and string(βi) = b3i (α0 := a, β0 := b).

The function esp applied on esp(h−1)(Xi) partitions its input esp(h−1)(Xi) into
two meta-blocks: a Type 1 meta-block containing all βi’s, and a subsequent
Type 1 meta-block containing all αi’s. All blocks of these two meta-blocks
contain three symbols, since each meta-block has a length that is equal to a
power of three. For the upper heights we get

(4.5) esp(h+i)(Xi) = esp(h)

having length 3k−i︷ ︸︸ ︷

esp(i)
(
b3i
)

︸ ︷︷ ︸
=βi

esp(i)
(
a3k−3i

)
︸ ︷︷ ︸

=α3k−i−1
i

 for 0 ≤ h+ i ≤ k − 1.

Hence, esp(h+i)(Xi) consists of exactly one Type M meta-block, which has
length 3k−h−i, and each block contains three symbols. We conclude that the tree
Ti := ET(Xi) is a perfect ternary tree, for 0 ≤ i ≤ k−1. Since

∣∣∣esp(h)(Xi)
∣∣∣ = 3k−h

for all i, h with 0 ≤ i ≤ k−1 and 0 ≤ h ≤ k, with Cor. 4.12 it is easy to see that
esp(h)(Y) = esp(h)(X1 · · ·Xk−1) = esp(h)(X1) · · · esp(h)(Xk−1) for all 0 ≤ h ≤ k.
Consequently, Xi is the generated substring of the i-th leftmost node vi of ET(Y)
on height k. The name of vi is the name of the root of Ti, for 0 ≤ i ≤ k − 1.

For the proof, we prepend an a to Y and call the new string Y ′, i.e., Y ′ = aY .
Our analysis of the difference between ET(Y) and ET(Y ′) focuses on the unique
meta-block at height i of Ti: From Eq. (4.5) with h = 0, we observe that there

151

4 Sparse Suffix Sorting

is a single meta-block µi at height i of Ti, and this meta-block is a Type M
meta-block (cf. the right side of Fig. 4.16). Our claim is that prepending a to Y
changes the first and the last block of every µi (0 ≤ i ≤ k − 1): The prepended
a forms a Type 2 meta-block with the first character of X0 by “stealing” the first
character from µ0, and this character is a β0 = b. Assume that µi (0 ≤ i ≤ k−1)
loses its first symbol (i.e., βi). By relinquishing this symbol, µi becomes a Type 1
meta-block consisting only of αi’s. The last two αi’s contained in µi are grouped
into a block α′i+1 of length two, where α′i+1 := 〈αiαi〉1[1] is the name of the root
node of ET(αiαi). Every newly appearing node α′i+1 gets combined with its
right-adjacent node βi+1 to form a new Type 2 meta-block. The used βi+1 is
stolen from µi+1, and hence we observe an iterative process of stealing the first
symbol βi+1 from µi+1 for each height i = 0, . . . , k − 2. Figure 4.44 visualizes
this observation on the lowest two heights.

This observation can be inductively proven for each even integer i with 0 ≤
i ≤ h−2. By Eq. (4.5), we know that 〈Xi〉i = βiα

3k−i−1
i and 〈Xi+1〉i = β3

i α
3k−i−3
i .

Then

esp(esp(〈Xi〉i〈Xi+1〉i)) =esp
(
esp

(
βiα

3k−i−1
i β3

i α
3k−i−3
i

))
(Cor. 4.12) =esp

(
esp(βiαiαi) esp

(
α3k−i−3
i

)
βi+1α

3k−i−1−1
i+1

)
=esp

(
esp(βiαiαi)α3k−i−1−1

i+1 βi+1α
3k−i−1−1
i+1

)
(Cor. 4.12) =esp

(
esp(βiαiαi)α3k−i−1−1

i+1

)
esp

(
βi+1α

3k−i−1−1
i+1

)
=esp

(
esp(βiαiαi)α3k−i−1−1

i+1

)
esp(βi+1αi+1αi+1)

esp
(
α3k−i−1−3
i+1

)
,

and esp(α3k−i−1−3
i+1) = α3k−i−2−1

i+2 . Prepending α′i (set α′0 := a) to the string
〈Xi〉i〈Xi+1〉i yields

esp(esp(α′i〈Xi〉i〈Xi+1〉i)) =esp
(
esp

(
α′iβiα

3k−i−1
i β3

i α
3k−i−3
i

))
(Cor. 4.12) =esp

(
esp(α′iβi) esp

(
α3k−i−1
i

)
βi+1α

3k−i−1−1
i+1

)
=esp

(
esp(α′iβi) esp

(
α3k−i−3
i αiαi

)
βi+1α

3k−i−1−1
i+1

)
=esp

(
esp(α′iβi)α3k−i−1−1

i+1 α′i+1βi+1α
3k−i−1−1
i+1

)
(Cor. 4.12) =esp

(
esp(α′iβi)α3k−i−1−1

i+1

)
esp

(
α′i+1βi+1

)
esp

(
α3k−i−1−3
i+1 αi+1αi+1

)
=esp

(
esp(α′iβi)α3k−i−1−1

i+1

)
esp

(
α′i+1βi+1

)
α3k−i−2−1
i+2 α′i+2,

and α′i+2 carries on to the nodes 〈Xi+2〉i+2〈Xi+3〉i+2 on height i + 2 due to
Cor. 4.12.

152

4.2 Edit Sensitive Parsing

· · · · · ·

· · ·

∆L ∆R

· · ·
· · ·

· · ·

surrounded nodes

fragile

Fig. 4.17: Division of
an ESP tree in sur-
rounded and fragile
nodes. The surrounded
nodes form an inner
cone. Neighboring frag-
ile nodes can appear
in the non-surrounded
areas (e.g., the lowest
leftmost nodes). On
each height, the ESP
tree can have a con-
stant number of frag-
ile surrounded nodes
that do not have fragile
nodes in their subtrees.

B B · · · B A

1

aaa aaa · · · aaa aa

K B · · · B B

M

baa aaa · · · aaa aaa

J

2

B · · · B B A

1

ab aaa · · · aaa aaa aa

A

1

K · · · B B B

M

aa baa · · · aaa aaa aaa

ak =

bak =

abak =

aabak =

Fig. 4.18: Prepending the
string aab to the text
ak character by charac-
ter. Each step is given
as a row, in which we ad-
ditionally computed the
ESP of the current text.
The last row shows an
example, where a for-
mer Type 1 meta-block
changes to Type M, al-
though it is right of a
Type 2 meta-block. Here,
k mod 3 = 2.

Overall, the leftmost and rightmost node on height i+ 1 of Ti changes, for
i = 0, . . . , k − 1. Such a changed node v of Ti on height i + 1 has k − i − 1
ancestors in Ti, which become changed by changing the name of v. Therefore,
at least k − 1 + (k − 2) + (k − 3) + · · · + 1 = (k2 − k)/2 nodes are changed.
Hence there is a lower bound of Ω(k2) = Ω(log2

3(n/ log3 n)) = Ω(lg2 n) fragile
nodes.

153

4 Sparse Suffix Sorting

B · · · B B B
aaa · · · aaa aaa aaa

B · · · B B A A
aaa · · · aaa aaa aa aa

B · · · B B B A
aaa · · · aaa aaa aaa aa

B · · · B B B B
aaa · · · aaa aaa aaa aaa

ak+0 =

ak+1 =

ak+2 =

ak+3 =

Fig. 4.19: Greedy blocking
of a Type 1 meta-block. The
greedy blocking is related
to the Euclidean division
by three. The remainder
k mod 3 is determined by
the number of symbols in
the last two blocks (here, k
mod 3 = 0). In this ex-
ample, the ESP technique
creates a single, repeating
meta-block on each input.

A new upper bound. With Thms. 4.11 and 4.13, we conclude that the
O(lg∗ n lg n)-bound on the number of fragile nodes for square-free strings
(Lemma 4.8) does not hold for general strings. To obtain a general upper
bound (we stick again to Rule (M)), we include the repeating meta-blocks in our
study of fragile nodes. Fragile nodes can now be surrounded (trees of square-free
strings do not have fragile surrounded nodes according to Lemma 4.8). Remem-
bering that a node is fragile if it has a fragile child, a fragile Type 2 node can also
be surrounded (e.g., one of its children can be a fragile surrounded repeating
node). Figure 4.17 sketches the possible occurrences of fragile surrounded nodes.
A first result on a special case is given in the following lemma:

Lemma 4.14. A surrounded node v is contained in the local surroundings of
O(lg∗ n lg n) nodes. If all those nodes are of Type 2, then a change of v causes
O(lg∗ n lg n) name changes.

Proof. We follow [55, Proof of Lemma 9]: We count the number of nodes that
contain v in its local

v

u

height i
∆R

∆R ∆L

∆L
surrounding. Given
that v is a node on
height i and u is v’s
parent, then there are at most ∆R/2 ≤ ∆R nodes preceding u and ∆L/2 ≤ ∆L

nodes succeeding u that have v in its local surrounding. We count one on
height i, and (∆L + ∆R + 1)/2 on height i + 1. Since the counted nodes on
height i + 1 are consecutive, there are at most (∆L + ∆R + 1)/2 nodes that
are all parents of the counted nodes on height i+ 1. Consequently, there are
at most (∆L + ∆R + 1)/2 + ∆L + ∆R nodes on height i + 2 that have v in
their local surroundings. Iterating over all heights gives an upper bound of
(∆L + ∆R + 1)∑lgn−i

h=0 1/2h ≤ 2(∆L + ∆R + 1) nodes on each height.

Second, we narrow down the fragile blocks in repeating meta-blocks. The
first block (cf. Fig. 4.18) and the two rightmost blocks (cf. Fig. 4.19) of a
repeating meta-block can be fragile. Due to the greedy parsing, all other blocks

154

4.2 Edit Sensitive Parsing

R E · · · E D D G

JJJ BBB · · · BBB BB BB NN

b(µ) ≥ 4 µ

height h+ 1

height hY =

e(µ) ≤ |Y | − 2

Fig. 4.20: Setting of Lemma 4.15. According to Lemma 4.15, a meta-block µ in
esp(Y) of a string Y cannot contain a surrounded fragile block if b(µ) ≥ 4 and
e(µ) ≤ |Y | − 2.

of a repeating meta-block are (semi-)stable. A repeating meta-block containing
fragile surrounded blocks needs to cover one of the leftmost or rightmost symbols,
as can be seen by the following lemma:

Lemma 4.15. A repeating meta-block µ of esp(Y) with b(µ) ≥ 4 and e(µ) ≤
|Y | − 2 cannot contain a fragile block.

Proof. Since b(µ) ≥ 4, there are at least three symbols before µ that are assigned
to one or more other meta-blocks. When prepending symbols, those meta-blocks
can change, absorbing the new symbols or giving the leftmost symbol away to
form a Type 2 meta-block. In neither case, they can affect the parsing of µ,
since µ is parsed greedily. Similarly, the succeeding meta-blocks of µ keep µ’s
blocks from changing when appending symbols. See Fig. 4.20 for a sketch.

Corollary 4.16. The edit sensitive parsing introduces at most two fragile
surrounded blocks. These blocks are the two rightmost blocks of a repeating
meta-block whose leftmost block is not surrounded.

Lemma 4.17. Changing the symbol in a substring of 〈Y 〉h−1 on which a
repeating node on height h is built changes O(1) names on height h.

Proof. Let u be a repeating node on height h. Since it is repeating, it is
built on a substring X := 〈Y 〉h−1[b(X) . . e(X)] of a repeating meta-block µ =
〈Y 〉h−1[b(µ) . . e(µ)] with D(u) = X. Now change a symbol in X, say 〈Y 〉h−1[iu]
with b(X) ≤ iu ≤ e(X). This causes the name of u to change. Additionally, it
causes the meta-block µ to split into a repeating meta-block 〈Y 〉h−1[b(µ) . . iu−1]
and a Type M meta-block 〈Y 〉h−1[iu . . e(µ)], causing the names of the two
rightmost nodes built on the new meta-blocks to change. Altogether, there are
O(1) name changes on height h.

An easy generalization of Lemma 4.17 is that changing k consecutive nodes
on height h− 1 that are children of repeating nodes on height h changes O(k)
names on height h. With Lemma 4.17, the following lemma translates the result
of Cor. 4.16 for blocks to nodes:

Lemma 4.18. The ESP tree ET(Y) of a string Y of length n has O(lg2 n lg∗ n)
fragile nodes, and O(h lg∗ n) fragile nodes on height h.

155

4 Sparse Suffix Sorting

Proof. While computing 〈Y 〉h+1 from 〈Y 〉h, the ESP technique introduces O(1)
fragile surrounded blocks according to Cor. 4.16. Each fragile surrounded block
corresponds to a fragile surrounded node.

Similar to the proof of Lemma 4.8, we count all surrounded nodes as fragile
whose local surrounding contains a fragile node. Lemma 4.14 shows that each
introduced fragile surrounded block makes O(lg∗ n lg n) nodes fragile. Although
we considered only Type 2 nodes in Lemma 4.14, we can generalize this result
for all fragile nodes with Lemma 4.17.

To sum up, there are O(h lg∗ n) fragile nodes on height h. Because ET(X)
has a height of at most lg n, there are O(lg∗ n∑lgn

h=1 h) = O(lg∗ n lg2 n) fragile
nodes in total.

Showing that the number of fragile nodes is indeed larger than assumed makes
ESP trees a more unfavorable data structure, since fragile nodes are cumbersome
when comparing strings with ESP trees as done in [55]. Fortunately, we can
restore the claimed number of O(lg n lg∗ n) fragile nodes for a string of length n
with a slight modification of the parsing, as shown in the following section.

4.3 Hierarchical Stable Parsing Trees
Our modification, which we call hierarchical stable parsing (HSP), augments each
name with a surname and a surname-length, whose definitions follow: Given a
name Z ∈ Σh, let h′ with 0 ≤ h′ ≤ h be the largest integer such that D(h′)(Z)
consists of the same symbol, say D(h′)(Z) = Y` for a symbol Y ∈ Σh−h′ and an
integer ` ≥ 1. Then the surname and surname-length of Z are the symbol Y
and the integer `, respectively.2 For convenience, we define the surname of a
character to be the character itself. Then all symbols in D(j)(Z) for every j with
1 ≤ j ≤ h′ share the same surname with Z.

Having the surnames of the nodes at hand, we present the HSP. It differs from
ESP in how a string of names is partitioned into meta-blocks, whose boundaries
now depend on the surnames: When factorizing a string of names into meta-
blocks, we relax the check whether two names are equal; instead of comparing
names we compare by surnames.3 As a consequence, we allow meta-blocks
of Type 1 to contain different symbols as long as all symbols share the same
surname. The other parts of the edit sensitive parsing defined in Sect. 4.2.2
are left untouched; in particular, the alphabet reduction uses the symbols as
before. We write HT(Y) for the resulting parse tree, called HSP tree, when the
HSP technique is applied to a string Y . Figure 4.21 shows HT(a11(ba)5). In the
rest of this chapter (and as shown in Fig. 4.21), we give a repetitive node with
surname Z and surname-length ` the name Z`. We omit the surname-length
if it is one (and thus, the label of a non-repetitive node is equal to its name).
2 By definition, the surname of Z is Z itself if ` = 1.
3 The check is relaxed since names with different surnames cannot have the same name.

156

4.3 Hierarchical Stable Parsing Trees

a3 a3 a3 a2 N N N N N

a6 a5 N3 N2

a11 N5

α

aaa aaa aaa aa ba ba ba ba baa11(ba)5 =

Fig. 4.21: Hierarchical stable parsing. The repeating meta-blocks are determined
by the surnames.

a3 a3 a3 · · · a3 a3 a3 a3 a2 a2 N N · · ·
a9 · · · a9 a7 N2

aaa aaa aaa · · · aaa aaa aaa aaa aa aa ba ba · · ·

a3 a3 a3 · · · a3 a3 a3 a3 a3 a2 N N · · ·
a9 · · · a9 a8 N2

aaa aaa aaa · · · aaa aaa aaa aaa aaa aa ba ba · · ·

Y =

aY =

prepend a

Fig. 4.22: Excerpt of HT(Y) (upper part) and HT(aY) (lower part), where
Y = ak(ba)k

′ with k = 18 + 9i + 7 for an integer i ≥ 0 and k′ ≥ 2 (cf. Fig. 4.10).
The parsing of Y creates a repeating meta-block consisting of ak, and a Type 2
meta-block consisting of (ba)2. For k ≥ 2 it is impossible to modify the latter
meta-block by prepending characters, since the parsing always groups adjacent
nodes with the same surname into one repeating meta-block.

For the other nodes, we use the names of Fig. 4.6. We can do that because the
name of a node can be identified by its surname and surname-length, as can be
seen by the following lemma:

Lemma 4.19. The name of a node is uniquely determined by its surname and
surname-length.

Proof. A node with surname-length one is not repetitive, and therefore, its
name is equal to its surname. Given a repetitive node v with surname Z and
surname-length `, there is a height h such that D(h)(v) = Z`. For every height h′
with 1 ≤ h′ ≤ h, D(h′)(v) consists of the same symbol, and hence D(h′)(v)
is parsed greedily by HSP. Consequently, the iterated greedy parsing of the
string Z` determines the name of v.

4.3.1 Upper Bound on the Number of Fragile Nodes
The motivation of introducing the HSP technique becomes apparent with the
three following facts:

157

4 Sparse Suffix Sorting

J J J J J J J J

J3 J3 J2

J8

ab ab ab ab ab ab ab ab

height h

J J J J J J J J J

J3 J3 J3

J9

ab ab ab ab ab ab ab ab ab

prepend ab

Y =

abY =

v

v

Fig. 4.23: Comparison of HT(Y) and HT(abY), where Y = (ab)8. The node v
with name J3 is semi-stable.

ψ u · · · a9 v a6 N2 · · ·
LJ a3a3a3 · · · a3a3a3 a3a3 a3a3 NN · · ·

≥ ∆L

b(µ) ≤ 3
µ

height h+ 1

height h

Fig. 4.24: Setting of Cor. 4.20. According to Lemma 4.15, a meta-block µ can
contain a surrounded fragile block if b(µ) ≤ 3 (cf. Fig. 4.20). In the figure, the
node v is fragile, since prepending L changes its name. According to Cor. 4.20,
there is a non-surrounded node u whose generated substring has the generated
substring of v as a prefix.

Fact 1: Given that the surnames of the repetitive nodes in a repeating meta-
block µ are w, the generated substring of each such repetitive node is a
repetition of the form Xk with the same X = string(w) ∈ Σ∗ (or X = w
in case w ∈ Σ), but with possibly different surname-lengths k (e.g.,
string(N3) = (ba)3 and string(N2) = (ba)2 in Fig. 4.21). Due to the greedy
parsing of the repeating meta-blocks, the surname-lengths of the last two
nodes in µ cannot be larger than the surname-lengths of the generated
substrings of the other nodes (with the same surname) contained in µ.
See Fig. 4.22 for an example when prepending a character to the input
(observe that a7 changes to a8, whose generated substring is still a prefix
of string(a9)).

Fact 2: The shift of a semi-stable node is always a multiple of the length of its
surname (recall that semi-stable nodes are defined like stable nodes, but
with slight shifts, cf. Sect. 4.2.4): Let J be the surname of a semi-stable
node v ∈ 〈Y 〉h on height h. Given J ∈ Σh′ for a height h′ with h′ ≥ 0,
D(h−h′)(v) is a repetition of the symbol J on height h′. A shift of v can

158

4.3 Hierarchical Stable Parsing Trees

s(Z) · · · u(Z) v(Z) µ

·(Z) u′(Z)

∆L

w(Z) ·(Y) ·(Y) · · · ·(Y) ν

·(Y)

height h+ 1

height h′ + 1

Fig. 4.25: Sketch of the HSP tree used to show Lemma 4.22. In the sketch, we
give the repetitive nodes of the meta-block ν the surname Y. Repetitive nodes
are labeled with their surnames, which are put into parentheses.

only be caused by adding one or more Js to 〈Y 〉h′ . In other words, the
shift is always a multiple of D(h′)(J). Figure 4.23 shows an example of
a semi-stable node v.

Fact 3: A non-repetitive Type M block can be fragile only if it is non-surrounded.
By definition, a repeating meta-block µ contains a non-repetitive block β
if and only if µ is Type M. The block β can only be located at the
beginning or ending of µ. Remembering Rule (M), β’s non-repetitiveness
is caused by
• fusing a symbol with its succeeding meta-block, or
• fusing the last symbol with its preceding meta-block.

In both cases, it is impossible that β is a surrounded block if b(µ) ≤ ∆L.
If β is surrounded, it is (semi-)stable due to Lemma 4.15. With Rule (M),
we also experience a more stable behavior like in Fig. 4.45.

These facts make the HSP technique more stable than the ESP technique, as
can be seen in Fig. 4.46, for instance. In the following, we study the number of
fragile surrounded nodes (like in Sect. 4.2.4 for the ESP trees), and show the
invariant (Claim 3 in Lemma 4.22) that the generated substring of a fragile
surrounded node is always the prefix of the generated substring of a name that
is already stored in D. On block level, this is an easy conclusion of Lemma 4.15
and Facts 1 and 3.

159

4 Sparse Suffix Sorting

Corollary 4.20. Given n > 4 and a repeating meta-block µ having a fragile
surrounded block β, µ has at least one block preceding β that contains three
symbols with the same surname. In particular, the leftmost of these preceding
blocks is non-surrounded.

Proof. Since β is surrounded and fragile, b(µ) ≤ 2 according to Lemma 4.15
and Cor. 4.16. Hence, |µ| ≥ ∆L − 2 (otherwise β would not be surrounded).
By the definition of ∆L in Lemma 4.5, ∆L − 2 ≥ 5 for n > 4. Assuming that
the repetitive blocks in µ have the surname Z, there is at least one repetitive
block γ with surname Z preceding β that contains three symbols of µ. But the
fragile surrounded block β is also a repetitive block according to Fact 3. Due to
Fact 1, the surname-length of β is at most as long as the surname-length of γ,
i.e., the generated substring of the node corresponding to β is a prefix of the
generated substring of the node corresponding to γ. Let γ be the leftmost such
block. Remembering that µ can start with a non-repetitive node in case that
µ is of Type M, it is not obvious that γ is non-surrounded. However, we know
that b(µ) ≤ 2. Hence, b(γ) ≤ 5 ≤ ∆L, yielding that γ is non-surrounded. See
Fig. 4.24 for a sketch (with Z = a).

In general, the aforementioned invariant does not hold for ESP trees, but is
essential for the sparse suffix sorting in text space. There, our idea is to create
an HSP or ESP tree on a newly found re-occurring substring. We would like
to store the ESP tree in the space of one of those substrings, which we can
do by truncating the tree at a certain height (removing the lower nodes), and
changing the pointer of each (new) leaf such that the name of a leaf refers
to its generated substring that is found in the remaining text. Unfortunately,
there is a problem when pre-/appending characters to enlarge the ESP tree,
since a leaf could change its name such that its generated substring needs to
be updated - which can be non-trivial if its generated substring refers to an
already overwritten part of the text that is not present in the remaining text as
a (complete) substring. Figure 4.47 demonstrates the problem when truncating
ESP trees at height 2. Fortunately, the following lemmas restrict the problem of
updating the generated substring when an HSP node is surrounded and fragile.
We start with appending characters:

Lemma 4.21. There is no surrounded HSP node v whose name changes when
appending characters.

Proof. Assume that v’s name changes on appending characters. Moreover,
assume that v’s local surrounding does not contain a fragile node (otherwise
swap v with this node). First, since there is no fragile node in v’s local
surrounding, it has to be a repeating node according to Lemma 4.7. Second,
according to Cor. 4.16, it has to be one of the last two nodes built on a repeating
meta-block µ. But there is no way to change the names of the last two blocks
of µ by appending characters unless these blocks are non-surrounded. So a

160

4.3 Hierarchical Stable Parsing Trees

surrounded node cannot have a node in its surrounding whose name changes
when appending characters.

Lemma 4.22. Let v be a fragile surrounded node of an HSP tree. Then

Claim 1: v is a repetitive node,

Claim 2: pre-/appending characters cannot change v’s surname, and

Claim 3: the generated substring of v is always a prefix of the generated sub-
string of an already existing node belonging to the same meta-block
as v.

Proof. To show the lemma, let n > ∆L + ∆R, otherwise there are no surrounded
nodes. There are two (non-exclusive) possibilities for a node to be fragile and
surrounded:

• it belongs to the last two nodes built on a repeating meta-block (due to
Cor. 4.16), or

• its subtree contains a fragile surrounded node, since by definition,
– a node is fragile if it contains a fragile node in its subtree, and
– all nodes in the subtree of a surrounded node are surrounded.

We iteratively show the claim for all heights, starting at the bottom: Let v be
one of the lowest fragile surrounded nodes in HT(Y) (lowest meaning that there
is no fragile node in v’s subtree). Suppose that v is a node on height h+ 1 with
h ≥ 0. Since there is no fragile surrounded node in v’s subtree, v is one of the
last two nodes built on a repeating meta-block 〈Y 〉h[µ] (i.e., Y [µ] for h = 0).
Due to Fact 3, Claim 1 holds for v; let Z be its surname. Since v is fragile,
b(µ) ≤ 3 must hold (otherwise we get a contradiction to Lemma 4.15). But
since v is surrounded, there is a repetitive node u with surname Z preceding v
that is built on three symbols (D(u) ∈ Σ3

h) of µ due to Cor. 4.20. In particular,
the leftmost repetitive node s of µ is not surrounded.

We only consider prepending a character (appending is already considered
in Lemma 4.21). Assume that v’s name changes when prepending a specific
character. By Fact 1, the HSP technique assigns a new name to v, but it does not
change its surname (so Claim 2 holds for v). Additionally, string(v) is a substring
of string(u), where u is one of v’s preceding nodes having the surname Z, and
therefore Claim 3 holds for v. For example, let v be the node with name a7
in HT(Y) of Fig. 4.22, then string(v) = a7, which is a prefix of string(a9) = a9.
After prepending the character a, v’s name becomes a8 with string(v) = a8. Still,
string(v) is a prefix of string(a9).

Due to this behavior, the node v is always assigned to µ, regardless of what
character is prepended. It is only possible to extend or shorten µ on its left side,
or equivalently, µ’s right end is fixed; the parsing of a meta-block succeeding µ

161

4 Sparse Suffix Sorting

cannot change. Put differently, the parsing assures that every surrounded node
located to the right of 〈Y 〉h[µ] is (semi-)stable. We conclude that the claim
holds for the heights 1, . . . , h+ 1.

Next, we show that the claim holds for all height h+ 2, . . . , h′, where h′ + 1
is the height of the LCA w of s and v. Figure 4.25 gives a visual representation
of the following observations: When following the nodes from v up to w, there
is a path of ancestor nodes with surname Z. Except for w, each such ancestor
node u′ has a neighbor with surname Z. On changing the name of v, all nodes
on the height of u′ are unaffected, except u′. That is because the ancestor
of s on the same height as u′ is put with u′ in the same repeating meta-block,
which comprises all neighboring nodes with surname Z. By the analysis above,
changing the name of u′ cannot change the parsing of the other nodes on the
same height. We conclude that the claim holds for the heights h+ 2, . . . , h′.

Let us focus on the nodes on height h′ + 1: The node w is not surrounded,
because it contains the non-surrounded node s in its subtree. Having neighbors
with different surnames, w is either blocked in a Type 2 or Type M meta-block.

• In the former case (Type 2), the analysis of Lemma 4.14 shows that w
only affects the parsing of the non-surrounded nodes. There can be a non-
surrounded meta-block on a height h′′ > h′+1 having a fragile surrounded
node v′. But then v′ cannot contain a fragile node (the descendants of w
are the last fragile surrounded nodes, and w is non-surrounded). Hence,
we can apply the same analysis to v′ as for v.

• In the latter case (Type M), w is fused with a repeating meta-block to
form a Type M meta-block ν, changing the names of the leftmost and
two rightmost nodes of ν, where the leftmost node is w. Assume that
the two rightmost nodes of ν are fragile and surrounded (otherwise we
conclude with the previous case that there are no fragile surrounded nodes
on height h′ + 1). Under this assumption, the rightmost nodes of ν are
repeating nodes due to Fact 3. Hence, we can apply the same analysis as
for v, and conclude the claim for all heights above h′.

A direct consequence is that there are O(1) fragile surrounded nodes on each
height. We can adapt the result of Lemma 4.18 to HSP trees, and obtain the
following theorem:

Theorem 4.23. The HSP tree HT(Y) of a string Y of length n contains at most
O(lg∗ n) fragile nodes on each height.

Having a bound on the number of fragile nodes, we start to study the
algorithmic operations of an HSP tree. The first operation is how to actually
build an HSP tree. For that, we have to think about its representation:

162

4.3 Hierarchical Stable Parsing Trees

4.3.2 Tree Representation
Unlike Cormode and Muthukrishnan, who use hash tables to represent the dic-
tionary D, we follow a deterministic approach. In our approach, we represent D
by storing the HSP tree as a CFG. A name (i.e., a non-terminal of the CFG) is
represented by a pointer to a data field (an allocated memory area), which is
composed differently for leaves and internal nodes:

Leaves. A leaf stores a position i and a length ` ∈ {2, 3} such that Y [i. .i+`−1]
is the generated substring.

Internal nodes. An internal node stores the length of its generated substring,
and the names of its children. If it has only two children, we use a special,
invalid name ⊥ for the non-existing third child such that all data fields
are of the same length.

This information helps us to navigate from a node to its children or its gener-
ated substring in constant time, and to navigate top-down in the HSP tree by
traversing the tree from the root in time linear in the height of the tree.

To accelerate substring comparisons, we want to give nodes with the same
children (with respect to their order and names) the same name, such that the
dictionary D is injective. To keep the dictionary injective, we do the following:
Before creating a new name for the rule b → xyz (we set z = ⊥ if the rule is
b → xy), we check whether there already exists a name for xyz. To perform
this lookup efficiently, we need also the reverse dictionary of D, with the right
hand side of the rules as search keys. We want the reverse dictionary to be of
size O(|Y |), supporting lookup and insert in O(tlook) (deterministic) time for a
tlook = tlook(n) depending on n. For instance, a balanced binary search tree has
tlook = O(lg n).

With this tree representation, we can build HSP trees within the following
time and space bounds:

Lemma 4.24. The HSP tree HT(Y) of a string Y of length n can be built in
O(n(lg∗ n+ tlook)) time. It takes O(n) words of space.

Proof. A name is inserted or looked-up in tlook time. Due to the alphabet
reduction technique (see Lemma 4.4), applying esp on a substring of length `
takes O(` lg∗ n) time, returning a sequence of blocks of length at most `/2.

4.3.3 LCE Queries with HSP Trees
The idea of devising LCE data structures based on the alphabet reduction is
not new. Alstrup et al. [5, Thm. 2] considered building signature encoding
parse trees on a set of strings such that the LCP of two strings of this set can
be computed efficiently. Nishimoto et al. [198, Lemma 10] enhanced these
parse trees with an algorithm computing LCE queries. Similar to these two

163

4 Sparse Suffix Sorting

HT(X)

HT(Y)

iY

iX
u

v

TX

TY

Fig. 4.26: Conception of the proof of Lemma 4.25. To compute the LCP of
X[iX . .] and Y [iY . .] (arrow in the center), we walk down the trees HT(X) and
HT(Y) (depicted by the upper and the lower triangle, respectively) on the paths
towards the leaves containing X[iX] and Y [iY], respectively, by simultaneously
visiting two nodes on the same height of both trees. In this figure, each of
these paths is depicted by a sequence of green arrows. The nodes u and v
are on these paths. Suppose that they are on the same height and have the
same surname. On visiting both nodes, we know that the LCP is at least
min(|string(u)| , |string(v)|) long. We update the destination of our traversal
accordingly, such that we follow the paths from u and v to the leaves covering
the not-yet checked parts of the LCP that we want to compute.

approaches, we show that HSP trees are also good at answering LCE queries.
The common idea of all LCE algorithms is to compare the names of two nodes to
test whether the generated substrings of both nodes are the same. Remembering
that two nodes with the same generated substring can have different names (cf.
Sect. 4.2.3.1 and Fig. 4.9), we want to have a rule at hand saying when two
nodes with different names must have different generated substrings. It is easy
to provide such a rule when the input string is square-free: In this case, all
fragile nodes are non-surrounded according to Lemma 4.8, and thus we know
that the surrounded nodes are stable. Since each height consists of exactly one
Type 2 meta-block, the equality of two substrings X and Y can be checked
by comparing the names of two surrounded nodes whose generated substrings
are X and Y , respectively. For general strings, we need to enhance this rule
for repeating nodes. That is because the names of two repeating nodes at the
same height already differ when the generated substring of one node is a proper
prefix of the generated substring of the other node. Our idea (and here our
approach differs from [5, 198]) is to compare two nodes not by their names but
by their surnames and surname-lengths (we use the property described in Fact 2
of Sect. 4.3.1). With that idea we explain how HSP trees can answer LCE queries
efficiently. For that, we assume that all HSP trees have a common dictionary D
that additionally stores the length of the string D(h)(Z) for each name Z ∈ Σh,

Lemma 4.25. Given HT(X) and HT(Y) built on two strings X and Y with

164

4.3 Hierarchical Stable Parsing Trees

|X| ≤ |Y | ≤ n and two text positions 1 ≤ iX ≤ |X| , 1 ≤ iY ≤ |Y |, we can
compute lcp(X[iX . .], Y [iY . .]) in O(lg n lg∗ n) time.

Proof. We use the following property: If two nodes have the same surname Z,
then the generated substrings of both nodes are Zi and Zj, respectively, with
the respective surname-lengths i and j, where Z = string(Z). In such a case,
the generated substring of one node is a prefix of the generated substring of
the other. In the particular case i = j, both nodes share the same subtree and
consequently have the same name according to Lemma 4.19. In summary, this
property allows us to omit the comparison of the subtrees of two nodes with
the same surname, and thus speeds up the LCE computation, which is done in
the following way (cf. Fig. 4.26):

(1) We start with traversing the two paths from the roots of HT(X) and HT(Y)
to the leaves λX and λY whose generated substrings contain 〈X〉0[iX] and
〈Y 〉0[iY], respectively:

(2) We traverse the two paths leading to the leaves λX and λY , respectively,
in a simultaneous manner such that we always visit a pair (u, v) of nodes
on the same height belonging to HT(X) and HT(Y), respectively.

(3) Given that u and v share the same surname Z ∈ Σh, we know the lengths
of their generated substrings (`u

∣∣∣D(h)(Z)
∣∣∣ and `v

∣∣∣D(h)(Z)
∣∣∣) by having their

surname-lengths `u and `v at hand. Given that iu and iv are the starting
positions of string(u) and string(v), we know that X[iX . .] and Y [iY . .]
have a common prefix of at least

(4.6) min
(
`u
∣∣∣D(h)(Z)

∣∣∣− (iu − iX), `v
∣∣∣D(h)(Z)

∣∣∣− (iv − iY)
)
.

We update the variables λX and λY to be the leaves whose generated
substrings contain 〈X〉0

[
iu + `u

∣∣∣D(h)(Z)
∣∣∣] and 〈Y 〉0

[
iv + `v

∣∣∣D(h)(Z)
∣∣∣], re-

spectively.4 Subsequently, we continue our tree traversals from u and v to
the updated destinations λX and λY , respectively. Since λX and λY are
no longer in the respective subtrees of u and v, we climb up the tree to
the LCA of u (resp. v) and λX (resp. λY), and recurse on (2).

(4) If we end up at a pair of leaves (i.e., u = λX and v = λY), we compare
their generated substrings näıvely. If we find a mismatching character in
both generated substrings, we can determine the value of ` and terminate.
We also terminate if there is no mismatch, but λX or λY is the rightmost
leaf of HT(X) or HT(Y), respectively. In all other cases, we set λX and
λY to their respectively succeeding leaves, climb up to the parents of u
and v, and recurse on (2).

4 Instead of selecting the leaves whose generated substrings start at the end of the common
prefix calculated in Eq. (4.6), we bookkeep the difference between `u

∣∣D(h)(Z)
∣∣− (iu − iX)

and `v

∣∣D(h)(Z)
∣∣− (iv − iY).

165

4 Sparse Suffix Sorting

During the traversals of both trees, we spend constant time for each navigational
operation, i.e., (a) selecting a child, and (b) climbing up to the parent of a node:
On the one hand, we select a child of a node v in constant time by following
the pointer of the name of v (defined in Sect. 4.3.2). On the other hand, we
maintain, for each tree, a stack storing all ancestors of the currently visited
node during the traversal of the respective tree: Each stack uses O(lg n) words,
and can return the parent of the currently visited node in constant time.

To upper bound the running time of the traversals, we examine the nodes
visited during the traversals. Starting at both root nodes, we follow the path from
the root of HT(X) (resp. HT(Y)) down to the roots of the minimal subtree TX
of HT(X) (resp. TY of HT(Y)) covering X[iX . . iX + `] (resp. Y [iY . . iY + `]).5
After entering the subtrees TX and TY , we will never visit nodes outside of TX
and TY . The question is how many nodes of TX and TY differ. This can be
answered by studying the tree HT(Z) built with the same dictionary D, where
Z := X[iX . . iX + ` − 1] = Y [iY . . iY + ` − 1]: On the one hand, HT(Z) has
O(lg∗ n) fragile nodes on each height according to Thm. 4.23. On the other
hand, each (semi-)stable node in HT(Z) is found in both TX and TY with the
same name and surname. Consequently, when traversing HT(X) and HT(Y)
within their respective subtrees TX and TY , we only visit O(lg∗ n) pairs of nodes
per height (remember that we follow the two paths to the leaves λX and λY ,
respectively, up to the point where the surnames of the visited pair of nodes
match).

To sum up, we (a) compute paths from the roots to 〈X〉0[iX] and 〈Y 〉0[iY],
respectively, in O(lg |Y |) time, and (b) compare the children of at most O(lg∗ n)
nodes per height. Since both trees have a height of O(lg |Y |), we obtain our
claimed running time.

The following corollary is a small refinement of Lemma 4.25 that already
shows the result of Thm. 4.3 for τ = 1:

Corollary 4.26. We can endow an HSP tree of a string of length n in O(n) time
with an O(n) words data structure that has the following properties: Given two
HSP trees HT(X) and HT(Y) built on two strings X and Y with |X| ≤ |Y | ≤ n,
we can compute ` := lcp(X[iX . .], Y [iY . .]) in O(lg ` lg∗ n) time if both trees are
endowed with this data structure, where iX and iY are two text positions with
1 ≤ iX ≤ |X| and 1 ≤ iY ≤ |Y |.

Proof. Our idea is to endow an HSP tree with a data structure such that climbing
up from a child to its parent can be performed in constant time. This can be
achieved when we represent the tree topology of an HSP tree with a pointer
based tree, in which each node stores its name and the pointer to its parent.
The leaves are stored sequentially in a list. A bit vector with the same length
5 We assume that iX + ` ≤ |X| and iY + ` ≤ |Y | such that TX and TY cover the mismatching

pair of characters X[iX + `] 6= Y [iY + `]. Otherwise (iX + `− 1 = |X| or iY + `− 1 = |Y |),
let TX and TY cover X[iX . . iX + `− 1] and Y [iY . . iY + `− 1], respectively.

166

4.4 Sparse Suffix Sorting

as the input string is used to mark the borders of the generated substrings of
the leaves. Given a text position i, we can access the leaf whose generated
substring contains i in constant time with a rank-support on the bit vector.
The bit vector with rank-support takes n+ o(n) bits. The pointer based tree
can be built in O(n) time, and takes O(n) words of space.

In the next section, we describe a preliminary version of our sparse suffix
sorting algorithm that does not exploit the text space yet.

4.4 Sparse Suffix Sorting
The sparse suffix sorting problem asks for the order of suffixes starting at certain
positions in a text T . In our case, these positions only need be given online,
i.e., sequentially and in an arbitrary order. We collect them conceptually in a
dynamic set P with m := |P|. The online sparse suffix sorting problem is to keep
the suffixes starting at the positions stored in the incrementally growing set P
in sorted order. Due to the online setting, we represent the order of Suf (P) by
a dynamic, self-balancing binary search tree (e.g., an AVL tree). Each node of
the tree is associated with a distinct suffix in Suf (P); the lexicographic order is
used as the sorting criterion.

The technique of Irving and Love [134] augments an AVL tree on a set of
strings S with the lengths of LCPs so that `Y := max{lcp(X, Y) | X ∈ S} can
be computed in O(`Y / logσ n+ lg |S|) time for a string Y , where the division by
logσ n is due to the word-packing technique (recall Sect. 2.7). Inserting a new
string Y into the tree is supported in the same time complexity (`Y is defined
as before). Irving and Love called this data structure the suffix AVL tree on S;
we denote it by SAVL(S).

Remembering Sect. 4.1, our goal is to build SAVL(Suf (P)) efficiently. However,
inserting m suffixes näıvely takes Ω(|C|m/ logσ n+m lgm) time. How to speed
up the comparisons by exploiting a data structure for LCE queries is the topic
of this section.

4.4.1 Abstract Algorithm
Starting with an empty set of positions P = ∅, our algorithm incrementally up-
dates SAVL(Suf (P)) on the input of every new text position, involving LCE com-
putations between the new suffix and suffixes already stored in SAVL(Suf (P)).
A crucial part of the algorithm is performed by these LCE computations, for
which an LCE data structure is advantageous to have. In particular, we are
interested in a mergeable LCE data structure that is mergeable in such a way
that the merged instance answers queries faster than performing a query on both
former instances separately. We call this a dynamic LCE data structure (dynLCE);
it supports the following operations:

167

4 Sparse Suffix Sorting

• dynLCE(I) constructs a dynLCE data structure M on the substring T [I].
Let M.ival denote the interval I.

• lce(M1,M2, p1, p2) computes lce(p1, p2), where pi ∈Mi.ival for i = 1, 2.

• merge(M1,M2) merges two dynLCEs M1 and M2 such that the output is a
dynLCE built on the string concatenation of T [M1.ival] and T [M2.ival].

We use the expression tC(|I|) to denote the construction time of such a data
structure on the substring T [I]. We assume that the construction of dynLCE(I)
takes at least as long as scanning all characters on Y , i.e.,

Property 1: tC(|I|) = Ω(|I| / logσ n).

We use the expressions tQ(|X|+ |Y |) and tM(|X|+ |Y |) to denote the time for
querying and the time for merging two such data structures built on two given
strings X and Y , respectively. Querying two dynLCEs for a length ` is at least as
fast as the word-packed character comparison if and only if ` = Ω(tQ(`) logσ n).6
Hence, we obtain the following property:

Property 2: A dynLCE on a text smaller than g := Θ(tQ(g) logσ n) is
always slower than the word-packed character comparison.

In the following, we build dynLCEs on substrings of the text. Each interval
of the text that is covered by a dynLCE is called an LCE interval. The LCE
intervals are maintained in a self-balancing binary search tree L of size O(m).
The tree L stores the starting and the ending positions of each LCE interval,
and uses the starting positions as keys to answer the queries

• whether a position is covered by a dynLCE, and

• where the next text position starts that is covered by a dynLCE,

in O(lgm) time. Additionally, each LCE interval is assigned to one dynLCE data
structure (a dynLCE can be assigned to multiple LCE intervals) such that L
cannot only retrieve the next position covered by a dynLCE, but actually return
a dynLCE that covers that position. The dynLCE is retrieved by augmenting
an LCE interval I with a pointer to its dynLCE data structure M , and with an
integer i such that T [M.ival ∩ [i . . i+ |I| − 1]] = T [I] (since M could be built
on a text interval M.ival 6= I that contains an occurrence of T [I]).

Given a new position p̂ 6∈ P with 1 ≤ p̂ ≤ |T |, updating SAVL(Suf (P)) to
SAVL(Suf (P ∪ {p̂})) involves two parts: first locating the insertion node for p̂
in SAVL(Suf (P)), and then updating the set of LCE intervals. After processing
these two parts we insert p̂ in SAVL(Suf (P)).
6 We assume that tQ(`) is sub-linear in `.

168

4.4 Sparse Suffix Sorting

Algorithm 15: Hybrid LCE Algorithm – Locating Process. Let I.ref be
the dynLCE of an LCE interval I.

input : text positions p, p′ ∈ P ,
search tree L maintaining all LCE intervals

1 function lce(p, p′) . called by Algo. 16 to find the insertion position for p̂
2 I ← L. predecessor(p) and J ← L. predecessor(p′)

. I = argmax {b(I) | I ∈ L ∧ b(I) < p}
3 if e(I) > p and e(J) > p′ then
4 `← lce(I.ref,J .ref, p, p′) . LCE with dynLCEs built on I and J

5 else . compare näıvely until reaching positions covered by LCE intervals (the
fourth argument of naı̈ve compare is the number of characters to compare at
most)

6 I ← L. successor(p) and J ← L. successor(p′)
. I = argmin {b(I) | I ∈ L ∧ b(I) > p}

7 `← naı̈ve compare(T, p, p′,max(b(I)− p, b(J)− p′))
8 p← p+ ` and p′ ← p′ + `

9 if T [p] 6= T [p′] then return ` . found mismatch
10 return `+ lce(p, p′) . recurse since we reached either the beginning or the end

of an LCE interval covered by L

Locating. The insertion operation performs an LCE computation for each node
encountered in SAVL(Suf (P)) while locating the insertion point of p̂. Suppose
that the task is to compare the suffixes T [i . .] and T [j . .] for two text positions i
and j with 1 ≤ i, j ≤ |T |. We perform the following steps to compute lce(i, j):

(1) Check whether the positions i and j are contained in an LCE interval, in
O(lgm) time with the search tree L.
• If both positions are covered by LCE intervals, then query the re-

spective dynLCEs for the length ` of the LCE starting at i and j.
Increment i and j by `. Return the number of compared characters
on finding a mismatch while computing the LCE.
• Otherwise (if i or j are not contained in an

LCE interval), find the smallest length `
such that i + ` and j + ` are covered
by LCE intervals. Increment i and j by `,
and näıvely compare ` characters. Return
the number of compared characters on a
mismatch.

i

j
`

LCE

(2) Return the total number of matched positions if a mismatch is found in
(1). Otherwise, repeat the above check again (with the incremented values
of i and j).

169

4 Sparse Suffix Sorting

Algorithm 16: Sparse Suffix Sorting
input : search tree L maintaining all LCE intervals,

suffix AVL tree S := SAVL(Suf (P)),
text position p̂ ∈ [1 . . n] \ P

1 function add(p̂) . online query with a text position p̂

2 v ← S.root . locate insertion position of T [p̂ . .] in S

3 while v is not a leaf do v ← S. locate child(v, p̂, lce) . perform on each
depth an LCE query with a suffix, use Algo. 15

4 p̄← mlcparg(p̂) and `← lce(p̄, p̂) . already computed above
5 S. insert(v, p̂) . add the suffix T [p̂ . .] to S
6 if ` < 2g then return . Property 3
7 A← {I ∈ L | I ∩ ([p̂− g . . p̂+ g+ `− 1]∪ [p̄− g . . p̄+ g+ `− 1]) 6= ∅}
8 U ← ⋃

I∈A I . union of the intervals that are interesting for merging
9 for each interval I ∈ ([p̂ . . p̂+ `− 1] ∪ [p̄ . . p̄+ `− 1]) \ U do

10

either

• assign I.ref to a dynLCE in case we found an appropriate
dynLCE while applying Rule 1 or 2, or

• set I.ref ← dynLCE(T [I]) otherwise according to Rule 3
11 L. insert(I) and A. insert(I)
12 sort A ascendingly by the starting positions of its intervals
13 I := A. pop() . remove first element from the queue A and return it
14 while A is not empty do . enforce Property 5
15 J ← A. pop()
16 if b(J)− e(I) ≤ g then . Property 5 violated
17 I ′ ← I ∪ J . merge both intervals
18 I ′.ref ← merge(I.ref,J .ref) . apply Rule 4
19 L. delete(I) and L. delete(J)
20 L. insert(I ′)
21 I ← I ′

22 P ← P ∪ {p̂}

170

4.4 Sparse Suffix Sorting

p mlcpp

LCE interval LCE interval
≤ g ≤ g

≥ g ≥ g ≥ g

Fig. 4.27: Sketch of two LCE intervals with Properties 3 to 5.

The steps are additionally listed in Algo. 15. After locating the insertion point
of p̂ in SAVL(Suf (P)), we obtain

p̄ := mlcparg(p̂) and ` := mlcp(p̂)

as a byproduct, where

mlcparg(p) := argmaxp′∈P,p 6=p′ lcp(T [p . .], T [p′ . .])

and
mlcp(p) := lcp(T [p . .], T [mlcparg(p) . .])

for each text position p with 1 ≤ p ≤ |T |. We insert p̂ into SAVL(Suf (P)), and
use the position p̄ and the length ` to update the LCE intervals.

Updating. The LCE intervals are updated dynamically, subject to the following
properties (see Fig. 4.27):

Property 3: The length of each LCE interval is at least g (defined in
Property 2).

Property 4: For every p ∈ P , the interval [p . .p+mlcp(p)−1] is covered
by an LCE interval, except at most g positions at its left
and right ends.

Property 5: There is a gap of at least g positions between every pair of
LCE intervals.

After adding p̂ to P, we perform the following instructions to satisfy the
properties. If ` ≤ 2g, we do nothing, because all properties are still valid (in
particular, Property 4 still holds). Otherwise, we need to restore Property 4.
There are at most two positions in P that possibly invalidate Property 4 after
adding p̂, and these are p̂ and p̄ (otherwise, by transitivity, we would have
created a longer LCE interval previously).

We introduce an algorithm that does not restore Property 4 directly, but first
ensures that

Property 4+: the intervals [p̂ . . p̂+ `−1] and [p̄ . . p̄+ `−1] are covered
by one or multiple LCE intervals.

171

4 Sparse Suffix Sorting

p̂ p̂+ i
I
p̂+ j p̄ p̄+ i J p̄+ j

T =

K
` `

Fig. 4.28: Application of Rules 1 to 4 for preserving the properties. The interval
I := [p̂ + i . . p̂ + j] is not yet covered by an LCE interval, but is contained in
[p̂ . . p̂+ `−1] — a conflict with Property 4. The conflict is resolved based on the
LCE intervals covering the positions of J := [p̄+ i . . p̄+ j]. The intervals with
the blue horizontal lines () are the LCE intervals, and the intervals with the
diagonal red lines () are the intervals of [p̂ . . p̂+ `− 1] \U . Here, J intersects
with an LCE interval K. This case is treated in Rule 2.

In the following, we first process the LCE intervals to satisfy Property 4+ and
then subsequently to satisfy Property 5. When Property 4+ and Property 5 are
satisfied, then Property 4 is also satisfied. We can satisfy Property 4+ with the
following steps: Let U ⊂ [1 . . n] be the set of all positions that belong to an
LCE interval. The set [p̂ . . p̂+ `− 1] \ U can be represented as a set of disjoint
intervals of maximal length. For each interval I := [p̂+ i . . p̂+ j] ⊂ [p̂ . . p̂+ `−1]
of that set, apply the following rules with J := [p̄+ i . . p̄+ j] (for integers i, j
with 0 ≤ i ≤ j ≤ `− 1, see Fig. 4.28) sequentially (cf. Line 9 of Algo. 16):

Rule 1: If J is a sub-interval of an LCE interval K, then declare I as
an LCE interval and let it refer to the dynLCE of K.

Rule 2: If J intersects with an LCE interval K, enlarge the dynLCE on
T [K] to cover T [K∪J] (create a dynLCE on T [J \K] and merge
it with the dynLCE on T [K]). Apply Rule 1.

Rule 3: Otherwise (there is no LCE interval K with J ∩ K 6= ∅), create
dynLCE(J), and make I and J to LCE intervals referring to
dynLCE(J).

We satisfy Property 4+ on [p̄ . . p̄ + ` − 1] by updating U , computing the
set of disjoint intervals [p̄ . . p̄ + `− 1] \ U , and applying the same rules on it.
However, Rule 1 or Rule 3 can create LCE intervals shorter than g, violating
Property 3. By construction, such a short LCE interval is adjacent to another
LCE interval (the rules compute a cover of [p̂ . . p̂ + ` − 1] and [p̄ . . p̄ + ` − 1]
with LCE intervals). This means that we can restore Property 3 by restoring
Property 5. We do that by applying the following rule subsequently to Rule 3:

172

4.4 Sparse Suffix Sorting

Rule 4: Merge a newly created or merged LCE interval violating Prop-
erty 5 with its nearest LCE interval (ties can be broken arbitrar-
ily). Recurse until no merge occurs (cf. Line 14 of Algo. 16).

Rule 4 finally restores Property 4 (since Property 4+ and Property 5 hold).
After applying all rules, we have introduced at most two7 new LCE intervals that
cover the intervals [p̂+ g . . p̂+ `− 1− g] and [p̄+ g . . p̄+ `− 1− g], respectively,
to satisfy Properties 3 to 5. We summarize the steps taken for adding p̂ to
SAVL(Suf (P)) in Algo. 16. The running time of this algorithm is analyzed in
the following lemma:
Lemma 4.27. Given a text T of length n and a set of m arbitrary positions P
in T , the suffix AVL tree SAVL(Suf (P)) with the suffixes of T starting at the
positions P can be computed deterministically in O(tC(|C|) + tQ(|C|)m lgm+
tM(|C|)m) time.
Proof. The analysis is split into managing the dynLCEs, and the LCE queries:
• We build dynLCEs on substrings covering at most |C| characters of the

text, taking at most tC(|C|) time for constructing all dynLCEs. During the
construction of the dynLCEs we spend O(|C| / logσ n) = O(tC(|C|)) time
on character comparisons due to Property 1.

• The number of merge operations on the LCE intervals is upper bounded
by 2m in total, since we create at most two new LCE intervals for every
position in P . In total, we spend at most 2 tM(|C|)m time for the merging.

• The algorithm performs O(m lgm) LCE queries. LCE queries involve either
(a) character comparisons or (b) querying a dynLCE. Given that we have
δ < 2m LCE intervals, we switch between both techniques at most 4δ + 1
times for an LCE query.
(a) On the one hand, the overall time for the character comparisons is

bounded by O(tC(|C|) + tQ(|C|)m lgm):
– By Property 3, all substrings T [p. .p+mlcp(p)−1] are covered by

an LCE interval, except at most at 2g positions. This means that
all substrings that are not covered by an LCE interval, but have
been subject to a character comparison, are shorter than 2g. For
a character comparison with one of those substrings, we spend at
most O(gm lgm/ logσ n) = O(tQ(g)m lgm) = O(tQ(|C|)m lgm)
time. In the case that g > |C|, we do not create any LCE interval,
and spend O(gm lgm/ logσ n) = O(tQ(|C|)m lgm) overall time
due to Property 2.

7 The number of new LCE intervals could be indeed two: Although p̄ ∈ P , we would not have
created an LCE interval covering [p̄+ g . . p̄+ ¯̀− 1− g] if mlcp(p̄) was smaller than g at the
time when we inserted p̄ in P with ¯̀ := mlcp(p̄).

173

4 Sparse Suffix Sorting

– If we compare more than g characters for an LCE query, we create
at most two LCE intervals, possibly involving the construction
of dynLCEs on the compared substrings. The construction of a
dynLCE on an interval I takes tC(|I|) = Ω(|I| / logσ n) time due
to Property 1. Hence, the time needed for character comparisons
is O(|I| / logσ n) = O(tC(|I|)). This sums up to O(tC(|C|)) total
time spent on character comparisons of substrings longer than g
characters.

(b) On the other hand, querying the dynLCEs take at most O(tQ(|C|)m
lgm) overall time. Suppose that we look up d < δ LCE intervals for
an LCE query. Since we look up an LCE interval in O(lgm) time
with L, we spend O(d lgm) time on the lookups during this LCE
query. However, we subsequently merge all d looked-up LCE intervals,
reducing the number of LCE intervals δ by d− 1. Consequently, we
perform a look-up of an LCE interval at most 2m times in total.

The last step is to compute SSA:= SSA(T,P) and SLCP:= SLCP(T,P) from
SAVL(Suf (P)) by traversing SAVL(Suf (P)) and performing LCE queries on the
already computed dynLCEs: The SAVL(Suf (P)) is a binary search tree storing
all elements of Suf (P) in lexicographically sorted order. Consequently, we
can compute SSA with an in-order traversal of SAVL(Suf (P)). Afterwards,
we compute SLCP[i] = lce(SSA[i], SSA[i− 1]). If the text positions [SSA[i] . .
SSA[i] + SLCP[i]−1]] and [SSA[i−1] . .SSA[i−1] + SLCP[i]−1]] are not covered
by an LCE interval, then SLCP[i] = O(g) due to Property 3, and we spend
at most O(g/ logσ n) time on computing SLCP[i] by character comparisons.
Otherwise, we spend O(g/ logσ n + tQ(SLCP[i])) = O(tQ(SLCP[i])) time by
querying a single dynLCE due to Property 4. Querying whether both text
intervals are covered by an dynLCE costs O(lgm) time with L. In total, we can
compute SLCP[i] for each integer i with 2 ≤ i ≤ m in O(tQ(|C|)m lgm) time,
since O(g/ logσ n) = O(tQ(g)) due to Property 2. The following corollary of
Lemma 4.27 summarizes the achievements of this section:

Corollary 4.28. Given a text T of length n that is loaded into RAM, the SSA and
SLCP of T for a set of m arbitrary positions can be computed deterministically
in O(tC(|C|) + tQ(|C|)m lgm+ tM(|C|)m) time. We need O(m) words of space,
and the space to store instances of dynLCE on |C| positions.

4.4.2 Sparse Suffix Sorting with HSP Trees
We show that the HSP tree is a dynLCE data structure. Remembering that the
algorithm from Sect. 4.4.1 depends on the merging operation of dynLCE, we
now introduce the merging of HSP trees. A näıve way to merge two HSP trees
HT(X) and HT(Y) is to build HT(XY) completely from scratch. Since only

174

4.4 Sparse Suffix Sorting

HT(X) HT(Y)· · ·
∆R

· · ·
∆R

· · ·
∆L

· · ·
∆L

...

...

. . .

. . .

Fig. 4.29: Merging
HT(X) and HT(Y).
Given that both trees
contain only Type 2
nodes, it suffices to
apply the parsing on
the ∆R rightmost nodes
and ∆L leftmost nodes
of HT(X) and HT(Y),
respectively, to obtain
HT(XY).

the fragile nodes of HT(X) and HT(Y) can change when merging both trees, a
more sophisticated approach would reparse only the fragile nodes of both trees.
Remembering the properties studied in Sect. 4.2.4, we show such an approach
in the following lemma:

Lemma 4.29. Merging HT(X) and HT(Y) of two strings X, Y ∈ Σ∗ into
HT(XY) takes O(tlook(∆R lg |X|+ ∆L lg |Y |)) time.

Proof. First assume that HT(X) and HT(Y) only contain Type 2 nodes. In
this case, we examine the rightmost nodes of HT(X) and the leftmost nodes of
HT(Y) from the bottom up to the root: At each height h, we merge the nodes
〈X〉h and 〈Y 〉h to 〈XY 〉h by reparsing the ∆R rightmost nodes of 〈X〉h, and
the ∆L leftmost nodes of 〈Y 〉h (see Fig. 4.29). By doing so, we reparse all nodes
of HT(X) (resp. HT(Y)) whose local surrounding on the right (resp. left) side
does not exist. Nodes of HT(X) (resp. HT(Y)) that have a local surrounding
on the right (resp. left) side are not changed by the parsing. In total, we spend
O(tlook(∆R lg |X|+ ∆L lg |Y |)) time on merging two trees consisting of Type 2
nodes.

Next, we allow repeating nodes. Lemma 4.21 shows that there are no fragile
surrounded nodes in HT(X) that need to be fixed. The remaining problem is to
find and recompute the surrounded nodes in HT(Y) whose names change on
merging both trees. The lowest of these nodes belong to a repeating meta-block
due to Lemma 4.7 and Cor. 4.16. To find this meta-block, we adapt the strategy
of the first paragraph considering only Type 2 meta-blocks. On each height h,
we reparse the ∆L leftmost nodes of 〈Y 〉h. If the rightmost of these ∆L nodes
are contained in a repeating meta-block µ that does not end within those ∆L

leftmost nodes, chances are that the names of some nodes in µ change. Due to
Cor. 4.16, it is sufficient to reparse the two rightmost nodes of µ. This is done
as follows (cf. Fig. 4.30):

1. Take the leftmost repetitive node s of µ (which exists due to Cor. 4.20,
and is one of the ∆L + 1 leftmost nodes on height h).

175

4 Sparse Suffix Sorting

∆L

s(Z) ·(Z) · · · ·(Z) ·(Z) ·(Z) µ

u(Z)

Fig. 4.30: Reparsing of fragile surrounded nodes during a merging operation.
The lowest fragile surrounded nodes that need to be reparsed belong to a meta-
block µ whose leftmost nodes are non-surrounded. Given that the repetitive
nodes of µ have the surname Z, we can access all fragile nodes of µ by climbing
up from the leftmost repetitive node s of µ to the highest node u with surname Z,
and subsequently descending down to the rightmost repetitive nodes of µ in
O(lg |µ|) time.

2. Given that s has the surname Z, climb up the tree to find the highest
ancestor u with surname Z. The ancestor u is the LCA of s and the
rightmost repetitive node of µ.

3. Walk down from u to the rightmost nodes of µ.

4. Reparse µ’s two rightmost nodes.

5. Reparse all ancestors of these two nodes that are surrounded.

6. Check whether the reparsed ancestors invalidate the parsing of their
meta-blocks; fix the parsing for those meta-blocks recursively.

Climbing up to find u and walking down to the rightmost nodes of µ takes
O(tlook lg |µ|) = O(tlook lg(n/2h)) time, reparsing the surrounded ancestor nodes
of the two rightmost nodes of µ takes O(tlook lg(n/2h)) time. Given that the
highest nodes of this reparsing are on a height h′ > h, Lemma 4.22 states that
up to the height h′ + 1, there is no need to reparse a fragile surrounded node
(we follow the paths of fragile nodes as depicted in Fig. 4.25). Given that there
are µ1, . . . , µk such meta-blocks (for which we apply Steps 1 to 6), we have
O(tlook

∑k
i=1 lg |µi|) = O(tlook lg n) due to ∑k

i=1 lg |µi| ≤ lg n. Hence, we spend
O((∆L + ∆R)tlook lg |Y |) time overall.

The following theorem combines the results of Cor. 4.28 and Lemma 4.29.

176

4.5 Sparse Suffix Sorting in Text Space

Theorem 4.30. Given a text T of length n and a set of m text positions P,
SSA(T,P) and SLCP(T,P) can be computed in O(|C| (lg∗ n + tlook) + m lgm
lg n lg∗ n) time. We need O(n+m) words of space.

Proof. We have

• tC(|C|) = O(|C| (lg∗ n+ tlook)) due to Lemma 4.24,

• tQ(|C|) = O(lg∗ n lg n) due to Lemma 4.25, and

• tM(|C|) = O(tlook lg n lg∗ n) due to Lemma 4.29.

Actually, the time cost for merging is already upper bounded by the cost for
the tree creation. To see this, let δ ≤ m be the number of LCE intervals.
Since each HSP tree covers at least g characters, δg is at most |C|, and we
obtain δ tM(|C|) = O(|C| tM(|C|)/g) = O(|C| tlook) overall time for merging,
where g = Θ(tQ(|C|) lg n/ lg σ) = Θ(lg∗ n lg2 n/ lg σ). Plugging the times tC(|C|),
tQ(|C|), and the refined analysis of the merging time cost in Cor. 4.28 yields the
claimed time bounds.

4.5 Sparse Suffix Sorting in Text Space
Remembering the outline in the introduction, the key idea to solve the limited
space problem is storing dynLCEs in text space. Taking two LCE intervals of
the text containing the same substring, we free up the space of one part while
marking the other part as a reference. The freed space could be used to store
an HSP tree whose leaves refer to substrings of the other LCE interval. By doing
so, we would use the text space for storing the HSP trees, while using only O(m)
additional words for storing SAVL(Suf (P)) and the search tree L of the LCE
intervals. However, an HSP tree built on a string of length n takes O(n lg n)
bits, while the string itself provides only n lg σ bits. Our solution is to truncate
the HSP tree at a fixed height η, discarding the nodes in the lower part. The
truncated version tHTη(Y) stores just the upper part, while its new leaves refer
to (possibly long) substrings of Y . The resulting tree is called the η-truncated
HSP tree (tHTη), whose definition follows:

4.5.1 Truncated HSP Trees
We define a height η and delete all nodes at heights less than η, which we call
lower nodes. A node higher than η is called an upper node. The nodes at height
η form the new leaves and are called η-nodes. Similar to the former leaves, their
names are pointers to their generated substrings appearing in Y . Remembering
that each internal node has two or three children, an η-node generates a string
of length at least 2η and at most 3η. The maximum number of nodes in an

177

4 Sparse Suffix Sorting

a3 a3 a3 a3 a2 a2 N N

a9 a7 N2

ε

aaa aaa aaa aaa aa aa ba ba

. . . a a a a a a a a a b a b a

string(N2)string(a7)
string(a9)

η-nodes

lower nodes

upper nodes

Y =

Y =

Fig. 4.31: The η-truncated HSP tree tHTη(Y) of the substring Y defined in
Fig. 4.7 with η = 2. Like in Fig. 4.47, the lower nodes are grayed out. An
η-node is a leaf in tHTη(Y), and has a generated substring with a length between
four and nine.

η-truncated HSP tree of a string of length n is n/2η. Figure 4.31 shows an
example with η = 2.

Similar to leaves in untruncated HSP trees, we use the generated substring
X of an η-node v for storing and looking up v: While the leaves of the HSP
tree have a generated substring of constant size (two or three characters), the
generated substring of an η-node can be as long as 3η. Storing such long strings
in a binary search tree representing the reverse dictionary of D is inefficient; it
would need O(` lg σ) time for a lookup or insertion of a key of length `. Instead,
we want a dictionary data structure storing O(|Y |) elements in O(|Y |) words
of space8, supporting lookup and insert in O(tlook + `/ logσ n) time for a key
of length `. For instance, Franceschini and Grossi’s data structure [94] with
word-packing supports the desired time and space bounds with tlook = O(lg n).

Lemma 4.31. We can build an η-truncated HSP tree tHTη(Y) of a string Y of
length n in O(n(lg∗ n + η/ logσ n + tlook/2η)) time, using O(3η lg∗ n) words of
working space. The tree takes O(n/2η) words of space.

Proof. Instead of building the HSP tree level by level, we compute the η-nodes
one after another, from left to right. We can split the parsing of the whole
string into several parts. Each part computes one η-node.

First assume that tHTη(Y) only contains Type 2 nodes. Then the name of
an η-node v is determined by v’s local surrounding (as far as it exists) due to
Lemma 4.7. Thus it is sufficient to keep v’s local surrounding at height η − 1,
which we denote by Xv, in memory. Xv is a string of lower nodes. To parse
a string of lower nodes by HSP, we have to give each lower node a name.
Unfortunately, storing the names of all lower nodes in a dictionary would take
too much space. Instead, we create the name of a lower node temporarily by
8 The data structure is not necessarily stored in consecutive space like an array.

178

4.5 Sparse Suffix Sorting in Text Space

setting the name of a lower node to its generated substring. A drawback is
that we cannot retrieve their names later. Luckily, we only need the names of
the lower nodes for constructing Xv. We construct Xv as follows: Given that
we parsed the local surrounding of v at height h (0 ≤ h ≤ η − 3) with HSP,
we store the borders of the blocks on height h + 1 in an integer array such
that we can access the name (i.e., the generated substring) of the i-th block on
height h+ 1. With this integer array, we can parse the blocks on height h+ 1 to
obtain the blocks on height h+ 2, whose borders are again stored in an integer
array. Having the borders of the blocks on height h + 2, we can remove the
integer array on height h+ 1. The blocks on height η − 1 are the nodes of Xv.

In the general case (when tHTη(Y) contains repeating nodes), it can happen
that the name of a greedily parsed node (i.e., a repeating node or one of the
∆L leftmost nodes of a Type 2 meta-block) depends not necessarily on its local
surrounding, but on the length of its repeating meta-block, its surname and
its children (in case of a Type M node). This means that when computing Xv

of an η-node v, we additionally have to consider the case when nodes in the
local surrounding of v are contained in a meta-block µ on height h < η that
extends over the nodes in v’s surrounding at height h. It is sufficient to use a
counting variable that tracks the position of the last block of µ belonging to
the subtree of the preceding η-node of v (remember that the greedy parsing
determines the blocks by an arithmetic progression, cf. Fig. 4.19). Another
necessity is to maintain the surnames of the lower nodes. In our approach, each
array storing the borders of the blocks on the heights below η is accompanied
with two arrays. The first array stores the length of the prefix of the generated
substring of each block β that is equal to β’s surname; the second array stores
the surname-length of each block.

Working Space. We construct v after constructing Xv. To construct Xv, we
apply the HSP technique (η − 1) times on the generated substring of the nodes
in Xv. Since the nodes of Xv cover at most 3η(∆L + ∆R) characters, we need
O(3η(∆L + ∆R)) words of working space to maintain the integer arrays storing
the borders of the blocks at two consecutive heights. To cope with the meta-
blocks extending over the border of the subtrees of two η-nodes, we store the
last position of each such meta-block belonging to the local surrounding of the
previous η-node. These positions take O(η) words, since such a meta-block can
exist on every height below η.

Time. The time bound O(n lg∗ n) for the repeated application of the alphabet
reduction is the same as in Lemma 4.24. The new part is the construction of
an η-node by constructing Xv: To construct the lower nodes Xv, we apply the
HSP technique (η − 1) times on string(v). The HSP technique compares lower
nodes by their generated substrings (instead of comparing by a name stored
in D). It always compares two adjacent lower nodes during the construction

179

4 Sparse Suffix Sorting

of Xv. To bound the number of comparisons of the lower nodes, we focus
on all lower nodes on a fixed height h with 1 ≤ h ≤ η − 1: Since the sum
of the lengths of the generated substrings of the lower nodes on height h is
always n, the comparisons of the lower nodes on height h take O(n/ logσ n) time,
independent of the number of nodes on height h. Summing over all heights,
these comparisons take O(nη/ logσ n) time in total. By the same argument,
maintaining the names of all η-nodes takes O(n/ logσ n+ tlookn/2η) time.

A name is looked-up in O(tlook) time for an upper node. Since the number of
upper nodes is at most n/2η, maintaining the names of the upper nodes takes
O(tlookn/2η) time. This time is subsumed by the lookup time for the η-nodes.

Surnames. Augmenting the (remaining) nodes of the η-truncated HSP tree
with surnames cannot be done as simple as in the standard HSP tree construction,
since a repetitive node can have a surname equal to the name of a lower node
(remember that lower nodes are generated only temporarily, and hence are not
maintained in the reverse dictionary). To maintain the surnames pointing to
lower nodes, we need to save the names of certain lower nodes in a supplementary
reverse dictionary D′ of D. This is only necessary when one of the remaining
nodes (i.e., the upper nodes and the η-nodes) in the η-truncated HSP tree has
a surname that is the name of a lower node. If such a remaining node v is an
upper node having a surname equal to the name of a lower node, the η-nodes
in the subtree rooted at v have also the same surname. Hence, the number of
entries in D′ is upper bounded by the number of η-nodes. The dictionary D′

is filled with the surnames of the children of all η-nodes, whose number is at
most 3n/2η. Filling or querying D′ takes the same time as maintaining the
η-nodes.

Similar to the standard HSP trees, we can conduct LCE queries on two η-
truncated HSP trees in the following way:

Lemma 4.32. Let X and Y be two strings, each of length at most n. Given
that tHTη(X) and tHTη(Y) are built with the same dictionary, and given two
text positions iX and iY with 1 ≤ iX ≤ |X| and 1 ≤ iY ≤ |Y |, we can compute
lcp(X[iX . .], Y [iY . .]) in O(lg∗ n(lg(n/2η) + 3η/ logσ n)) time using O(lg(n/2η))
words of working space.

Proof. Lemma 4.25 gives the time bounds for computing the LCP with two
HSP trees. The lemma describes an LCE algorithm that uses the surnames
to compare the generated substring of two nodes. By doing so, it accelerates
the search for the first pair of mismatching characters in X[iX . .] and Y [iY . .].
To find this mismatching pair, it examines the subtrees of the two nodes if
both nodes mismatch. Since we cannot access a child of an η-node in our
η-truncated HSP trees without rebuilding its subtree (as we do not store the
lower nodes in D), we treat the η-nodes as the leaves of the tree. This means
that we compare two η-nodes (given their surnames are different) with a näıve

180

4.5 Sparse Suffix Sorting in Text Space

comparison of their generated substrings in O(3η/ logσ n) time, remembering
that the length of the generated substring of an η-node is at most 3η. For the
upper nodes, the algorithm works identically to the original version such that it
takes O(lg∗ n(lg(`/2η)) time for traversing those.

Applying the idea of Cor. 4.26 to Lemma 4.32 gives the following corollary:

Corollary 4.33. Let X and Y be two strings with |X| , |Y | ≤ n. Given that
tHTη(X) and tHTη(Y) are built with the same dictionary, we can augment both
trees with a data structures such that given two text positions 1 ≤ iX ≤ |X| , 1 ≤
iY ≤ |Y |, we can compute ` := lcp(X[iX . .], Y [iY . .]) in O(lg∗ n(lg(`/2η) +
3η/ logσ n)) time using O(lg(n/2η)) words of working space. The additional
data structures can be constructed in O(n) time with O(n/ lg n) words of space.
Their space bounds are within the space bounds of the HSP trees.

Proof. To support accessing the parent of a node in constant time, we construct
a pointer based tree structure of the truncated tree during its construction.
Since tHTη(Y) contains at most n/2η nodes, the pointer based tree structure
takes O(n/2η) words.

Given that η ≤ lg lg n, we augment the tree structure with a bit vector to
jump from a text position to an η-node like in Cor. 4.26: We create a bit vector of
length n marking the borders of the generated substrings of the η-nodes such that
a rank-support on this bit vector allows us to jump from a position Y [i] to the η-
node 〈Y 〉η[j] with 1+∑j−1

k=1 string(〈Y 〉η[k]) ≤ i ≤ ∑j
k=1 string(〈Y 〉η[k]) in constant

time. The bit vector with its rank-support takes O(n/ lg n) words, which is too
much to obtain the space bounds of O(n/2η) words when η = Ω(lg lg n).

Instead, we compute a sorted list of pairs if η ≥ log3(lg2 n). During the
construction of a truncated tree, we collect pairs of constructed η-nodes and
their starting positions in a list. This list is automatically sorted by the starting
positions as we construct the tree from left to right. The list takes O(n/2η)
words, and we can find the η-node whose generated substring covers a given
position inO(lg(n/2η)) = O(lg n) time by binary searching the starting positions.
This time is bounded by the time O(lg∗ n 3η/ logσ n) for scanning the generated
substrings of all η-nodes during an LCE query, which is O(lg∗ n lg n lg σ) time
when η ≥ log3(lg2 n).

It is left to consider the case that lg lg n < η < log3 lg2 n. Let k be the
number of η-nodes such that n/3η ≤ k ≤ n/2η. We build the above bit vector
in the representation of Pagh [205]. In this representation, the rank-support
answers rank queries in constant time. The bit vector together with its rank-
support takes O(k lg(n/k) + k2/n + k(lg lg k)2/ lg k) = O(kη) bits (which are
O(n/2η) words) when k = n/ lgc n for a constant c > 0 [210, Thm. 4(b)]. The
constant c exists, because n/ lg2 n < n/3η ≤ k ≤ n/2η < n/ lg n. However, the
construction needs O(n/ lg n) words of space.

With τ := 2η we obtain the claim of Thm. 4.3.

181

4 Sparse Suffix Sorting

J
J

J
J

a
3

a
3

J
2

J
2

a
6

α

a
b

a
b

a
b

a
b

a
a
a

a
a
a

a
3

a
3

a
3

a
3

a
3

a
3

a
3

a
3

a
9

a
9

a
6

a
2
4

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

J
J

J
J

a
3

a
3

a
3

a
3

a
3

a
3

a
3

a
3

a
3

a
3

J
2

J
2

a
9

a
9

a
6

a
6

J
4

a
1
8

a
1
2

γ

a
b

a
b

a
b

a
b

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

m
er
ge

(a
b
)4
a
6
=

a
2
4
=

(a
b
)4
a
3
0
=

µ

Fi
g.

4.
32

:M
er

gi
ng

HT
((

ab
)4 a

6)
w

ith
HT

(a
24

)
(b

ot
h

at
th

e
to

p)
to

HT
((

ab
)4 a30

)
(b

ot
to

m
tr

ee
).

R
ep

ar
sin

g
th

e
re

pe
at

in
g

m
et

a-
bl

oc
k
µ

on
he

ig
ht

on
e

of
th

e
rig

ht
tr

ee
is

do
ne

by
re

co
m

pu
tin

g
µ

’s
fra

gi
le

no
de

s.

182

4.5 Sparse Suffix Sorting in Text Space

T =

u

tHTη(X) tHTη(Y)

v w

string(v)
string(w)

string(u) string(v)

η-nodes

LCE intervalLCE intervalLCE interval

Fig. 4.33: Problem with generated substrings when merging tHTη(X) and
tHTη(Y). Assume that we want to merge tHTη(X) and tHTη(Y), and thus
compute the η-nodes (like u) between both trees. On the one hand, we cannot
easily find a surrogate substring for the generated substring of a non-surrounded
η-node like v or of a newly created η-node like u. Although there is a second
occurrence of string(v) to the right, string(v) can be extended or shortened when
prepending characters (e.g., suppose that string(v) = ak, and that there is an
a to the left of the left occurrence of string(v), but not to the left of the right
occurrence). Hence, it is a problem to overwrite string(u) or the left occurrence
of string(v). On the other hand, we can find suitable surrogate substrings for
the generated substrings of the η-nodes like for w that are not near the borders
of an LCE interval.

Remark 4.34. In the following, we stick to the result obtained in Lemma 4.32
instead of Cor. 4.33. Although Lemma 4.32 has a slower running time for LCPs
that are short, the additional rank-support of Cor. 4.33 makes it difficult to
achieve our aimed running time for merging two trees (and therefore would
restrain us from achieving our final goal stated in Thm. 4.1). To merge two
trees, where each tree is augmented with the bit vector and its rank-support,
the task would be to build a rank-support for the concatenation of the bit
vectors (preferably in logarithmic time). Unfortunately, we are not aware of
a rank-support that is efficiently mergeable (a näıve solution is to build the
rank-support of the large bit vector from scratch in linear time).

4.5.2 Sparse Suffix Sorting with Truncated HSP Trees
To use the η-truncated HSP trees as dynLCEs in the situation where they are
stored in text space, we need an adapted merge operation. Like with HSP trees,
merging two η-truncated HSP trees involves a reparsing of the nodes at the
facing borders (cf. Fig. 4.32). However, the reparsing of the η-nodes on those
borders is especially problematic, as can be seen in Fig. 4.33: Suppose that
we rename an η-node v from N2 to N3 with |string(N2)| < |string(N3)|. If the

183

4 Sparse Suffix Sorting

name N3 is not yet maintained in the dictionary, we have to create N3, i.e., a
pointer to a substring X of the text with X = string(N3). The critical part is to
find X in the not-yet overwritten parts of the text: Although we can create a
suitably long string containing X by concatenating the generated substrings of
v’s preceding and succeeding siblings, these η-nodes may point to text intervals
that are not consecutive. Since the name of an η-node is the representation
of a single substring, we would have to search X in the entire remaining text.
In the case that v is surrounded, Lemma 4.22 shows that X is a prefix of the
generated substring of a sibling η-node (unlike in Fig. 4.47, where the generated
substring of the ESP node with name U cannot be easily determined). With
this insight, we finally show an approach that proves Thm. 4.1. For that, it
remains to implement Rule 3 and Rule 4 from Sect. 4.4.1 in the context that we
maintain η-truncated HSP trees in text space: We explain

Goal 1: how the parameter η has to be chosen such that tHTη(Y) fits into
|Y | lg σ bits (needed when creating new trees in Rule 3), and

Goal 2: how to merge two η-truncated HSP trees without the need of extra
working space (needed in Rule 4).

4.5.2.1 Storing Truncated HSP Trees in Text Space

Our first goal is to store tHTη(T [I]) in a text interval I. Since tHTη(T [I])
can contain nodes with |I| /2η distinct names, it requires O(|I| /2η) words,
i.e., O(|I| lg n/2η) bits of space that might not fit in the |I| lg σ bits of T [I].
Declaring a constant α (independent of n and σ, but dependent on the size of a
single node), we can solve this space issue by setting

η := log3(α lg2 n/ lg σ).

Lemma 4.35. The number of nodes of an η-truncated HSP tree on a substring
of length ` is bounded by O(`(lg σ)0.7/(lg n)1.2) with η = log3(α lg2 n/ lg σ).

Proof. To obtain the upper bound on the number of nodes, we first compute a
lower bound on the number of bits taken by the generated substring of an η-node,
which is already lower bounded by 2η lg σ bits. We begin with changing the
base of the logarithm from 3 to 2/3, and reformulate η = log3(α lg2 n/ lg σ) =
(log3 2− 1) log2/3(α lg2 n/ lg σ) = log2/3(α lg2 n/ lg σ)log3 2−1. This gives

2η lg σ = 3η(2/3)η lg σ
= α(α lg2 n/ lg σ)log3 2−1 lg2 n

= (αlog3 2)(lg n)2 log3 2(lg σ)1−log3 2.

With the estimate 0.6 < log3 2 < 0.7 we simplify this to

(αlog3 2)(lg n)2 log3 2(lg σ)1−log3 2 > α0.6(lg n)1.2(lg σ)0.3.

184

4.5 Sparse Suffix Sorting in Text Space

Hence, the generated substring of an η-node takes at least 2η lg σ ≥ α0.6(lg n)1.2

(lg σ)0.3 bits.
Finally, the number of nodes is bounded by

`/2η ≤ ` lg σ/(α0.6(lg n)1.2(lg σ)0.3) = `(lg σ)0.7/(α0.6(lg n)1.2).

Hence, an η-node with η = log3(α lg2 n/ lg σ) generates a substring containing
at most 3η = α lg2 n/ lg σ characters.

Plugging this value of η in Lemma 4.31 and Lemma 4.32 yields two corollaries
for the η-truncated HSP trees:

Corollary 4.36. We can compute an η-truncated HSP tree on a substring of
length ` in O(` lg∗ n+ tlook`/2η + ` lg lg n) time. The tree takes O(`/2η) words
of space. We need a working space of O(lg2 n lg∗ n/ lg σ) characters.

Proof. The tree has at most `/2η nodes, and thus takes O(`/2η) words of
space. According to Lemma 4.31, constructing an η-node uses O(3η lg∗ n) =
O(lg2 n lg∗ n/ lg σ) characters as working space.

Corollary 4.37. An LCE query on two η-truncated HSP trees can be answered
in O(lg∗ n lg n) time.

Proof. LCE queries are answered as in Lemma 4.32, where the time bound
depends on η. Since an η-node generates a substring of at most 3η = α lg2 n/ lg σ
characters, we can compare the generated substrings of two η-nodes in O(α lg n)
time. Overall, we compare O(lg∗ n) η-nodes, such that these additional costs
are bounded by O(lg∗ n lg n) time overall, and do not slow down the running
time O(lg∗ n lg(n/2η) + lg∗ n lg n) = O(lg∗ n lg n).

4.5.2.2 Merging of Truncated HSP Trees

Our second and final goal is to adapt the merging used in the sparse suffix
sorting algorithm (Sect. 4.4.1). Suppose that our algorithm finds two intervals
[i . . i+ `−1] and [j . . j+ `−1] with T [i . . i+ `−1] = T [j . . j+ `−1]. Ideally, we
want to construct tHTη(T [i . . i+ `− 1]) in the text space [j . . j + `− 1], leaving
T [i . . i+ `− 1] untouched so that parts of this substring can be referenced by
the η-nodes. Unfortunately, Rules 1 to 4 cannot be applied directly due to our
working space limitation. Since we additionally use the text space as working
space, we have to be careful about what to overwrite. In particular, we focus
on how to

(a) partition the LCE intervals such that the generated substrings of the fragile
non-surrounded η-nodes are protected from becoming overwritten,

(b) keep enough working space in text space available for merging two trees,

(c) construct tHTη(T [i . . i+ `− 1]) in the text space [j . . j + `− 1] when the
intervals [i . . i+ `− 1] and [j . . j + `− 1] overlap, and how to

185

4 Sparse Suffix Sorting

LCE interval LCE interval

T =

f f ≥ g f f

Fig. 4.34: Division of LCE intervals in protected and recyclable parts. The
protected and the recyclable parts are depicted with horizontal magenta lines ()
and vertical violet lines (), respectively.

(d) bridge the gap T [e(I) + 1 . . b(J) − 1] when merging tHTη(T [I]) and
tHTη(T [J]) to tHTη(T [b(I) . . e(J)]) for two intervals I and J with
b(I) < b(J) and |[e(I) + 1 . . b(J)− 1]| < g, as performed in Rule 4.

(a) Partitioning of LCE intervals. To merge two η-truncated HSP trees, we
have to take special care of those η-nodes that are fragile, because their names
can change due to a merge. If the parsing changes the name of an η-node v, we
first check whether v’s new name is already present in the dictionary. If it is not,
we have to create v’s new name consisting of a text position i and a length ` such
that T [i . . i+ `− 1] = string(v). The new name of a fragile surrounded η-node
v can be created easily: According to Lemma 4.22, the generated substring of v
is always a prefix of the generated substring of an already existing η-node w,
which is found in the reverse dictionary of the η-nodes. Hence, we can create a
new name of v with string(w).

Unfortunately, the same approach does not work with the non-surrounded
η-nodes, because those nodes have generated substrings that are found at the
borders of T [j . . j + ` − 1] (remember node v of Fig. 4.33). If the characters
around the borders are left untouched (meaning that we prohibit overwriting
these characters), they can be used for creating the names of the fragile non-
surrounded η-nodes during a reparsing. To prevent overwriting these characters,
we mark both borders of the interval [j . . j + `− 1] as protected. Conceptually,
we partition an LCE interval into (1) recyclable and (2) protected intervals
(see Fig. 4.34); we free the text of a recyclable interval for overwriting, while
prohibiting write access on a protected interval. The recyclable intervals are
managed in a dynamic, global list. We comply with the following property:

Property 6: f :=
⌈
2α lg2 n∆L/ lg σ

⌉
= Θ(g) text positions of the left

and right ends of each LCE interval are protected.

This property solves the problem for the non-surrounded nodes, because a
non-surrounded η-node has a generated substring that is found in T [j . .j+f−1]
or T [j + `− 1− f . . j + `− 1].

186

4.5 Sparse Suffix Sorting in Text Space

p p p p

i I
T =

j
f J
p f ≤ f f

T =

[b(I) . . e(J)]

η-nodes

p p

p+ f ≤ f

T =

i b e+ 1

i+ p+ f j + `− f

η-node

Fig. 4.35: Top: Overlapping
LCE intervals I = [i . . i +
` − 1] and J = [j . . j +
` − 1]. Middle: Partition-
ing I and J as described
in (c). Bottom: Finding the
generated substring T [b . . e]
of an η-node in a protected
interval. Given that p is
a period of T [I ∪ J], it
is sufficient to make f + p
characters on the left pro-
tected to find the gener-
ated substring of all η-nodes
of tHTη(T [i . . j + `− 1]) in
T [i . . i+p+f−1]. The pro-
tected and the recyclable
parts of the LCE intervals
are depicted with horizon-
tal magenta lines () and
vertical violet lines (), re-
spectively. Parts that have
not yet been declared as pro-
tected or recyclable are dot-
ted ().

(b) Reserving text space. We can store the upper part of the η-truncated HSP
tree in a recyclable interval, because it needs `/2η lg n ≤ `α0.6(lg σ)0.7/(lg n)0.2 =
o(` lg σ) bits. Since f depends on α and g, we can choose g (the minimum length
of a substring on which an η-truncated HSP tree is built) and α (relative to the
number of words taken by a single η-truncated HSP tree node) appropriately to
always leave f lg σ/ lg n = O(lg∗ n lg n) words on a recyclable interval untouched,
sufficiently large for the working space needed by Cor. 4.36. Therefore, we
precompute α and g based on the input text T , and set both as global constants
dependent on σ and n. Since the same amount of free space is needed during a
subsequent merging when reparsing an η-node, we add the following property:

Property 7: Each LCE interval has f lg σ/ lg n words of free space left
on a recyclable interval.

(c) Interval overlapping. In our algorithm for sparse suffix sorting, a special
problem emerges when two computed LCE intervals overlap. For instance, this

187

4 Sparse Suffix Sorting

T =

η-nodes

η-nodes

T =

bridging nodes

f ≥ g f < g f ≥ g f

I J
[e(I)− f . . b(J) + f]

merging

Fig. 4.36: Merging tHTη(T [I]) and tHTη(T [J]) with b(J)−g ≤ e(I) ≤ b(J)−1.
The substring T [e(I)− f . . b(J) + f] is marked protected for the sake of the
bridging nodes.

can happen when the LCE of a position i ∈ P with a position j ∈ P overlaps,
i.e.,

[i . . i+ lce(i, j)− 1] ∩ [j . . j + lce(i, j)− 1] 6= ∅.

The algorithm would proceed with merging both overlapping LCE intervals to
satisfy Property 5. However, the merged LCE interval cannot respect Property 6
and 7 in general (consider that each interval has a length of 3g, and both
intervals overlap with 2g characters). In the case of overlapping, we exploit the
periodicity caused by the overlap to make an η-truncated HSP tree fit into both
intervals (while still assuring that Property 4 and Property 5 hold, and that we
can restore the text).

In a more general setting, suppose that the intervals I := [i . . i + ` − 1]
and J := [j . . j + `− 1] with T [I] = T [J] overlap, without loss of generality
i < j. Given ` > 2g, our task is to create tHTη(T [i . . j + `− 1]) (e.g., needed
to comply with Property 4). Since T [I] = T [J], the substring T [i . . j + `− 1]
has a period p with 1 ≤ p ≤ j − i, i.e., T [i . . j + `− 1] = XkY , where |X| = p
and Y is a (proper) prefix of X, for an integer k with k ≥ 2 (k > 1 since
j ≤ i+ `− 1, otherwise i > j or I ∩ J = ∅). By definition, each substring of
T [i + p . . j + ` − 1] appears also p characters earlier. We treat the substring
T [i . . i + p + f − 1] as a reference and therefore mark it protected. Keeping
the original characters in T [i . . i + p + f − 1], we can restore the generated
substrings of every η-node by an arithmetic progression. This can be seen
by two facts: First, the length of the generated substring of an η-node is at
most 3η = α lg2 n/ lg σ ≤ f/2. Second, given an η-node with the generated
substring T [b . . e] with i+ p+ f ≤ e ≤ j+ `− 1, we find an integer k with k ≥ 0
such that T [b . . e] = T [b− pk . . e− pk] and [b− pk . . e− pk] ⊆ [i . . i+ p+ f − 1]

188

4.5 Sparse Suffix Sorting in Text Space

(since e− b ≤ f/2). Hence, we can make the interval [i+p+f +1 . . j+ `−1−f]
recyclable, which is at least as large as f , since |I ∪ J | ≥ j − i+ 2g ≥ p+ 2g is
at least p+ 3f for a sufficiently large g. This partitioning into protected and
recyclable intervals is illustrated in Fig. 4.35.

For the actual merging operation, we elaborate an approach that respects
Properties 6 and 7:

(d) Merging with a gap. We introduce a merge operation that supports the
merging of two η-truncated HSP trees whose LCE intervals have a gap of less than
g characters. In contrast to Lemma 4.29, we additionally build new η-nodes on
the gap between both trees. The η-nodes whose generated substrings intersect
with the gap are called bridging nodes.

Let tHTη(T [I]) and tHTη(T [J]) be built on two LCE intervals I and J with
1 ≤ b(J)− e(I) ≤ g. Our task is to compute the merged tree tHTη(T [b(I) . .
e(J)]). We do that by (a) reprocessing O(∆L+∆R) nodes at every height of both
trees (according to Lemma 4.29), and (b) building the bridging nodes connecting
both trees. Like with the non-surrounded nodes, the generated substring of a
bridging node can be a unique substring of the text. This means that overwriting
T [e(I)− f . . b(J) + f] would invalidate the generated substrings of the bridging
nodes and of some (formerly) non-surrounded nodes. Therefore, we also mark
the interval [e(I) − f . . b(J) + f] as protected. By doing so, we can use the
characters of T [e(I)−f . .b(J)+f] to (a) create the bridging η-nodes, and to (b)
reparse the non-surrounded nodes of both trees (Fig. 4.36). The bridging nodes
and their ancestors take o(lg n lg∗ n) words of additional space since building
tHTη(T [e(I) + 1 . . b(J)− 1]) with |b(J)− e(I)| = O(g) takes (g/2η) lg n =
o(g lg σ) = o(lg∗ n lg2 n) bits (or o(lg∗ n lg n) words) of space. By choosing g
and α sufficiently large, we can store the bridging nodes in a recyclable interval
while maintaining Property 7 for the merged LCE interval. Finally, the time
bound for this merging strategy is given in the following corollary:

Corollary 4.38. Given two LCE intervals I and J with b(I) ≤ b(J) ≤ e(I)+g
and their respective η-truncated HSP trees, we can build tHTη(T [b(I) . . e(J)])
in O(g lg∗ n+ tlookg/2η + gη/ logσ n+ tlook lg∗ n lg n) time.

Proof. We adapt the merging of two HSP trees (Lemma 4.29) for the η-truncated
HSP trees. The difference to Lemma 4.29 is that we reparse an η-node by
rebuilding its local surrounding consisting of O((∆L + ∆R)3η) nodes that take
α(∆L + ∆R) lg2 n/ lg σ ≤ f words for a sufficiently large α. According to
Property 7, there are at least f words of space left in a recyclable interval to
recompute an η-node, and to create the bridging nodes in the fashion of Cor. 4.36.
Both creating and recomputing takes overall O(g lg∗ n+ tlookg/2η + gη/ logσ n)
time.

There is one problem left before we can prove the main result of this chapter:
The sparse suffix sorting algorithm of Sect. 4.4.1 creates LCE intervals on

189

4 Sparse Suffix Sorting

substrings smaller than g between two LCE intervals temporarily when applying
Rule 3. We cannot afford to build such tiny η-truncated HSP trees, since they
cannot respect Property 6 and Property 7. Due to Rule 4, we eventually merge
a temporarily created dynLCE with a dynLCE on a long LCE interval. Instead of
temporarily creating an η-truncated HSP tree covering less than g characters,
we apply the new merge operation of Cor. 4.38 directly, merging two trees that
have a gap of less than g characters. With this and the other properties stated
above, we come to the final proof:

Proof of Thm. 4.1. The analysis is split into suffix comparison, tree generation
and tree merging:

• Suffix comparisons are done as in Cor. 4.28. LCE queries on η-truncated
HSP trees and HSP trees are conducted in the same time bounds (compare
Lemma 4.25 with Cor. 4.37).

• All positions considered for creating the η-truncated HSP trees belong to C.
Constructing the η-truncated HSP trees costs O(|C| lg∗ n + tlook |C| /2η +
|C| lg lg n) overall time, due to Cor. 4.36.

• Merging in the fashion of Cor. 4.38 does not affect the overall time: Since
a merge of two trees introduces less than g new text positions to an LCE
interval, we conclude with the same analysis as in Thm. 4.30 that the
time for merging is upper bounded by the construction time.

Plugging the times for suffix comparisons, tree construction and merging in
Cor. 4.28 yields the overall time O(tC(|C|)) =

= O(|C| lg∗ n+ tlook |C| /2η + |C| lg lg n)
= O

(
|C| (tlook(lg σ)0.7/(lg n)1.2 + lg lg n)

)
= O

(
|C| (

√
lg σ + lg lg n)

)
because tlook = O(lg n). The time for searching and sorting the suffixes is
O(tQ(|C|)m lgm) = O(m lgm lg∗ n lg n). The auxiliary data structures used are
SAVL(Suf (P)), the search tree L for the LCE intervals, and the list of recyclable
intervals, each taking O(m) words of space.

4.6 Alternative to the Suffix AVL Tree
Instead of using the suffix AVL tree of Irving and Love [134], we can devise an
alternative data structure for computing the sparse suffix sorting: A balanced
binary search tree (e.g., an AVL or red-black tree) with suffixes as keys and the
lexicographic order as sorting criterion. Each node of the tree is augmented with
four LCP values. We call this data structure a binary search prefix tree (BSPT),

190

4.6 Alternative to the Suffix AVL Tree

v

LL(v) RL(v)LR(v) RR(v)

Fig. 4.37: Node v ∈ B(T,P) with two
children. Each child has a subtree,
which is symbolized by a triangle.
The rightmost and leftmost leaves of
these two subtrees define the nodes
LL(v), LR(v), RL(v), and RR(v).

and write B(T,P) for the BSPT containing suffixes beginning at the text positions
of a set P . We name its nodes after the starting positions of their corresponding
suffixes, i.e., a node v ∈ B(T,P) corresponds to the suffix T [v . .] (like the suffix
tree leaves storing suffix numbers in Sect. 3.3.2). A node v stores the LCP values
(see also Fig. 4.37)

• cpLL(v) := lce(v,LL(v)),

• cpLR(v) := lce(v,LR(v)),

• cpRL(v) := lce(v,RL(v)), and

• cpRR(v) := lce(v,RR(v)),

where

• LL(v) (resp. LR(v)) denotes the leftmost (resp. rightmost) node in the
subtree rooted at the left child of v, and

• RL(v) (resp. RR(v)) denotes the leftmost (resp. rightmost) node in the
subtree rooted at the right child of v.

If v does not have a left (resp. right) child, set LL(v),LR(v) ← v (resp.
RL(v),RR(v) ← v) for convenience. Using a pointer based structure for the
tree, B(T,P) occupies O(|P|) words of space. It has the following properties:

• SSA(T,P) and SLCP(T,P) can be computed by an in-order traversal of
the tree. We have SSA(T,P)[i] = v for a node v with in-order number i.
Additionally, SLCP(T,P)[i] = cpLR(v) (resp. SLCP(T,P)[i+ 1] = cpRL(v))
if v has a left (resp. right) child,

• Accessing SSA(T,P) or SLCP(T,P) can be supported in O(lg |P|) time,
given that we augment each node with its subtree size.

This shows that the BSPT is a more natural choice for representing SSA(T,P)
and SLCP(T,P), compared to the suffix AVL tree (cf. above of Cor. 4.28). It
can also perform pattern matching within the same time bounds as the suffix
AVL tree. To show this, we need a small helper lemma:

191

4 Sparse Suffix Sorting

SSA(T,P) =

λ

ρ

cpLL(v) cpLL(v)

◦ ◦T [LL(v) + λ]

T [v + λ] =

6= Y [λ+ 1]

◦
Y must occur
in this interval

· · · LL(v) · · · LR(v) v RL(v) · · · RR(v) · · ·

Y [1] Y [1] Y [1]

...
...

... Y [ρ]

Y [λ]

Fig. 4.38: Setting of the proof of Thm. 4.40(a), where cpLL(v) > λ. The
vertical bar below the entry SSA(T,P)[i] is of length SLCP(T,P)[i]. Since
λ = lcp(T [LL(v) . .], Y), Y [j] = T [LL(v) + j − 1] for all j = 1, . . . , λ, but
T [LL(v) + λ] = T [v + λ] 6= Y [λ].

SSA(T,P) =

λ

ρ

cpLL(v) λ

`

cpRL(v)

◦Y [λ+ `+ 1] > T [v + λ+ `] =

· · · LL(v) · · · LR(v) v RL(v) · · · RR(v) · · ·

Y [1] Y [1] Y [1]

...
...

... Y [ρ]

Y [λ]

Fig. 4.39: Setting of the proof of Thm. 4.40(b), where cpLL(v) = λ. The figure
depicts the particular case that T [v + λ+ `] < Y [λ+ `+ 1] and cpRL(v) ≥ λ+ `.
All occurrences of Y are found in the right subtree of v.

192

4.6 Alternative to the Suffix AVL Tree

SSA(T,P) =

λ

ρ
cpLL(v) cpLL(v)

lcp(Y, ·) ≥ ρ

◦

= Y [1 + cpLL(v)]

= T [LL(v) + cpLL(v)]

6= T [v + cpLL(v)] = ◦

· · · LL(v) · · · LR(v) v RL(v) · · · RR(v) · · ·

Y [1] Y [1] Y [1]

...
...

... Y [ρ]

Y [λ]

Fig. 4.40: Setting of the proof of Thm. 4.40(c), where cpLL(v) < λ. We have
Y [j] = T [LL(v) + j − 1] = T [v + j − 1] for all j = 1, . . . , cpLL(v), but Y [1 +
cpLL(v)] = T [LL(v) + cpLL(v)] 6= T [v + cpLL(v)]. Since lcp(Y, T [i . .]) ≥ ρ for all
i = cpLL(v), . . . , cpRR(v), all occurrences of Y are found in the left subtree of v.

Lemma 4.39 ([134, Lemma 1]). Given three strings X, Y, Z with the lexico-
graphic order X ≺ Y ≺ Z, we have lcp(X,Z) = min(lcp(X, Y), lcp(Y, Z)).

Next, we show that we can search a pattern Y within the same time bounds
as the suffix AVL tree:

Theorem 4.40. Given a text T of length n, and B(T,P) built on the suffixes
of T whose starting positions are in P , we can find argmax{lcp(Y, T [p . .]) | p ∈
P} of a pattern Y in O(|Y | / logσ n+ lg |P|) time.

Proof. Analogously to the pattern matching algorithm with SA and LCP [183,
Fig. 3], we perform a binary search by walking down the tree. We maintain
two variables λ, ρ ∈ [1 . . n] with the invariant that λ = lcp(T [LL(v) . .], Y)
and ρ = lcp(T [RR(v) . .], Y) on visiting a node v. Starting at the root note,
we initialize λ← lcp(T [LL(root) . .], Y) and ρ← lcp(T [RR(root) . .], Y), where
root is the root node of B(T,P). Suppose that we are currently at a node
v ∈ B(T,P). Further suppose that λ ≥ ρ. Otherwise (λ < ρ), exchange

• LL(v), LR(v), RL(v), RR(v), and λ with

• RR(v), RL(v), LR(v), LL(v), and ρ, respectively.

We follow the case analysis of [183, Fig. 2], whose cases depend on the relationship
between cpLL(v) and λ:

193

4 Sparse Suffix Sorting

(a) Case cpLL(v) > λ, see also Fig. 4.38. Then Y [λ + 1] > T [v + λ] =
T [LL(v) + λ], and thus Y � T [v . .].
• If cpRL(v) < λ then Y does not occur in T .
• Otherwise (cpRL(v) ≥ λ), λ ≤ lcp(Y [1 . .], T [RL(v) . .]). We set λ ←
λ+ lcp(Y [1 + λ . .], T [RL(v) + λ . .]), and descend to v’s right child.

(b) Case cpLL(v) = λ, see also Fig. 4.39. We compute ` := lcp(T [v+λ. .], Y [λ+
1 . .]). If both strings are equal, we found a match and return. Otherwise,
we compare the first pair of mismatching characters T [v + λ + `] and
Y [λ+ `+ 1].
• If T [v + λ+ `] < Y [λ+ `+ 1], then the corresponding suffix T [v . .]

of v is (lexicographically) smaller than Y . We abort the search
if cpRL(v) < λ + `, because then the next lexicographically larger
suffix T [RL(v) . .] stored in B(T,P) shares a shorter prefix with Y
than T [v . .] with Y . Under the assumption that cpRL(v) ≥ λ+ `, we
set λ← lcp(T [RL(v) + λ+ ` . .], Y [λ+ `+ 1 . .]), and descend to v’s
right child.
• The case that T [v + λ+ `] > Y [λ+ `+ 1] is symmetrical: T [v . .] is

larger than Y . We abort the search if cpLR(v) < λ+ `, because then
lcp(T [LR(v) . .], Y) < lcp(T [v . .], Y). Under the assumption that
cpLR(v) ≥ λ+ `, we set ρ← lcp(T [LR(v) + λ+ ` . .], Y [λ+ `+ 1 . .]),
and descend to v’s left child.

(c) Case cpLL(v) < λ, see also Fig. 4.40. We have cpLL(v) ≥ ρ since Y [1 . .
ρ] is a common prefix of all suffixes corresponding to the nodes of v’s
subtree (according to the assumption that ρ < λ). In particular, ρ ≤
lcp(Y [1 . .], T [LR(v) . .]). We set ρ← ρ+ lcp(Y [1 + ρ . .], T [LR(v) + ρ . .]),
and descend to v’s left child.

We never decrease ρ and λ (instead we abort in the case that Y is not a prefix
of any suffixes). Since both values are upper bounded by |Y |, we compare
O(|Y |) characters in total. In the word-packing model, this gives a running
time of O(|Y | / logσ n) for matching the characters of Y . Since the tree is
balanced, we access O(lg |P|) nodes. In total, the pattern matching takes
O(|Y | / logσ n+ lg |P|) time.

It remains to show how to insert new suffixes into B(T,P) efficiently. Let
1 ≤ p ≤ |T | , p /∈ P be a text position that we want to add to B(T,P). We
locate the insertion point in B(T,P), insert a new leaf, update all invalidated
LCP values, and re-balance the tree, if necessary. With the aid of Thm. 4.40,
we can update the LCP values efficiently:

Insertion Suppose that our goal is to insert v as the left child of a node u1
(inserting the right child is analogous by symmetry), see also Fig. 4.41.

194

4.6 Alternative to the Suffix AVL Tree

ui+1

ui
· · ·

u1

add v−−−→

ui+1

ui

· · ·

u1

v

Fig. 4.41: Creating the left
child v of a node u1 of a BSPT.
The node ui+1 is the lowest
node on the path from u1 to
the root that has an ancestor
of u1 as its right child.

u

v

A

w

B

C

right rotation−−−−−−−→

v

A

u

w

B C

Fig. 4.42: Right-
rotating a BSPT.
The BSPT is
depicted before
(left) and after
(right) right-
rotating the
triple of nodes
(u, v, w).

First we update the stored LCP values in B(T,P), and subsequently
perform rotations (if necessary). Let u1, u2, . . . , ui be the maximal sequence
of the ancestors of v such that uj is left child of uj+1 for every integer j
with 1 ≤ j ≤ i− 1. According to Lemma 4.39 we update

cpLL(uj)← lcp(T [uj . .], T [u . .]) = min(lcp(T [u . .], T [u1 . .]), cpLL(uj))

for every j with 1 ≤ j ≤ i, and cpRL(ui+1) ← lcp(T [ui+1 . .], T [v . .]),
where ui+1 is the parent of ui (we omit ui+1 if ui is the root node). In
total, we need to compute the two LCP queries lcp(T [v . .], T [u1 . .]) and
lcp(T [ui+1 . .], T [v . .]), whose values have already been computed after
locating the insertion point u1 as described in Thm. 4.40.

Rotation Suppose that we need to right-rotate the triple of nodes (u, v, w),
where w is the right child of v that is the left child of u. This setting
is also depicted in Fig. 4.42. The right rotation makes (a) w the left
child of u, and (b) u the right child of v. The operations (a) and (b)
invalidate the values cpLL(u) and cpRR(v), respectively. With an application
of Lemma 4.39, we can restore these values by setting
(a) cpLL(u)← min(cpLR(u), cpRR(w), cpLL(w)) (cf. Fig. 4.43), and

195

4 Sparse Suffix Sorting

· · · LL(w) · · · w · · · RR(w) u · · ·

= LL(u) = LR(u)

SSA(T,P) =

cpLR(u)

cpRR(w)

cpLL(w)

cpLL(u)

Fig. 4.43: Updating the value cpLL(u) after the right rotation of Fig. 4.42.

(b) cpRR(v)← min(cpRR(v), cpLR(u), cpRR(u)).
By symmetry, left rotations are done analogously.

Lemma 4.41. Updating B(T,P) to B(T,P ∪{p}) can be done in O(`/ logσ n+
lg n) time, where p ∈ [1 . . n] and ` = |T [p . .]|.

Like with the suffix AVL tree, it is possible to generalize BSPT to maintain
general strings instead of suffixes. For instance, BSPT could be used for sorting
strings online.

4.7 Conclusion
In the first part, we introduced the HSP trees based on the ESP technique as
a new data structure that (a) answers LCE queries, and (b) can merge with
another HSP tree to form a larger HSP tree. With these properties, HSP trees are
an eligible choice for the mergeable LCE data structure needed for the sparse
suffix sorting algorithm presented here.

In the second part, we developed a truncated version of the HSP tree with a
trade-off parameter determining the height at which to cut off the lower nodes.
Setting the trade-off parameter adequately, the truncated HSP tree fits into text-
space. As a result of independent interest, we obtained an LCE data structure
with a trade-off parameter, like other already known solutions. Although not
shown here, an ESP tree can similarly (a) answer LCE queries, (b) be merged,
and (c) be truncated. However, answering LCE queries or merging two ESP trees
is by a factor of O(lg n) slower than when the operations are performed with
HSP trees.

We also noted that the maximum number of fragile nodes in an ESP tree of a
string of length n can be at least Ω(lg2 n), which invalidates the upper bound
of O(lg n lg∗ n) on the maximal number of fragile nodes postulated in [55]. This
result also invalidates theoretical results that depend on the ESP technique (e.g.,
for approximating the SEDM [55] or the LZ77 factorization [54], or for building
indexes [100, 186, 227, 228]). We could quickly provide a new upper bound
of O(lg2 n lg∗ n), but it remains an open problem to refine our bounds. Luckily,

196

4.7 Conclusion

our proposed HSP technique can be used as a substitution for the ESP technique,
since HSP trees and ESP trees share the same bounds for construction time
and space usage. By switching to the HSP technique, we regain the promised
O(lg n lg∗ n) number of fragile nodes. It is easy to see that this result also
recovers the postulated O(lg n lg∗ n) approximation bound on the edit distance
matching problem [55, 228]: Given ET(T) of a string T of length n, it is
assumed by Cormode and Muthukrishnan [55, Thm. 7] that changing/deleting a
character of T or inserting a character in T changes O(lg∗ n lg n) nodes in ET(T).
Although we only provided proofs that pre-/appending characters to T changes
O(lg∗ n lg n) nodes of HT(T), it is easy to generalize this result by applying a
merge operation: Given that we insert a character c ∈ Σ between T [i] and T [i+1],
the trees HT(T) and HT(T [1 . . i]cT [i+ 1 . .]) differ in at most O(lg∗ n lg n)
nodes, since appending c to HT(T [1 . . i]) and merging HT(T [1 . . i]c) with
HT(T [i+ 1 . .]) changes O(lg∗ n lg n) nodes. The same can be observed when
deleting or changing the i-th character.

Our open problems are:

Practical evaluation. In the light of the theoretical improvements of the HSP
over the ESP, it is interesting to evaluate how the HSP behaves practically.
Especially, we are interested in how well the HSP behaves in the context of
grammar compression [19] like the ESP-index [186, 227] on highly repetitive
texts, where a more stable behavior of the repetitive nodes could lead to an
improved compression ratio.

Suffix sorting with trade-off parameter. From the theoretical point of view,
it would be interesting to compute the sparse suffix sorting with a trade-off
parameter adjusting working space and construction time of SSA and SLCP.

Sparsity based on suffix selection. In the case that we can impose a restriction
on the set of suffixes to sort, Kärkkäinen and Ukkonen [144] presented a
sparse suffix sorting algorithm running in optimal O(n) time while using O(m)
words of space, given that P is a set of equally spaced text positions. We9

wonder whether it is also possible to gain a benefit when only every i-th entry
of SA is needed, i.e., the order of each i-th lexicographically smallest suffix
for an arithmetic progression i = c, 2c, 3c, . . . with a constant integer c ≥ 2.
Related to this problem is the suffix selection problem, i.e., to find the i-th
lexicographically smallest suffix for a given integer i. Interestingly, Franceschini
and Muthukrishnan [96] showed that the suffix selection problem can be solved in
O(n) time in the comparison model, whereas suffix sorting is solved in Θ(n lg n)
time within the same model.

9 The idea of this problem was worked out together with Moshe Lewenstein.

197

4 Sparse Suffix Sorting

Mergeable rank-support. Remembering Remark 4.34, we are unaware of
whether rank-support data structures can be mergeable. Given two bit vectors B1

and B2, both with a rank-support data structure, the task is to compute a
rank-support data structure on the concatenation of B1 and B2 in sub-linear
time in the total lengths of both bit vectors.

Construction space aware compressed bit vectors. Although there are bit
vectors with rank-support that can be stored in compressed space (e.g., [205]),
there is, to the best of our knowledge, no (compressed) bit vector representation
that can be constructed within compressed space or online.

Sparse LZ77 factorization. The LZ77 factorization of Sect. 3.4 could be per-
formed on the sparse suffix tree, i.e., the suffix tree, in which all leaves not
corresponding to the m selected suffixes are omitted. Then the factorization
can only create referencing factors at the m selected positions. The referencing
factors have a referred position within P .

Extracting SLCP(T,P) from SAVL(Suf (P)). Each node of SAVL(Suf (P)) rep-
resents a suffix starting at a position of P . Besides a starting position, a node v
additionally stores max {lcp(u, v) | u ancestor of v}. The node u is one of the
two lowest ancestors having v in either its left or right subtree. In case that such
an ancestor u exists (the stored LCP value is greater than zero), v additionally
records whether it is in u’s left or right subtree (using a flag bit), such that
v and this bit uniquely determine the position of u in the tree. Although we
can transform SAVL(Suf (P)) to SSA(T,P) with a simple in-order traversal
as shown in Cor. 4.28, it is not obvious whether SAVL(Suf (P)) holds enough
information to determine the contents of SLCP(T,P). A conjecture is that the
stored LCP values in SAVL(Suf (P)) are actually a permutation of SLCP(T,P),
where missing values can be computed by taking the minimum values of certain
ranges.

198

4.8 Landscape Oriented Figures

4.
8

La
nd

sc
ap

e
O

rie
nt

ed
Fi

gu
re

s

α
1

α
1

α
1

α
1

α
1

··
·

α
1

α
1

α
1

α
1

β
1

α
1

α
1

α
1

α
1

α
1

α
1

··
·

α
1

α
1

α
1

α
1

β
1

β
1

β
1

α
1

··
·

α
2

··
·

α
2

α
2

··
·

α
2

β
2

α
3

b
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

··
·

a
a
a

a
a
a

a
a
a

a
a
a

b
b
b

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

··
·

a
a
a

a
a
a

a
a
a

a
a
a

b
b
b

b
b
b

b
b
b

a
a
a

··
·

α
1

α
2

α
2

n
o
d
es

of
T
0

n
o
d
es

of
T
1

n
o
d
es

of
T
2

α
1

α
1

α
1

α
1

α
1

··
·

α
1

α
1

α
1

a
′ 1

β
1

α
1

α
1

α
1

α
1

··
·

α
1

α
1

α
1

α
1

α
1

α
1

β
1

β
1

β
1

α
1

··
·

α
2

··
·

a
′ 2

α
2

··
·

α
2

a
′ 2

β
2

α
3

a
b

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

··
·

a
a
a

a
a
a

a
a
a

a
a

b
b
b

a
a
a

a
a
a

a
a
a

a
a
a

··
·

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

b
b
b

b
b
b

b
b
b

a
a
a

··
·

α
′ 1

α
′ 2

α
′ 2

Fi
g.

4.
44

:E
xc

er
pt

of
th

e
ES

P
tr

ee
s

ET
(Y

)
(t

op
)

an
d

ET
(Y
′)

(b
ot

to
m

,v
er

tic
al

ly
fli

pp
ed

),
w

he
re
Y

=
ba

3k
−

1 b
3 a

3k
−

3 b
9 a

3k
−

9
··
·

an
d
Y
′
=

aY
(d

efi
ne

d
in

T
hm

.4
.1

3)
.

T
he

tw
o

tr
ee

s
di

ffe
r

in
th

e
no

de
s

th
at

ar
e

hi
gh

lig
ht

ed
in

m
ag

en
ta

(
).

N
ot

e
th

at
rig

ht
of

th
e

rig
ht

m
os

t
α
′ 2

(b
ot

to
m

tr
ee

,r
ig

ht
m

os
t

m
ag

en
ta

no
de

)
is

th
e

no
de

β
2,

an
d

bo
th

no
de

s
fo

rm
a

Ty
pe

2
m

et
a-

bl
oc

k.

199

4 Sparse Suffix Sorting

a
3

a
3

a
3

a
3

a
3

a
3

J
a
3

a
2

N
N

a
9

a
6

P
a
5

N
2

a
1
5

β

ρ

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
b

a
a
a

a
a

b
a

b
a

a
3

a
3

a
3

a
3

a
3

a
3

I
a
3

a
2

N
N

a
9

a
6

Q
a
5

N
2

a
1
5

γ
ϑ

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
b

a
a
a

a
a

b
a

b
a

Y
=

a
Y

=

p
re
p
en
d
a

a
3

a
3

a
3

a
3

a
3

a
2

a
2

K
a
3

N
N

a
9

a
6

a
4

δ
N
2

a
1
9

φ

ω

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a

a
a

b
a
a

a
a
a

b
a

b
a

a
3

a
3

a
3

a
3

a
3

a
3

a
2

K
a
3

N
N

a
9

a
6

a
5

δ
N
2

a
2
0

φ

ψ

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a

b
a
a

a
a
a

b
a

b
a

Y
=

a
Y

=

p
re
p
en
d
a

Fi
g.

4.
45

:I
m

pa
ct

of
th

e
tie

br
ea

ki
ng

ru
le

(R
ul

e
(M

))
on

em
er

gi
ng

Ty
pe

M
no

de
so

ft
he

H
SP

tr
ee

sb
ui

lt
on

Y
=

a19
ba

5 (
ba

)2 .A
Ty

pe
M

no
de

(li
ke

I,
J

on
th

e
lef

to
rK

on
th

e
rig

ht
)i

sc
re

at
ed

by
fu

sin
g

a
sin

gl
e

sy
m

bo
lw

ith
its

sib
lin

g
m

et
a-

bl
oc

k.
R

em
em

be
r

th
at

R
ul

e
(M

)
pr

es
cr

ib
es

to
fu

se
th

e
sy

m
bo

lw
ith

its
su

cc
ee

di
ng

m
et

a-
bl

oc
k.

To
se

e
w

hy
th

is
ru

le
is

ad
va

nt
ag

eo
us

,t
he

H
SP

tr
ee

s
on

th
e

le
ft

(r
es

p.
ri

gh
t)

us
e

th
e

tie
br

ea
ki

ng
ru

le
R

ul
e

(M
’)

(r
es

p.
R

ul
e

(M
))

fa
vo

rin
g

th
e

pr
ec

ed
in

g
(r

es
p.

su
cc

ee
di

ng
)

m
et

a-
bl

oc
k.

W
hi

le
on

th
e

rig
ht

sid
e

on
ly

th
e

fra
gi

le
no

de
so

ft
he

lef
tm

os
tm

et
a-

bl
oc

ks
on

ea
ch

he
ig

ht
di

ffe
ra

fte
rp

re
pe

nd
in

g
a

(e
.g

.,
th

e
un

iq
ue

oc
cu

rr
en

ce
of

a 4
ch

an
ge

s
to

a 5
),

th
e

ch
an

ge
is

m
or

e
dr

am
at

ic
al

on
th

e
lef

t
sid

e.
Pr

ep
en

di
ng

th
e

ch
ar

ac
te

r
a

to
Y

(b
ot

to
m

le
ft)

ch
an

ge
s

th
e

na
m

es
of

th
e

no
de

s
w

ith
na

m
es

J
an

d
P

to
I

an
d

Q,
re

sp
ec

tiv
el

y.

200

4.8 Landscape Oriented Figures

B
B

B
B

A
A

N
N

D
D

C
G

F
M

τ

a
a
a

a
a
a

a
a
a

a
a
a

a
a

a
a

b
a

b
a

B
B

B
B

B
A

N
N

E
D

U

δ

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a

b
a

b
a

a
3

a
3

a
3

a
3

a
2

a
2

N
N

a
9

a
7

N
2

ε

a
a
a

a
a
a

a
a
a

a
a
a

a
a

a
a

b
a

b
a

a
3

a
3

a
3

a
3

a
3

a
2

N
N

a
9

a
8

N
2

λ

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a

b
a

b
a

p
re
p
en
d
a

p
re
p
en
d
a

Y
=

a
Y

=

Y
=

a
Y

=

Fi
g.

4.
46

:T
op

:E
T(
Y

)(
lef

t)
an

d
HT

(Y
)(

rig
ht

)o
ft

he
st

rin
g
Y

de
fin

ed
in

Fi
g.

4.
7.

Bo
tto

m
:E

T(
aY

)(
lef

t)
an

d
HT

(a
Y

)(
rig

ht
).

U
nl

ik
e

th
e

tw
o

ES
P

tr
ee

s
at

th
e

le
ft,

th
e

tw
o

H
SP

tr
ee

s
at

th
e

ri
gh

t
sh

ar
e

th
e

sa
m

e
tr

ee
to

po
lo

gy
.

201

4 Sparse Suffix Sorting

B
B

B
B

A
A

N
N

D
D

C
G

F
M

τ

a
a
a

a
a
a

a
a
a

a
a
a

a
a

a
a

b
a

b
a

··
·a

a
a
a
a
a
b
b
a
b
a
a
··
·

st
ri

ng
(G
)

st
ri

ng
(C
)

st
ri

ng
(D
)

se
ar
ch

fo
r

st
ri

ng
(U
)
=

a
a
b
a
b
a

Y
=

T
=

B
B

B
B

B
A

N
N

E
D

U

δ

a
a
a

a
a
a

a
a
a

a
a
a

a
a
a

a
a

b
a

b
a

p
re
p
en
d
a

a
Y

=

Fi
g.

4.
47

:P
ro

bl
em

w
ith

dy
na

m
ic

up
da

te
s

of
ES

P
tr

ee
s

st
or

ed
in

te
xt

sp
ac

e.
Su

pp
os

e
th

at
we

tr
un

ca
te

ES
P

tr
ee

s
at

a
ce

rt
ai

n
he

ig
ht

.
Tr

un
ca

te
d

no
de

s
ar

e
gr

ay
ed

ou
t.

Ea
ch

le
af

of
th

e
tr

un
ca

te
d

tr
ee

s
is

as
sig

ne
d

a
po

in
te

r
to

its
ge

ne
ra

te
d

su
bs

tr
in

g,
w

hi
ch

is
a

su
bs

tr
in

g
of

th
e

te
xt
T

(le
ft

).
Su

pp
os

e
th

at
we

ha
ve

bu
ilt

ET
(Y

)
(t

op
ri

gh
t)

on
a

su
bs

tr
in

g
Y

of
T

(Y
de

fin
ed

as
in

Fi
g.

4.
46

),
an

d
th

at
th

e
na

m
es

D,
C

an
d

G
ar

e
al

re
ad

y
pr

es
en

t
in

th
e

di
ct

io
na

ry
(h

en
ce

,t
he

y
ha

ve
di

ffe
re

nt
ge

ne
ra

te
d

su
bs

tr
in

gs
).

Fu
rt

he
rs

up
po

se
th

at
th

e
sp

ac
e

of
Y

in
T

ha
sb

ee
n

ov
er

wr
itt

en
.W

he
n

pr
ep

en
di

ng
an

a
to

ET
(Y

)t
o

fo
rm

ET
(a
Y

)
(b

ot
to

m
rig

ht
),

th
e

no
de

G
ch

an
ge

st
o

U,
fo

rw
hi

ch
we

ne
ed

to
se

ar
ch

its
ge

ne
ra

te
d

su
bs

tr
in

g
(a

ss
um

in
g

th
at

U
is

no
ty

et
st

or
ed

in
th

e
di

ct
io

na
ry

).
Th

e
ex

am
pl

e
ca

n
be

ela
bo

ra
te

d
su

ch
th

at
G

an
d

U
be

co
m

e
su

rr
ou

nd
ed

no
de

s
(p

re
pe

nd
a9k

an
d

ap
pe

nd
b9k

fo
r

a
su

ffi
ci

en
tly

la
rg

e
k
≥

1)
.

202

Chapter

5 Gapped Regular Structures
The laws of Nature are based upon the existence of a
pattern, linking one state of affairs to another; and where
there is pattern, there is symmetry.

— John D. Barrow [24]

Gapped regular structures, i.e., gapped repeats and gapped palindromes, are a
generalization of squares and palindromes. They were investigated extensively
within theoretical computer science [60, 64, 66, 70, 161, 163, 166, 229], motivated
by DNA and ribonucleic acid (RNA) structures [120, Sect. 7.11.2], modelling
different types of tandem repeats (i.e. repetitions), interspersed repeats (e.g.,
[139, 222]), as well as inverted repeats (e.g., [234, 240]) or hairpin structures (e.g.,
[226] and Fig. 5.1). Such structures are important for the analysis of structural
and functional information of genetic sequences, as can be seen by the number
of software products devoted to finding those (see references in [67, 170, 232]).

Given a text T , a gapped repeat is a triple of integers (iL, iR, u) with the
properties (a) 0 < iR−iL and (b) T [iL . . iL+u−1] = T [iR . . iR+u−1]. A variant
of gapped repeats are gapped palindromes with the properties (a) 0 ≤ iR − iL
and (b) T [iL . . iL + u− 1] is equal to the reverse of T [iR . . iR + u− 1]. In both
cases (repeats or palindromes), T [iL . . iL +u−1] and T [iR . . iR +u−1] are called
left and right arm, respectively. Given a real number α ≥ 1, a gapped repeat
or palindrome (iL, iR, u) is called α-gapped if iR − iL ≤ αu. A gapped repeat
and a gapped palindrome of a text of length n are an n-gapped repeat and
an n-gapped palindrome, respectively. A gapped repeat is maximal if its arms

UCAG

AGUC
U C

U

U
G

U
C

ϕ(A) = U
ϕ(C) = G
ϕ(G) = C
ϕ(U) = A

Fig. 5.1: An RNA hairpin structure, read-
ing CUGAUCGUUCUUCAG. Each character
represents an RNA base. The vertical
bars connect bases according to their
Watson-Crick base complement. Given
that ϕ maps bases to their complements,
ϕ(CUGA) is equal to GACU, which is the
reverse of UCAG. Both endings connected
by the vertical bars define the arms of a
maximal gapped ϕ-palindrome, defined
in Remark 5.35.

203

5 Gapped Regular Structures

1 2 3 4 5 6 7 8 9 10 11 12 13 14

m o m o m o s u m o m o m o

= =
= =

iL iR
u u

Fig. 5.2: Maximal 2-gapped repeats (above) and palindromes (below) of the
string momomosumomomo. The arms are the blocks with the blue horizontal
hatching (), the gap between two arms belonging to the same gapped repeat
or palindrome is diagonally hatched (). The gapped palindrome at the bottom
is described by the triple (iL, iR, u) = (2, 10, 5). The gapped repeats at the top
are repeats with overlapping arms (symbolized by halving their height). The
arms of gapped palindromes with label = coincide.

cannot be extended to their left nor to their right sides (to form a larger gapped
repeat). Similarly, a gapped palindrome is maximal if it can be extended neither
inwards (shrinking the gap on both sides by one character) nor outwards. The
set of all maximal α-gapped repeats and palindromes of a text T is denoted by
Rα(T) and Pα(T), respectively. See Fig. 5.2 for an example of maximal gapped
repeats and palindromes.

5.1 Related Work and Our Contribution
Most research articles on maximal α-gapped repeats and maximal α-gapped
palindromes tackle the question of how many maximal α-gapped repeats/palin-
dromes a text can have, and how to find them all efficiently (see Figure 5.3).
Restrictions with respect to the gap and the domain of α lead to different
approaches. The oldest contribution to this topic we are aware of is by Gus-
field [120], who presented an algorithm computing the set of all maximal
n-gapped repeats Rn(T) within O(nσ+ |Rn(T)|) time. He also presented an al-
gorithm computing all gapped palindromes (iL, iR, u) with a fixed gap iR−iL−u,
running in time linear in the length of the input times the alphabet size, plus
the number of occurrences. Subsequently, Brodal et al. [37] presented an algo-
rithm computing all α-gapped repeats in O(n lg n) time under the restriction

204

5.1 Related Work and Our Contribution

All Maximal α-Gapped Repeats
Time Restriction Ref.

O(nσ + occ) α = n [120, Sect. 7.12.3]
O(nσ + occ) α = n [2, Sect. 5.1]
O(n lg n) α = O(1) [37]
O(n lgα + occ) g = α [161]
O(α2n) |Σ| = O(1) [166]
O(n lg n+ α2n) |Σ| = nO(1) [166]
O(αn) |Σ| = O(1) [229]
O(αn) |Σ| = O(1) [66]
O(αn) |Σ| = nO(1) Thm. 5.33

All Maximal α-Gapped Palindromes
Time Restriction Ref.

O(nσ + occ) g = α [120, Sect. 9.2.2]
O(α2n) |Σ| = O(1) [163]
O(αn) |Σ| = nO(1) Cor. 5.34

Fig. 5.3: Running time
of algorithms comput-
ing all maximal α-
gapped repeats (top)
and palindromes (bot-
tom) of the form
(iL, iR, u) with the gap
g := iR − iL − u.
The number of maxi-
mal α-gapped repeats
(resp. palindromes) is
denoted by occ =
O(αn).

that α = O(1). The approaches of Gusfield [120] and Brodal et al. [37] have
the use of the suffix tree for the search in common. Without the suffix tree,
Abouelhoda et al. [2] showed that Rn(T) can be computed with the suffix
array and supporting data structures within the same time and space bounds
as Gusfield [120]. Next, Kolpakov and Kucherov [163] introduced 2-gapped
palindromes, and showed how to compute the set P2(T) of all maximal 2-gapped
palindromes in O(n + |P2(T)|) time for an input string T of length n over a
constant alphabet. They left open the question of how large |P2(T)| can actually
be. In a follow-up study [166], the notion of α-gapped repeats for an arbitrary
α ≥ 1 was coined. There, Kolpakov et al. [166] showed that the set Rα(T)
of all maximal α-gapped repeats can be computed in either (a) O(α2n) time
for constant alphabets or (b) O(α2n + |Rα(T)|) time for integer alphabets.
They further proved that |Rα(T)| = O(α2n) for a text T of length n, and that
the number of all maximal substrings with exponents in (1 + δ, 2] for a real
number δ with δ ∈ (0, 1], so-called δ-subrepetitions, is bounded by the number
of all maximal 1/δ-gapped repeats. In their preprint [165, Sect. 5], they posed
two open problems concerning their computed bounds:

• developing a more efficient algorithm and

• closing the gap between the upper bound O(α2n) and the lower bound
Ω(αn) (cf. Example 5.3) for the maximum number of all maximal α-
gapped repeats.

These questions laid the foundation of the following line of research: The first

205

5 Gapped Regular Structures

question was answered by Tanimura et al. [229] and Crochemore et al. [66]
independently: each group of authors presented an O(αn+ |Rα(T)|)-time algo-
rithm computing all maximal α-gapped repeats in a string whose characters are
drawn from a constant alphabet. The second question was answered to be order
of αn [66], and subsequently to be at most 18αn and 28αn+ 7n for all maximal
α-gapped repeats and all maximal α-gapped palindromes, respectively [108].
Following this line of achievements, we give further improvements to those
answers:

• The number of all maximal α-gapped repeats |Rα(T)| in a text of length
n is at most 3(π2/6 + 5/2)αn (Thm. 5.16).

• The number of all maximal α-gapped palindromes |Pα(T)| in a text of
length n is at most 7(π2/6 + 1/2)αn− 3n− 1 (Thm. 5.22).

• We can compute Rα(T) in O(αn) time for integer alphabets (Thm. 5.33).

• The algorithm of Thm. 5.33 can be adapted to find Pα(T) in O(αn)
time (Cor. 5.34).

• All results are valid when supporting and prohibiting overlaps of the arms.

While our combinatoric results build on the achievements of the point analysis
described in [166, Lemma 6], our algorithmic ideas are derived from Dumitran
et al. [70], who presented an algorithm computing the longest α-gapped re-
peat [70, Thm. 7] and the longest α-gapped palindrome [70, Thm. 8] in O(αn)
time.

The main difference to the former results is that we support overlaps (previous
results assumed that iL + u ≤ iR). This is a generalization because our proofs
work for both supporting and prohibiting overlaps. It makes the maximality
property more natural, since a left/right extension of a gapped repeat (resp.
an inward extension of a gapped palindrome) is always a gapped repeat (resp.
gapped palindrome).

Example 5.1. The first two characters of T = aaa form a gapped repeat (1, 2, 1).
The right extension (1, 2, 2) of both arms is a gapped repeat only if overlaps are
supported. Similarly, (1, 3, 1) is a gapped palindrome, but the inward extension
(1, 2, 2) is a gapped palindrome only if overlaps are supported.

Including overlapping arms was already considered by Crochemore et al. [66],
who split the combinatorial analysis up into maximal gapped repeats without
overlaps (the gap g := iR− iL− u is non-negative) and maximal gapped repeats
with overlaps (g is negative). For the latter ones, they showed that the number
of all gapped repeats with overlaps is less than n [66, Sect. 4]. This gives rise to
the following lemma:

Lemma 5.2 ([66, Conclusions]). The number of all maximal 1-gapped repeats
is less than |T |.

206

5.1 Related Work and Our Contribution

1 2 3 4 5 6 7 8 9 10 11 12

T3 = a b b a a b b a a b b a

3

7
11

1 5
9

3

71

5

Fig. 5.4: Illustration of Example 5.3 with k = 3 depicting all maximal gapped
repeats whose left arms (vertically hatched rectangles) have length one and
start within the first four positions. A left arm is connected with edges to all
possible right arms (horizontally hatched blocks). Each edge is labeled with
the distance of the starting positions of the respective arms.

1 2 3 4 5 6 7 8 9 10 11 12

T3 = a b b a a b b a a b b a

4 4

4 4

4 4

4 4

Fig. 5.5: Illustration of
Example 5.3 with k = 3
depicting all maximal
gapped palindromes
with an arm length
of one. Each pair of
rectangles connected
by a path P forms
a maximal gapped
palindrome, whose
arm-period is the sum
of the labels of the
edges of P .

207

5 Gapped Regular Structures

The following example shows that our obtained bounds on the number of all
maximal α-gapped repeats and palindromes are asymptotically tight:

Example 5.3 ([66, directly after Thm. 2]). Given a real number α with α ≥ 4,
the string Tk := (abba)k with an integer k ∈ Ω(α) contains Θ(αk) maximal
α-gapped repeats whose arms are of length one (see Fig. 5.4). Similarly, we find
Θ(αk) maximal α-gapped palindromes in Tk (see Fig. 5.5). We conclude that
the number of maximal α-gapped repeats and the number of maximal α-gapped
palindromes in the string Tk is Ω(αk).

In the light of Example 5.3, we cannot hope for algorithms finding all α-
gapped repeats or palindromes faster in the worst case. We conclude that the
worst case running times of our algorithms are tight.

5.2 Preliminaries
When writing T [b . . e], we can mean two different things: the expression can
denote both a substring and the occurrence of this substring starting at position b
(and ending at position e) in T . The second entity is called the segment1 T [b . .e].
A segment T [b . . e] of a string T is the occurrence of a substring S equal to
T [b . . e] in T ; we say that S occurs at position b in T . While a substring is
identified only by a sequence of characters, a segment is also identified by its
position in the string. Consequently, segments are always unique, while a string
may contain multiple occurrences of the same substring. We use the same
notation to address substrings and segments of a string. For two segments S
and S of a string T , we write S ≡ S if they start at the same position in T
and have the same length. We write S = S if the substrings identifying these
segments are the same (hence S ≡ S ⇒ S = S). We implicitly use segments
both like substrings of T and as intervals contained in [1 . . |T |], e.g., we write
S ⊆ S if two segments S := T [b . . e], S := T [b . . e] of T satisfy [b . . e] ⊆ [b . . e],
i.e., b(S) ≤ b(S) ≤ e(S) ≤ e(S).

Two segments S and S of the same text T are called consecutive if e(S) + 1 =
b(S). Two occurrences S and S with b(S) < b(S) of the same substring S in
the text T are called subsequent if there is no occurrence of S starting between
b(S) + 1 and b(S)− 1.

5.2.1 Periodicity
The time spent on counting and computing α-gapped repeats and palindromes
heavily depends on the repetitiveness of the text, i.e., the occurrences of periodic
substrings in the text. To deal with periodic substrings, we build on the following
classic lemma of Fine and Wilf:
1 This notion was coined by Crochemore et al. [66].

208

5.2 Preliminaries

≥ 2p

SL

SR
δ prefix of S
p

p− δ > p

Fig. 5.6: Setting of the proof of Cor. 5.5 with δ < p.
There are two occurrences SL and SR of S with an
overlap of 2p− δ characters. Both occurrences induce a
run with a period δ. There are at least three occurrences
of S’s prefix of length p + 1 (starting at b(SL), b(SR),
and b(SL) + p).

Lemma 5.4 ([80]). Given a string T with two periods p and p′ such that
p+ p′ ≤ |T |, the greatest common divisor gcd(p, p′) of p and p′ is also a period
of T .

Corollary 5.5. A periodic substring S in a text T with the smallest period p
cannot have two distinct occurrences SL and SR in T with |b(SL)− b(SR)| < p.

Proof. Since the smallest period of S is p, it holds that |S| ≥ 2p. Assume for a
contradiction that two distinct occurrences SL and SR of S exist in T with a
distance of δ := b(SR) − b(SL) such that 0 < δ < p (see also Fig. 5.6). Since
|SL ∩ SR| ≥ 2p− δ ≥ p, the distance δ is a period of S. Additionally, since S
has the smallest period p, there is another occurrence of a prefix of S starting
at b(SL) + p− δ with a length of at least p+ δ > p. Hence p− δ is also a period
of S. Since the sum of both periods δ and p − δ is less than |S|, Lemma 5.4
states that gcd(δ, p− δ) < p is a period of S. This contradicts the fact that p is
the smallest period of S.

Corollary 5.6. The length of the overlap between two subsequent occurrences
of an aperiodic substring S in a word T is upper bounded by b|S| /2c.

5.2.2 Gapped Repeats and Palindromes
Instead of working with triples of integers (iL, iR, u) as at the beginning of this
chapter (when introducing gapped repeats and palindromes), we switch notation
in favor of the introduced segments to ease the analysis that follows. From
now on we stick to pairs of segments (T [iL . . iL + u− 1], T [iR . . iR + u− 1]) (cf.
Fig. 5.7): Given a text T , we call a pair of segments (UL, UR) a gapped repeat
(resp. gapped palindrome) of T if

• b(UL) + 1 ≤ b(UR) and UR = UL in the case of a gapped repeat, or

• b(UL) ≤ b(UR) and UR = UL
ᵀ in the case of a gapped palindrome (it is

possible that UL ≡ UR).

The segments UL and UR are called left and right arm, respectively. The
value b(UR)−e(UL)−1 is called the gap. It is the distance between both arms in
case that it is positive. The distance q = b(UR)−b(UL) is called the arm-period of

209

5 Gapped Regular Structures

q ≤ α |UL|

UL g UR

left arm gap right arm

(a) g > 0

q ≤ α |UL|

UL UR

left arm right arm

(b) g = 0

left arm

UL

UR

q ≤ α |UL| right arm
(c) g < 0

Fig. 5.7: Pairs of segments (UL, UR). A pair is called a gapped repeat if 0 <
b(UR)−b(UL) and UL ≡ UR. It is called a gapped palindrome if 0 ≤ b(UR)−b(UL)
and UR ≡ UL

ᵀ. The segment (UL, UR) is called α-gapped if b(UR) − b(UL) ≤
α |UL|. The pair (a) has a positive gap g := b(UR) − e(UL) − 1, the pair (b)
defines a square, and the segments UL and UR of pair (c) overlap.

(UL, UR), which must not be confused with the periods of periodic strings. Both
terms have the following connection: The arm-period of a gapped repeat (UL, UR)
with a non-positive gap is a period of the periodic substring T [b(UL) . . e(UR)].
In particular, the arm-period of a gapped repeat (UL, UR) whose arms are
consecutive (i.e., the gap is zero) is the arm length of the square T [b(UL). .e(UR)].

For α ≥ 1, the gapped repeat or gapped palindrome (UL, UR) is called α-
gapped if its arm-period q is at most α |UL|.

A gapped repeat (UL, UR) is called maximal if the characters to the immediate
left and to the immediate right of its arms differ (as far as they exist), i.e.,

• T [b(UL)− 1] 6= T [b(UR)− 1] (or b(UL) = 1) and

• T [e(UL) + 1] 6= T [e(UR) + 1] (or e(UR) = n).

Similarly, a gapped palindrome (UL, UR) is called maximal if it can be extended
neither inwards nor outwards, i.e.,

• T [b(UL)− 1] 6= T [e(UR) + 1] (or b(UL) = 1 or e(UR) = n) and

• T [e(UL) + 1] 6= T [b(UR)− 1] (or b(UR) = 1 or e(UL) = n).

Let Rα(T) (resp. Pα(T)) denote the set of all maximal α-gapped repeats (resp.
palindromes) in T .

Gapped palindromes are a generalization of ordinary palindromes, since
the left arm and the right arm of a gapped palindrome (UL, UR) are ordinary
palindromes if they coincide (i.e., UL ≡ UR); in such a case we say that the
gapped palindrome (UL, UR) is an ordinary palindrome. For a maximal gapped
palindrome with a gap b(UR)− e(UL)−1 ≤ 1 it follows that UL ≡ UR (otherwise
it could be extended inwards). Hence, all maximal gapped palindromes with a
gap of at most one are maximal ordinary palindromes, and vice versa.

Figures 5.8 and 5.9 show examples for all α-gapped maximal repeats Rα(T)
and all α-gapped maximal palindromes Pα(T), respectively. The representation

210

5.2 Preliminaries

Fig. 5.8: All max-
imal α-gapped
repeats of the string
sleeplessness
with 3 ≤ α < 5. 1 2 3 4 5 6 7 8 9 10 11 12 13

s l e e p l e s s n e s s

UL UR

UL UR

UL UR

UL UR

UL UR UL UR

UL UR

1 2 3 4 5 6 7 8 9 10 11

A C T C C A T C T C A

UL UR

UL UR

UL UR

UL = UR

UL UR UL UR

Fig. 5.9: All maximal α-
gapped palindromes of
the string ACTCCATCTCA
with 5

2 ≤ α < 3.

of a maximal gapped repeat/palindrome by the segment Z := T [b(UL) . .
e(UR)] is not unique — the same segment Z can be composed of gapped
repeats/palindromes with different arm-periods. Instead, a maximal gapped
repeat/palindrome is uniquely determined by its left arm UL and its arm-period.
For instance, the string T = aabaa contains the maximal 4-gapped repeats
(T [1 . . 2], T [4 . . 5]) and (T [1], T [5]), and both gapped repeats span over T .

Kolpakov et al. [166] split the set of all maximal α-gapped repeats into three
subsets. They studied the maximal size of each subset:

• those whose arms are contained in one or two runs,

• those whose arms contain a periodic prefix or suffix larger than half of
the size of the arms, and

• those belonging to neither of the two previous subsets.

They showed that the first two subsets contain at most O(αn) elements
combined. For the last subset, they applied the point analysis introduced
in [158, Def. 17]. By mapping a gapped repeat to a point consisting of the end
position of its left arm and its arm-period, they showed that the points created
by two different maximal α-gapped repeats cannot 1

4α -cover the same point [166,
Lemma 6]. With this property, they bounded the size of the last subset by
O(α2n). In Sect. 5.3.2, we present a refined version of this point analysis, with
which we can show in Sect. 5.3.3 that the size of the last subset is O(αn). As a
consequence, the number of all maximal α-gapped repeats of a string of length
n is O(αn).

211

5 Gapped Regular Structures

≥ β

RL RR

UL UR

(a)

no run of length ≥ β

UL UR

(b)
UL ≡ UR

(c)

Fig. 5.10: Types of maximal α-gapped palindromes (UL, UR) under consideration.
The segments RL and RR are runs. The gapped palindromes in Fig. (a) and
Fig. (b) are β-periodic and β-aperiodic, respectively. The gapped palindrome in
Fig. (c) is an ordinary palindrome.

5.3 Combinatoric Result
Unlike former approaches [66, 163, 166], we partition the set of all maximal α-
gapped repeats (resp. palindromes) differently. We divide the set of all maximal
α-gapped repeats Rα(T) into two sets by the criterion whether their right arm
contains a periodic prefix or not. The two subsets are analyzed differently: For
the ones with a periodic prefix, we enumerate the runs covering this prefix. The
other subset is analyzed with the results of Sect. 5.3.2.

We process the set of all maximal α-gapped palindromes Pα(T) similarly, but
additionally put all maximal ordinary palindromes in a separate, third subset2,
see also Fig. 5.10 for an overview. We begin with a formal definition of these
subsets:

Given a positive number β ∈ R, a maximal α-gapped repeat (UL, UR) (resp.
a maximal α-gapped palindrome (UL, UR) with UL 6≡ UR) belongs to the set of
all maximal α-gapped β-periodic repeats Rβ

α(T) (resp. palindromes Pβα (T)) if
UR contains a periodic prefix of length at least β |UL|. We call the elements of
Rβ
α(T) and Pβα (T) β-periodic. A maximal α-gapped repeat is called β-aperiodic

if it is not β-periodic. A maximal α-gapped palindrome (UL, UR) is called
β-aperiodic if it is neither β-periodic nor a maximal ordinary palindrome. The
set of all maximal α-gapped β-aperiodic repeats and the set of all maximal α-
gapped β-aperiodic palindromes are denoted by Rβ

α(T) and Pβα (T), respectively.
Figure 5.11 summarizes the partitioning of the sets Rα(T) and Pα(T).

5.3.1 β-Periodic Repeats and Palindromes
We start with an upper bound on the number of all maximal α-gapped β-periodic
repeats Rβ

α(T) and palindromes Pβα (T) in the following lemma:

Lemma 5.7. Let T be a string. Further let α and β be two real numbers with
α > 1 and 0 < β < 1. Then
2 This subset is the set of all maximal α-gapped palindromes whose arms overlap.

212

5.3 Combinatoric Result

Set Properties Bound Attained in

Rβ
α(T) β-periodic repeats 2αE(T)

β
Lemma 5.7(R)

Rβ
α(T) β-aperiodic repeats

(
π2

6 −
1
2

)
αn

1−β Cor. 5.15, 2
3 ≤ β < 1

Pβα (T) β-periodic pali. 2(α− 1)E(T)
β

+ 2n Lemma 5.7(P),
Pβα (T) β-aperiodic pali.

(
π2

6 −
1
2

)
αn

1−β Cor. 5.21, 7
9 ≤ β < 1

— ordinary pali. 2n− 1 Lemma 2.3

Fig. 5.11: Partitioning the set of all maximal α-gapped repeats Rα(T) and the
set of all maximal α-gapped palindromes Pα(T). The column Bound lists the
upper bound on the size of the respective set. The function E(T) denotes the
sum of all exponents of all runs in T (see Chapter 2). Due to space restrictions
palindromes is abbreviated to pali..

UL UR

SL SR

RL RR

(a) b(UL) = b(RL)

UL UR

SL SR

RL RR

(b) b(UR) = b(RR)

Fig. 5.12: Setting of the proof of Lemma 5.7(R). Each figure shows a maximal
α-gapped β-periodic repeat (UL, UR) and the periodic prefixes SL and SR of its
respective arms UL and UR. The periodic prefixes are contained in the runs RL

and RR, respectively. The equation (a) b(UL) = b(RL) or (b) b(UR) = b(RR)
must hold. By the maximality property of runs, e(RL) = e(SL) and e(RR) =
e(SR), i.e., SL ≡ RL ∩ UL and SR ≡ RR ∩ UR.

(R)
∣∣∣Rβ

α(T)
∣∣∣ is at most 2α E(T)/β, and

(P)
∣∣∣Pβα (T)

∣∣∣ is at most 2(α− 1) E(T)/β + 2n.

Proof. Let (UL, UR) ∈ Rβ
α(T) (resp. ∈ Pβα (T)) be a maximal α-gapped β-periodic

repeat (resp. palindrome). By definition, the right arm UR has a periodic prefix
SR of length at least β |UR|. Let RR denote the run that generates SR, i.e.,
SR ⊆ RR. The two segments SR and RR have the smallest period p in common.
By the definition of the gapped repeats (resp. palindromes), there is a prefix SL

of UL (resp. suffix SL of UL) with SL = SR (resp. SL = SR
ᵀ). Let RL be the run

generating SL. By definition, RL has the same smallest period p as RR.

(R) Gapped Repeats. Since (UL, UR) is maximal, b(UL) = b(RL) or b(UR) =
b(RR) must hold (see Fig. 5.12); otherwise we could extend (UL, UR) to the left.

The periodic α-gapped repeat (UL, UR) is uniquely determined by its arm-
period q and

213

5 Gapped Regular Structures

RL RR

SL SR

UL UR

UL UR

SL SR

δ ∈ pN

RL RR

SL SR

UL UR

UL UR

RR

SL SR

< p

Fig. 5.13: Setting of the proof of Case (a) in Lemma 5.7(R) for two different
maximal α-gapped β-periodic repeats (UL, UR) and (UL, UR) with b(UL) =
b(UL) = b(RL). Left: The periodic prefixes SR and SR of the right arms of
both gapped repeats are contained in a single run. The smallest period p of
both runs RL and RR determines the possible starting positions of the right
arms. Right: The periodic prefixes of the right arms of both gapped repeats are
contained in different runs. Both runs cannot overlap more than p− 1 positions
due to Cor. 5.5.

UL UR

RL

≥ β
extend UL to UL

UL ≡ UR

Fig. 5.14: A β-periodic gapped palindrome (UL, UR)
with a run RL covering the suffix (resp. prefix) of
length β of the left arm UL (resp. right arm UR).
According to the proof of Lemma 5.7(P), we can
make (UL, UR) maximal by extending it inwards to
form an ordinary palindrome (UL, UR) with UL ≡ UR,
which is of the same type as Fig. 5.10c.

(a) RL in case b(UL) = b(RL), or

(b) RR in case b(UR) = b(RR).

Since (UL, UR) is α-gapped, it holds that q ≤ αu with u := |UL|. We analyze
Case (a), where b(UL) = b(SL) = b(RL) holds. Case (b) is treated exactly in
the same way by symmetry. The gapped repeat (UL, UR) is identified by its
arm-period q and RL. We fix RL and pose the question of how many maximal
periodic gapped repeats can be generated by RL. We answer this question by
counting the number of possible values for the arm-period q. Since the starting
position b(SR) = b(UR) = b(UL) + q = b(RL) + q of the periodic segment SR is
determined by q, two possible values of q must have a distance of at least p due
to Cor. 5.5, see also Fig. 5.13.

It is left to find a lower and an upper bound for the value of q. For the lower
bound, q = b(UR)− b(UL) = b(SR)− b(SL) is at least u ≥ 2p in case that the
arms UL and UR are not overlapping. Otherwise (in case the arms overlap), q
is at least p because the starting positions of the periodic segments SL and SR

have a distance of at least p (again due to Cor. 5.5). For the upper bound, with
u ≤ |SL| /β and q ≤ αu, we obtain q ≤ |SL|α/β ≤ |RL|α/β.

214

5.3 Combinatoric Result

UL g UR

SL SR

RL RR

(a) e(UL) = e(RL)

UL g UR

SL SR

RL RR

(b) b(UR) = b(RR)

Fig. 5.15: Setting of the proof of Lemma 5.7(P). Each figure depicts a maximal α-
gapped β-periodic palindrome (UL, UR) with the periodic suffix SL. The periodic
suffix SL ≡ RL ∩ UL of UL and the periodic prefix SR ≡ RR ∩ UR of UR are the
intersections of the runs RL and RR with the respective arms. By the maximality
property of runs, the equation (a) e(UL) = e(RL) or (b) b(UR) = b(RR) must
hold.

Finally, we have that p ≤ q ≤ |RL|α/β. Then the number of possible arm-
periods q is at most |RL|α/(βp) = exp(RL)α/β. Overall, the number of all
maximal α-gapped repeats is at most α E(T)/β for the case b(UL) = b(RL).
Since Case (b) with b(UR) = b(RR) is symmetric, we get the total upper bound
2α E(T)/β.

(P) Gapped Palindromes. If RL ≡ RR (see Fig. 5.14), then either b(UR) −
e(UL) ≤ 2 (i.e., (UL, UR) is an ordinary palindrome), or (UL, UR) is not maximal.
That is because of the following: Assume that RL contains SL and SR. Then
we have T [e(SL) + 1] = T [e(SL) − p + 1] = T [b(SR) + p − 1] = T [b(SR) − 1],
where the first and third equality follows from |SR| = |SL| ≥ 2p, and the second
equality follows from SR = SL

ᵀ.
From now on, we assume that RL 6≡ RR. Since (UL, UR) is maximal, e(UL) =

e(RL) or b(UR) = b(RR) must hold; otherwise we could extend (UL, UR) inwards.
This means that (UL, UR) is uniquely determined by the gap g := b(UR)−e(UL)−1
and

(a) RL in case e(UL) = e(RL), or

(b) RR in case b(UR) = b(RR).

Since ordinary palindromes are excluded from the set of all maximal α-gapped
β-periodic palindromes, the gap g is at least two. Cases (a) and (b) are depicted
in Fig. 5.15.

We analyze Case (a) with e(SL) = e(RL), Case (b) is treated exactly in the
same way by symmetry. The gapped palindrome (UL, UR) is identified by its
gap g ≥ 2 and RL. We fix RL and count the number of possible values of g.
Since the starting position b(SR) = e(RL) + g + 1 of the periodic segment SR is
determined by g, two possible values of g must have a distance of at least p due
to Cor. 5.5, see also Fig. 5.16. Since |UL| ≤ |SL| /β and (UL, UR) is α-gapped,
g ≤ (α− 1) |UL| ≤ (α− 1) |SL| /β. Then the number of possible values for g is
bounded by 1+ |SL| (α−1)/(βp) = 1+ |RL| (α−1)/(βp) = 1+exp(RL)(α−1)/β.

215

5 Gapped Regular Structures

RL RR

UL g UR

UL g UR

δ ∈ pN

RL RR

UL g UR

UL g UR

RR

≤ p− 1

Fig. 5.16: Setting of Case (a) in the proof of Lemma 5.7(P) for two different
maximal α-gapped β-periodic palindromes (UL, UR) and (UL, UR) with e(UL) =
e(UL) = e(RL) and the respective gaps g := b(UR) − e(UL) − 1 and g :=
b(UR) − e(UL) − 1. Left: The periodic prefixes of the right arms UR and UR

of both gapped palindromes (UL, UR) and (UL, UR) are contained in a single
run RR. The smallest period p of RR determines the possible starting positions
of the right arms. Right: The periodic prefixes of the right arms of both gapped
repeats are contained in different runs. Both runs cannot overlap more than
p− 1 positions due to Cor. 5.5.

y

x

1 2 3 4 5 6

1.29

2.57

3.86

5.14

1

2

3

4

5

6

Fig. 5.17: 7/9-cover of the points
{(4x − 2 − (y + 1 mod 2), 2y −
1) | 1 ≤ x, y ≤ 3} ⊂ N2. The
dash-dotted square of a point ~p
comprises all points that are 7/9-
covered by ~p (the square of ~p is
the square that has ~p as its top
right vertex). A point (x, y) with
y = 1 only 7/9-covers itself. The
light-gray dotted lines create the
grid N2. For each integer i with
1 ≤ i ≤ 4 the y-axis is label with
the value i/γ with γ := 7/9. Addi-
tionally, there is a gray horizontal
line having the height i/γ.

In total, the number of maximal α-gapped palindromes in this case is bounded
by n + (α − 1) E(T)/β for the case e(UL) = e(RL). Case (b) is symmetric,
leading to the bound of 2(α− 1) E(T)/β + 2n in total.

5.3.2 Improved Point Analysis
A pair of integers is called a point. We use points to upper bound the sizes of
the sets Rβ

α(T) and Pβα (T) by mapping their elements to a set of points C ⊂ Z2.
We estimate the size of C by the restriction that no two points in C γ-cover
the same point in Z2. What γ-cover means is formally given in the following

216

5.3 Combinatoric Result

definition:

Definition 5.8. For a real number γ with γ ∈ (0, 1], we say that a point
(x̂, ŷ) ∈ Z2 γ-covers a point (x, y) ∈ Z2 if x̂− γŷ ≤ x ≤ x̂ and ŷ(1− γ) ≤ y ≤ ŷ.

Note that the number of points that are γ-covered by a point (·, y) correlates
with γ and the value y. Figure 5.17 gives an example for γ := 7/9.

For our purpose, it is sufficient to focus on the set

Cn :=
{

(x, y) ∈ Z2 | 1 ≤ y ≤ n− 1 and 1 ≤ x ≤ n− y
}
,

since we will later show that we can map all maximal
α-gapped repeats/palindromes to Cn injectively. Before
that, we introduce two small helper lemmas that improve
an inequality needed in Lemma 5.11:

y

x

Cn

n− 1

n− 1

1

1

Lemma 5.9. Given a real interval I := [ψ−1/γ, ψ) with γ, ψ ∈ R and γ ∈ (0, 1],

|I ∩ Z| =

b1/γc+ 1 if 0 < ψ − bψc ≤ δ, or
b1/γc otherwise,

where δ := 1/γ − b1/γc. γ = 7
9

γψ ∈ N
0 1 2 3 4 5 6 7 8

0
γ

1
γ

2
γ

3
γ

δ
⌊
3
γ

⌋

Proof. In the case that ψ = bψc (i.e., ψ ∈ Z), b(I) = ψ − 1/γ ≤ ψ − b1/γc ∈
I ∩ Z. Hence {ψ − b1/γc , . . . , ψ − 1} = I ∩ Z, and |I ∩ Z| = b1/γc.

In the case that 0 < ψ−bψc ≤ δ, we have ψ− δ ≤ bψc, and therefore b(I) =
ψ−1/γ = ψ−b1/γc−δ ≤ bψc−b1/γc ∈ I∩Z. Hence {bψc − b1/γc , . . . , bψc} =
I ∩ Z, and |I ∩ Z| = b1/γc+ 1 (because bψc < ψ).

The remaining case is that ψ − bψc > δ. With bψc < ψ − δ = ψ − 1/γ +
b1/γc, we obtain that b(I) = ψ − 1/γ > bψc − b1/γc 6∈ I ∩ Z. Hence
{bψc − b1/γc+ 1, . . . , bψc} = I ∩ Z, and |I ∩ Z| = b1/γc.

Lemma 5.10. Given the function νγ : N→ N with

νγ(i) := |{y ∈ N | (i− 1)/γ ≤ y < i/γ}| for i ∈ N,

and a non-increasing function µ : N→ R, the inequality

(5.1)
m∑
i=1

(µ(i)νγ(i)) ≤
m∑
i=1

µ(i)/γ

holds for every natural number m and every real number γ ∈ (0, 1].

Proof. We set Yi := {y ∈ N | (i− 1)/γ ≤ y < i/γ}. Our task is to upper bound
the size of Yi since νγ(i) = |Yi| for every i ∈ N. It is clear that |Yi| ≤ b1/γc+ 1.

217

5 Gapped Regular Structures

Since Y1 cannot contain zero, it holds that |Y1| ≤ b1/γc (if 1/γ ∈ N then
|Y1| = 1/γ − 1, otherwise |Y1| = b1/γc). For i ≥ 2, Lemma 5.9 provides that

(5.2) |Yi| = b1/γc+ 1 if and only if 0 < i/γ − bi/γc ≤ δ,

where δ := 1/γ − b1/γc < 1. Having Eq. (5.2), Eq. (5.1) is a conclusion of
the following game estimating the cumulative sum of µ(i)/γ − µ(i)νγ(i): The
game is divided in m rounds. In the i-th round (1 ≤ i ≤ m), we receive a
credit of (1/γ−b1/γc)µ(i) = δµ(i), but we additionally pay µ(i) from the credit
when νγ(i) = b1/γc+ 1. If the credit does not become negative, it holds that∑m
i=1(µ(i)νγ(i)) ≤

∑m
i=1 µ(i)/γ (which is what we want to show in this proof).

Let i1, i2, . . . be the sequence of integers such that νγ(ij) = b1/γc + 1 for
each j. After sorting this sequence ascendingly, it holds that δij > j for every j.
To see this, we write i/γ − bi/γc = i/γ − i b1/γc − bi/γ − i b1/γcc = δi− bδic,
and apply Eq. (5.2): First, δi1 ≥ 1, since otherwise (δi1 < 1) we obtain a
contradiction to Eq. (5.2) with δi1 − bδi1c = δi1 > 2δ (remember that i1 ≥ 2
because |Y1| ≤ b1/γc). Next, assume that there exists a j ≥ 2 such that
j ≤ δij < δij+1 < j + 1. Then δij+1 − bδij+1c ≥ δ(ij + 1) − bδijc > δ (since
δij − bδijc > 0), a contradiction that Eq. (5.2) holds for ij+1. We conclude that
δij > j for every j.

Back to our game, we claim that there is at least (δij−j)µ(ij) credit remaining
after the ij-th round. When reaching the i1-th round, we have already gathered
a credit of ∑i1

i=1 δµ(i). Remember that we have to pay the amount µ(i1). From
our gathered credit we can pay µ(i1) with s := δµ(1) + δµ(2) + · · · + δµ(i1 −
1) + (1 − δ(i1 − 1))µ(i1): First, s is smaller than our gathered credit, since
µ(i1) < δi1µ(i1), and hence (1 − δ(i1 − 1))µ(i1) < δµ(i1). Second, s ≥ µ(i1),
because δ(i1 − 1)µ(i1) ≤ ∑i1−1

i=1 δµ(i) (remember that µ is non-increasing). By
paying the amount s, a credit of at least µ(i1)(δi1 − 1) remains.

Under the assumption that our claim holds after the ij-th round for an
integer j ∈ N, we show that the claim holds after the ij+1-th round, too.
According to our assumption, we have gathered a credit of at least (δij−j)µ(ij)+∑ij+1
i=ij+1 δµ(i) at the beginning of the ij+1-th round. We pay the amount µ(ij+1)

with s := (δij − j)µ(ij) + δµ(ij + 1) + · · · + δµ(ij+1 − 1) + (j + 1 − δ(ij+1 −
1))µ(ij+1). First, s is smaller than our gathered credit, since δij+1 > j + 1, and
hence (j + 1 − δ(ij+1 − 1))µ(ij+1) < δµ(ij+1). Second, s ≥ µ(ij+1), because
δ(ij+1 − 1)µ(ij+1) ≤ (δij − j)µ(ij) + jµ(ij+1) + ∑ij+1−1

i=ij+1 δµ(i). Similar to the
i1-th round, a credit of at least (δij+1 − j − 1)µ(ij+1) remains.

Lemma 5.11. Let γ be a real number with γ ∈ (0, 1], and C ⊆ Cn be a set of
points such that no two distinct points in C γ-cover the same point. Then |C| <
nπ2/(6γ). For γ = 1, we additionally obtain the bound |C| ≤ n(π2/6− 3/4).

Proof. Given that a point ~p in Z2 is γ-covered by a point (x̂, ŷ) of C with
(i − 1)/γ ≤ ŷ < i/γ for a positive integer i, we assign ~p the weight 1/i2.
Otherwise (~p is not γ-covered by any point of C), we assign ~p the weight zero.

218

5.3 Combinatoric Result

Let us fix a point (x̂, ŷ) ∈ C with (i − 1)/γ ≤ ŷ < i/γ for an integer i. We
have x̂ − i < x̂ − γŷ ≤ x̂ − (i − 1), and these inequalities also hold when
substituting x̂ with ŷ, i.e., ŷ − i < ŷ − γŷ ≤ ŷ − (i− 1). There are exactly i2

points (x, y) ∈ Z2 that are γ-covered by (x̂, ŷ), since for each of them it holds
that x̂−i < x̂−γŷ ≤ x̂−(i−1) ≤ x ≤ x̂ and ŷ−i < ŷ−γŷ ≤ ŷ−(i−1) ≤ y ≤ ŷ.
Therefore, the sum of the weights of the points that are γ-covered by (x̂, ŷ) is
one. As a consequence, the size of C is equal to the sum of the weights of all
points in Z2. In the following, let weight(~p) denote the weight of a point ~p. In
what follows, we upper bound the sum of all weights.

First, we fix an integer y with 1 ≤ y ≤ n, and show that the sum of the weights
of all points (·, y) is at most n/i2, where i is the integer with (i−1)/γ ≤ y < i/γ.
Given an integer x ∈ Z, we conclude by the definition of Cn that

weight(x, y)

≤ 1/i2 for 1 ≤ x ≤ n− y, and
= 0 for x ≥ n− y + 1.

The sum ∑1
x=−∞weight(x, y) is maximized to 1/i when each point in E :=

{(x, y) ∈ Z2 | 2 − i ≤ x ≤ 1} with |E| = i has weight 1/i2, and the other
points {(x, y) ∈ Z2 | x ≤ 1 − i} are not γ-covered. This can be seen by
the following fact: A point (x, y) with x ≤ 1 − i can only be γ-covered by
a point (x̂, ŷ) ∈ Cn when x̂ − γŷ ≤ x ≤ 1 − i, or equivalently i ≤ γŷ (the
smallest value for x̂ is one). Assume that such a point (x̂, ŷ) exists. Then there
is an integer j with i < j such that γŷ < j and (j − 1)/γ ≤ ŷ < j/γ. Since
1− j ≤ x̂− γŷ ≤ x ≤ 1, there are at most |{(x, y) | 2− j ≤ x ≤ 1}| = j many
different values for x. Furthermore, since (x̂, ŷ) ∈ Cn γ-covers (x, y), it is not
possible that another element of Cn γ-covers (x′, y) with x′ < x (otherwise it
would also cover (x, y)). In total, the sum under consideration ∑x≤1 weight(x, y)
can be at most 1/j, which is less than 1/i. With ∑

x≤1 weight(x, y) ≤ 1/i we
obtain ∑x∈Z weight(x, y) ≤ (n− y − 1 + i)/i2 ≤ (n− y + γy)/i2 ≤ n/i2.

Having computed ∑x∈Z weight(x, y) for a fixed y, we compute the sum over
all y with y ∈ Z. First, we deal with the special case that γ = 1. That is because
it is the only case where weight(·, 0) might not be zero (given (x̂, ŷ) ∈ Cn and
γ < 1, it holds that ŷ ≥ 1 and therefore 0 < ŷ− γŷ). A point (x, y) is 1-covered
by (x̂, ŷ) ∈ Cn if and only if 0 ≤ y ≤ ŷ and x̂ − ŷ ≤ x ≤ ŷ hold. The weight
of a point (x, 0) with 0 ≤ x ≤ n − 1 is maximized to 1/22 if it is γ-covered
by a point (x̂, ŷ) ∈ Cn with the lowest possible value of ŷ, which is one. We
conclude that ∑x∈Z weight(x, 0) ≤ n/22. With the same argument we conclude
that ∑x∈Z weight(x, y) ≤ n/(y + 1)2 for every positive integer y. By summing
everything up we obtain ∑(x,y)∈Z2 weight(x, y) ≤ n/22 + n

∑n
y=1(1/(y + 1)2) =

n/4+n
∑∞
i=2(1/i2) = n/4+nπ2/6−n = nπ2/6−3n/4 due to the Basel problem.

Finally, we consider the case that γ < 1. The idea is to cover the interval
[1 . . n− 1] with the sets Yi := {y ∈ N | (i− 1)/γ ≤ y < i/γ} for 1 ≤ i ≤ dnγe.
Since a point (x, yi) with yi ∈ Yi has a weight of at most 1/i2, summing up all
weights gives ∑(x,y)∈Z2 weight(x, y) ≤ ∑dnγei=1 n |Yi| /i2. To compute |Yi|, we use

219

5 Gapped Regular Structures

the function νγ(i) := |Yi| as defined in Lemma 5.10. With νγ the upper bound of∑
(x,y)∈Z2 weight(x, y) can be stated as ∑dnγei=1 (νγ(i)n/i2). Since νγ(i) ≤ b1/γc+1,

it is easy to see that ∑dnγei=1 (νγ(i)n/i2) < n(b1/γc+ 1)∑dnγei=1 (1/i2) < n(b1/γc+
1)π2/6. By defining the non-increasing function µ with µ(i) := n/i2, Lemma 5.10
yields (set m = dnγe) ∑dnγei=1 (νγ(i)n/i2) = ∑dnγe

i=1 νγ(i)µ(i) ≤ (n/γ)∑dnγei=1 (1/i2) <∑∞
i=1 n/(γi2) = nπ2/(6γ), which is also an upper bound of |C|.

By restricting the subset C ⊆ Cn in Lemma 5.11 to be additionally bijective
to the set of all maximal α-gapped repeats or palindromes, we can refine the
upper bound attained in Lemma 5.11. How we do this is shown in Sects. 5.3.3
and 5.3.4:

5.3.3 β-Aperiodic Repeats
For the maximal α-gapped repeats, we follow Kolpakov et al. [166] who map
a maximal α-gapped repeat (UL, UR) with arm-period q := b(UR) − b(UL) to
(e(UL), q). It holds that (e(UL), q) ∈ Cn, because e(UR) and q are positive, and
e(UL) + q = e(UR) ≤ n. In particular we have e(UL) ≤ n− 1, since otherwise
(e(UL) = n) both endings e(UR) and e(UL) would be equal, and therefore
UL ≡ UR (a contradiction to the definition of gapped repeats). Let ξR denote
the mapping from (UL, UR) to (e(UL), q), and let

ξR(Rα(T)) := {ξR(UL, UR) | (UL, UR) is a maximal α-gapped repeat} ⊂ Cn

denote the image of ξR. The following lemma bounds the size of ξR(Rα(T)) to
be roughly at half of the size of Cn, a fact that is used in Lemma 5.13.

Lemma 5.12. If (x, y) ∈ ξR(Rα(T)), then (x+ 1, y) /∈ ξR(Rα(T)).

Proof. Let (UL, UR) be a maximal α-gapped β-aperiodic repeat with arm-
period q = b(UR)− b(UL), and (x, y) := ξR(UL, UR) = (e(UL), q). If (x+ 1, y) ∈
ξR(Rα(T)), then T [x+ 1] = T [e(UL) + 1] = T [x+ y + 1] = T [e(UR) + 1], which
contradicts the maximality of (UL, UR).

With Lemma 5.12 we attain a version of Lemma 5.11 tailored to subsets
of ξR(Rα(T)):

Lemma 5.13. Let γ be a real number with γ ∈ (0, 1]. A set of points C ⊆
ξR(Rα(T)) such that no two distinct points in C γ-cover the same point obeys
the inequality |C| < n(π2/6− 1/2)/γ.

Proof. If γ = 1, Lemma 5.11 already gives |C| < nπ2/6− 3n/4 < nπ2/6− n/2.
For the case γ < 1, we focus on the points

E := {(x, y) | 1 ≤ x ≤ n and y < 1/γ} .

220

5.3 Combinatoric Result

∈ E \ C
∈ C

x
x+ 1

x+ 2

y

ŷ

1/γ

Fig. 5.18: Setting of the proof of Lemma 5.13,
where the point (x, y) ∈ C, but (x+ 1, y) 6∈ C
with weight(x + 1, y) > 0. Thus (x + 1, y) is
γ-covered by a point (x̂, ŷ) ∈ C (x̂ = x + 2
in this figure). Like in Fig. 5.17, the dash-
dotted rectangle of a point ~p ∈ C comprises
all points that are γ-covered by ~p. The points
that are γ-covered by (x̂, ŷ) are contained in
the top right dashed rectangle. It can be seen
that (x+ 2, y) is also γ-covered by (x̂, ŷ), and
therefore cannot be in C.

In the proof of Lemma 5.11, we used the weights weight(~p) of all points ~p ∈ Z2

as an upper of |C|. There, we bounded the sum of the weights of all points
in E by n/γ (assign each point the weight 1). We can refine this upper bound
by halving the weights of the points in E. We justify this with the following
analysis.

First, each point (n, y) ∈ E has weight zero, since there is no point (x̂, ŷ) ∈ C
(and even in Cn) with n ≤ x̂. Thus the sum of the weights of the points (n−1, y)
and (n, y) is at most one, for every y with 1 ≤ y < 1/γ.

Second, a point (x, y) ∈ E ∩ C can only cover itself, since y < 1/γ. Conse-
quently, a point (x, y) ∈ E \ C can have a weight of at most 1/22 = 1/4, since
all points (x̂, ŷ) ∈ C \ E have ŷ ≥ 1/γ. Given that E ∩ C = ∅, the total weight
of all points in E is at most (1/4) |E|.

Finally, suppose there is a point (x, y) ∈ E∩C. Then weight(x, y) = 1. Given
x ≤ n − 2, (x + 1, y) ∈ Cn, but (x + 1, y) 6∈ C according to Lemma 5.12. We
consider two cases:

• weight(x+ 1, y) = 0. Then both points (x, y) and (x+ 1, y) together have
a weight of one.

• weight(x+ 1, y) > 0, see also Fig. 5.18. Since (x+ 1, y) 6∈ C, weight(x+
1, y) ≤ 1/4, i.e., it is γ-covered by a point (x̂, ŷ) ∈ C \ E. Since ŷ ≥ 1/γ,
the point (x̂, ŷ) γ-covers at least four points (including itself). Since
weight(x, y) = 1, (x̂, ŷ) cannot γ-cover (x, y). Instead, it γ-covers the
point (x+ 2, y). We conclude that (x+ 2, y) 6∈ C. All three points (x, y),
(x+ 1, y), and (x+ 2, y) have a total weight of at most 1 + 1/4 + 1/4 = 3/2.

In both cases, a node has the average weight of at most 1/2. Summing up
all average weights yields the total weight of all points in E, which is at most
(1/2) |E| = n/(2γ).

Following the proof of Lemma 5.11, our modification of the weights changes the
non-increasing function µ, which is now defined by µ(1) := n/2 and µ(i) := n/i2

for i ≥ 2. Changing µ yields the upper bound ∑dnγe
i=1 (µ(i)νγ(i)) ≤ n(1/2 +∑dnγe

i=2 (1/i2))/γ < n(π2/6− 1/2)/γ on the size of C.

221

5 Gapped Regular Structures

Finally, we want to apply the result of Lemma 5.13 to the set Pβα (T). By
restricting the domain of β, we can show that no pair of points of this set can
(1− β)/α-cover the same point:

Lemma 5.14. Given a string T , and two real numbers α, β with α > 1 and
2/3 ≤ β < 1, the points mapped by two different maximal β-aperiodic α-gapped
repeats in Rβ

α(T) cannot 1−β
α

-cover the same point.

Proof. Let (UL, UR) and (UL, UR) be two different maximal α-gapped β-aperiodic
repeats inRβ

α(T). Set u := |UL| = |UR|, u :=
∣∣∣UL

∣∣∣ =
∣∣∣UR

∣∣∣, q := b(UR)−b(UL) and
q := b(UR)−b(UL). We map the maximal gapped repeats (UL, UR) and (UL, UR)
to the points ξR(UL, UR) = (e(UL), q) and ξR(UL, UR) = (e(UL), q), respectively.
Assume, for the sake of contradiction, that both points 1−β

α
-cover the same point

(x, y).
Let ζ :=

∣∣∣e(UL)− e(UL)
∣∣∣ be the difference of the endings of both left arms,

and SL := T [[b(UL) . . e(UL)]∩ [b(UL) . . e(UL)]] be the overlap of UL and UL. Let
s := |SL|, and let SR (resp. SR) be the right copy of SL based on (UL, UR) (resp.
(UL, UR)).
Sub-Claim. The overlap SL is not empty, and b(SR) 6= b(SR) (i.e., SR 6≡ SR).
Sub-Proof. Assume for this sub-proof that e(UL) < e(UL) (otherwise exchange
(UL, UR) with (UL, UR), or yield the contradiction that UL ≡ UL and UR ≡ UR).
The latter contradiction (UL ≡ UL and UR ≡ UR) is due to the following
consideration: Since e(UL) = e(UL), SL cannot be empty (it is the intersection
of both left arms). Further, both right copies are defined as the right translation
of SL by q and q, respectively. If both right copies are identical, then q = q,
which contradicts the fact that ξR is injective.

Having e(UL) < e(UL), we can combine (a) the (1 − β)/α-cover property
with (b) the inequality β < 1 and (c) the fact that (UL, UR) is α-gapped, and
yield e(UL) − u ≤(a) e(UL) − q/α <(b) e(UL) − q(1 − β)/α ≤(c) x ≤(c) e(UL) <
e(UL). Hence, the segment T [e(UL)] is contained in UL. If SR ≡ SR, then we
get a contradiction to the maximality of (UL, UR): By the above inequality,
T [e(UL) + 1] is contained in UL, too. Since (UL, UR) is a gapped repeat, the
character T [e(UL) + 1] occurs in UR, exactly at T [e(UR) + 1]. �

This sub-claim shows that q 6= q. Without loss of generality let q < q. Due
to the (1− β)/α-cover property it holds that

(5.3) q − q(1− β)
α

≤ y ≤ q ≤ q.

The difference of both arm-periods δ := q − q is

(5.4) 0 < δ ≤ q(1− β)/α ≤ u(1− β).

Equation (5.3) also yields that

(5.5) u ≥ q/α ≥ q

α
(1− 1− β

α
) ≥ qβ/α.

222

5.3 Combinatoric Result

UL UR

UL UR

SL ζ SR

δ SR ζ

Fig. 5.19: Sub-Case 1a
in the proof of
Lemma 5.14 with
b(UL) ≤ b(UL) ≤
e(UL) ≤ e(UL).

Fig. 5.20: Sub-
Case 1b in the proof
of Lemma 5.14 with
b(UL) < b(UL) ≤
e(UL) ≤ e(UL).

UL UR

UL UR

SL ζ SR

δ SR ζ

Since SR = [b(SL) + q . . e(SL) + q] and SR = [b(SL) + q . . e(SL) + q], we have
b(SR)− b(SR) = δ.

In the following we conduct a case analysis on the relationship between the
starting and ending positions of the left arms of both gapped repeats. In each
case, we show that the length s of the overlap of both arms SL is at least 2δ,
which means that the right copies SR and SR overlap with at least half of their
common length. The overlap causes SL to be periodic, which is a prefix of
UL or UL. If s is sufficiently large (s ≥ βu or s ≥ βu), the analysis leads to
the contradiction that (UL, UR) or (UL, UR) are in Rβ

α(T). To show that s is
sufficiently large, we use the fact that either (a) one left arm is contained in the
other (and hence SL ≡ UL or SL ≡ UL) or that (b) the difference of the ends of
both arms is upper bounded (because u = s+ ζ or u = s+ ζ).
Case 1: e(UL) ≤ e(UL). Since e(UL)− q(1− β)/α ≤ x ≤ e(UL) ≤ e(UL),

(5.6) ζ = e(UL)− e(UL) ≤ q(1− β)/α ≤ u(1− β).

Sub-Case 1a: b(UL) ≤ b(UL), see Fig. 5.19. By Eq. (5.6), we get s = u−ζ ≥ uβ.
It follows from Eq. (5.4) and β ≥ 2/3 that s/δ ≥ uβ/u(1− β) = β/(1− β) ≥ 2,
which means that SR and SR overlap at least half of their common length. This
overlap makes SL periodic. Since SL is a prefix of UL of length s ≥ uβ, (UL, UR)
is in Rβ

α(T), a contradiction.
Sub-Case 1b: b(UL) > b(UL), see Fig. 5.20. We conclude that SL = UL. It
follows from Eqs. (5.4) and (5.5) and 2/3 ≤ β < 1 that s/δ ≥ qαβ/(qα(1−β)) =
β/(1 − β) ≥ 2, which means that SL = UL is periodic. Hence (UL, UR) is in
Rβ
α(T), a contradiction.

Case 2: e(UL) > e(UL). Since e(UL)− q(1− β)/α ≤ x ≤ e(UL) ≤ e(UL),

(5.7) ζ = e(UL)− e(UL) ≤ q(1− β)/α ≤ q(1− β)/α ≤ u(1− β).

Sub-Case 2a: b(UL) ≤ b(UL), see Fig. 5.21. We conclude that SL = UL. It
follows from Eq. (5.4) and β ≥ 2/3 that s/δ ≥ u/(u(1 − β)) = 1/(1 − β) ≥
3 > 2, which means that SL = UL is periodic. Hence (UL, UR) is in Rβ

α(T), a
contradiction.

223

5 Gapped Regular Structures

UL UR

UL UR

SL ζ SR ζ

δ SR

Fig. 5.21: Sub-Case 2a in the
proof of Lemma 5.14 with
b(UL) ≤ b(UL) ≤ e(UL) <
e(UL).

Fig. 5.22: Sub-Case 2b in the proof of
Lemma 5.14 with b(UL) < b(UL) ≤ e(UL) <
e(UL). The second inequality holds because
the overlap SL cannot be empty due to the
sub-claim.

UL UR

UL UR

SL ζ SR ζ

δ SR

Sub-Case 2b: b(UL) > b(UL), see Fig. 5.22. By Eq. (5.7) we get ζ ≤ q(1 −
β)/α ≤ u(1 − β) and hence s = u − ζ ≥ uβ. By Eqs. (5.4) and (5.5) we get
u/δ ≥ qαβ/(qα(1 − β)) = β/(1 − β) ≥ 2 with β ≥ 2/3. Hence δ is upper
bounded by u/2. This means that UR has a periodic prefix of length at least 2δ
(since 2δ > s ≥ uβ), a contradiction.

The next corollary follows immediately from Lemmas 5.13 and 5.14.

Corollary 5.15. Given two real numbers α, β with α > 1 and 2/3 ≤ β < 1,
the number of all maximal α-gapped β-aperiodic repeats

∣∣∣∣Rβ
α(T)

∣∣∣∣ of a string T
of length n is less than (π2/6− 1/2)αn/(1− β).

This result yields our final result on the maximum number of all maximal
α-gapped repeats. The result is summarized in the following theorem:

Theorem 5.16. Given a real number α with α > 1 and a text T of length n,
the number of all α-gapped repeats |Rα(T)| is less than 3(π2/6 + 5/2)αn.

Proof. Combining the results of Lemma 5.7(R) and Cor. 5.15 yields that
|Rα(T)| =

∣∣∣Rβ
α(T)

∣∣∣ +
∣∣∣∣Rβ

α(T)
∣∣∣∣ < 2α E(T)/β + (π2/6 − 1/2)αn/(1 − β) for

2/3 ≤ β < 1. This number becomes minimal with 3α E(T) + 3(π2/6− 1/2)αn
when setting β to 2/3. With Lemma 2.1 we obtain |Rα(T)| < 9αn+ 3(π2/6−
1/2)αn = 3(π2/6 + 5/2)αn.

With Lemma 5.2 we obtain the result of Thm. 5.16 for α ≥ 1.

5.3.4 β-Aperiodic Palindromes
We briefly explain the main differences and similarities needed to understand
the relationship between gapped repeats and palindromes. Let (UL, UR) be a
maximal α-gapped repeat (resp. α-gapped palindrome). If its right arm UR has
a periodic prefix SR generated by a run, then its left arm has a periodic prefix SL

(resp. periodic suffix SL) generated by a run of the same period. Since (UL, UR)

224

5.3 Combinatoric Result

m− corr(u) + u/2 m+ d+ corr(u)

UL UR

m− corr(u)u/2 y − u

m+ d+ corr(u)− u/2

Fig. 5.23: A gapped
palindrome (UL, UR)
with u = |UL|
mapped to the
point (m, d).

is maximal, both runs have to obey constraints that are similar in both cases,
considering whether (UL, UR) is a gapped repeat or a gapped palindrome (this is
reflected by the fact that large parts for proving the statements of Lemma 5.7(R)
and Lemma 5.7(P) are identical). Like with aperiodic gapped repeats, we can
apply the point analysis to the aperiodic α-gapped palindromes, too. To this
end, we map a maximal α-gapped β-aperiodic palindrome (UL, UR) of a string
of length n to the point

(m, d) := ξP(UL, UR) := (d(b(UL) + e(UL))/2e ,
b(b(UR) + e(UR))/2c − d(b(UL) + e(UL))/2e),

where ξP denotes this mapping. Let ξP(Pα(T)) = {ξP(UL, UR) | (UL, UR) is a
maximal α-gapped β-aperiodic palindrome } ⊂ Cn be the image of ξP . The first
coordinate m is the (integer) position nearest to the mid-point (b(UL)+e(UL))/2
(tie-breaking to the right) of the left arm, and m + d is the position nearest
to the mid-point (b(UR) + e(UR))/2 (tie-breaking to the left) of the right arm
(in particular, T [m] = T [m+ d]). The mapping ξP is injective because we can
retrieve the pair of segments (UL, UR) by computing the maximal inward and
outward matches at the positions m and m + d. Since m and d are positive
integers with m + d ≤ n, we conclude that (m, d) ∈ Cn. For convenience, we
give an alternative definition of (m, d) using the function3 corr(i) := (i + 1
mod 2)/2 such that corr(i) = 0 if i is odd, and corr(i) = 1/2 if i is even. With
corr(b(UL) + e(UL) + 1) = corr(2b(UL) + |UL|) = corr(|UL|) we get (m, d) =
((b(UL) + e(UL))/2 + corr(|UL|), q − 2corr(|UL|)), where q := b(UR) − b(UL) is
the arm-period of (UL, UR) (see also Fig. 5.23).

Fact 5.17. Given a maximal gapped palindrome (UL, UR) with u := |UL| and
(m, d) := ξP(UL, UR), it holds that

(a) |u/2− corr(u)| ∈ {1/2, 3/2, 5/2, . . .},

(b) b(UL) = m− corr(u)− u/2 + 1/2,

(c) e(UL) = m− corr(u) + u/2− 1/2, and

(d) b(UR) = m+ d+ corr(u)− u/2 + 1/2.
3 The function is called corr since it calculates a correction term that adds with (b(UL) +

e(UL))/2 up to the mid-point m of the left arm.

225

5 Gapped Regular Structures

m m+ d

UL UR

outward inward inward outward

m+ i m+ d− i

Fig. 5.24: Setting of Lemma 5.18.
A gapped palindrome (UL, UR) is
mapped to the point (m, d). It
can be restored with LCE and LCS
queries at the positions m+i and d−
2i for every integer i with −bu/2c−
1 ≤ i ≤ −1 or 1 ≤ i ≤ du/2e, where
u := |UL| = |UR|.

(e) If d ≤ 2, then (UL, UR) is a maximal ordinary palindrome.

Lemma 5.18. Given a maximal α-gapped β-aperiodic palindrome (UL, UR)
with u := |UL| and (m, d) = ξP(UL, UR), (m + i, d− 2i) /∈ ξP(Pα(T)) for every
integer i with −bu/2c − 1 ≤ i ≤ −1 or 1 ≤ i ≤ du/2e.

Proof. For every integer i with −bu/2c ≤ i ≤ −1 or 1 ≤ i ≤ du/2e − 1
(excluding −bu/2c − 1 and du/2e as stated in the claim), the maximal inward
and outward matches at the positions m+ i and m+ d− i yields (UL, UR), and
thus, (m + i, d − 2i) cannot be in ξP(Pα(T)) due to the injectivity of ξP (cf.
Fig. 5.24). If i is −bu/2c − 1 or du/2e, the point (m+ i, d− 2i) ∈ Z2 is not in
ξP(Pα(T)) because the pair of positions m+ i and m+ d− i is where the inward
or outward match from the positions m and m+ i fails.

Due to Lemma 5.18, each point (m, d) ∈ ξP(Pα(T)) has at least one distinct
point that is not in the image of ξP . For instance, we count the point (m+1, d−
2) ∈ Cn\ξP(Pα(T)) (d ≥ 3 according to Fact 5.17(e)) for each (m, d) ∈ ξP(Pα(T)),
and each counted point is counted only once. With this insight, we can prove
the next corollary in exactly the same way as Lemma 5.13.

Corollary 5.19. Let γ be a real number with γ ∈ (0, 1]. A set of points
C ⊆ ξP(Pα(T)) such that no two distinct points in C γ-cover the same point
obeys the inequality |C| < n(π2/6− 1/2)/γ.

Proof. With the same definition of E as in the proof of Lemma 5.13, it is left
to show that the sum of the weights of all points in E is at most n/(2γ).

Unlike the proof of Lemma 5.13, we can take a shortcut with the following
observation: Only the highest points in E can be γ-covered by a point from C \
E.4 To see this, let (x, y) ∈ E be a point with y < 1/γ − 1. Assume that (x̂, ŷ)
γ-covers (x, y), then ŷ− γŷ ≤ y < 1/γ− 1, or equivalently ŷ < 1/γ. This means
that (x, y) = (x̂, ŷ).

We conclude that every point (x, y) ∈ E with weight(x, y) = 1 belongs to C,
and therefore (a) (x+1, y−2) 6∈ C according to Lemma 5.18, and (b) weight(x+
1, y − 2) = 0 according to the above observation. Hence, both points (x, y)
4 This holds also in the case of maximal α-gapped repeats in the proof of Lemma 5.13.

However, this trick does not lead to anything useful there.

226

5.3 Combinatoric Result

and (x+ 1, y − 2) have a total weight of 1 (remember that weight(n, y − 2) = 0
in any case, cf. proof of Lemma 5.13). For y ≤ 2, there is no aperiodic α-gapped
palindrome that can be mapped to a point (x, y) according to Fact 5.17(e).

Although a highest point (x, y) (with 1/γ − 1 ≤ y) can be γ-covered by a
point in C \E, one of its neighbors (x−1, y) or (x+ 1, y) has to be γ-covered by
the same point, such that the sum of the weights of both points is at most 1/2.
The total weight of all points in E is therefore at most (1/2) |E| ≤ n/(2γ).

Similar to Lemma 5.14, we can apply the result of Cor. 5.19 to the set Pβα (T)
by restricting the domain of β:

Lemma 5.20. Let T be a string, and α and β two real numbers with α > 1 and
6/7 ≤ β < 1. The points mapped by two different maximal gapped palindromes
in Pβα (T) cannot 1−β

α
-cover the same point.

Proof. Let (UL, UR) and (UL, UR) be two different maximal α-gapped palin-
dromes in Pβα (T). Set u := |UL| = |UR| and u :=

∣∣∣UL

∣∣∣ =
∣∣∣UR

∣∣∣. Let (m, d) and
(m, d) be the points mapped from (UL, UR) and (UL, UR), respectively. Assume,
for the sake of contradiction, that both points 1−β

α
-cover the same point (x, y).

Let ζ := |m−m|, and let SL := UL ∩ UL be the overlap of UL and UL. Let
s := |SL|, and let SR (resp. SR) be the reverse copy of SL based on (UL, UR)
(resp. (UL, UR)), i.e., SL = SR

ᵀ = SR
ᵀ with b(SR) = b(UR) + e(UL)− e(SL) and

b(SR) = b(UR) + e(UL)− e(SL).
Sub-Claim. The overlap SL is not empty, and b(SR) 6= b(SR).
Sub-Proof. First we show that SL is not empty. If m = m, it is clear that SL

contains T [m]. Without loss of generality, assume that m < m for this sub-proof
(otherwise exchange (UL, UR) with (UL, UR)). By combining (a) the (1− β)/α-
cover property with (b) the fact that (UL, UR) is α-gapped and (c) the constraint
6/7 ≤ β < 1, we obtain m− u/2 ≤(c) m − (1 − β)u ≤(b) m− d(1− β)/α ≤(a)
x ≤(a) m < m. This long inequality says that the text position m is contained in
UL, which implies that SL is not empty. If SR and SR start at the same position,
then expanding the arms SL and SR(≡ SR) to the left and right yields the arms
UL ≡ UL and UR ≡ UR, which implies that (UL, UR) and (UL, UR) are the same
gapped repeat, a contradiction. �

Without loss of generality let d ≤ d. With the (1− β)/α-cover property we
obtain

(5.8) d− d(1− β)
α

≤ y ≤ d ≤ d.

The difference δ := d− d ≥ 0 can be estimated by

(5.9) δ ≤ d(1− β)/α ≤ u(1− β).

227

5 Gapped Regular Structures

UL UR

UL UR

SL SR

R SR

Fig. 5.25: Sub-Case 1a in the
proof of Lemma 5.20 with m ≤
m and b(UL) ≤ b(UL) ≤
e(UL) ≤ e(UL).

Equation (5.8) can also be used to lower bound u in terms of d due to the fact
that (UL, UR) is α-gapped:

(5.10) u ≥ d/α ≥ d

α
(1− 1− β

α
) ≥ dβ/α.

Outline. In the following we conduct a thorough case analysis. In each case
we show the contradiction that (UL, UR) or (UL, UR) are β-periodic. We prove
each case in a similar way: We first show that the intersection of SR and SR is
large enough such that it induces a repetition on SR ∪ SR. Subsequently, we
find a run covering SR ∪ SR, and another run covering SL. However, since SL

is the suffix of UL (resp. UL), we can conclude that (UL, UR) (resp. (UL, UR)) is
β-periodic.

Before starting with the case analysis, we introduce a general property of
the starting positions b(SR) and b(SR) needed for the analysis. Adding up the
equalities of Fact 5.17(c) and (d) gives b(UR) + e(UL) = 2m+ d. With that we
obtain b(SR) = b(UR) + e(UL)− e(SL) = 2m+ d− e(SL). Hence, the distance
between the starting positions of SR and SR is given by

(5.11)
∣∣∣b(SR)− b(SR)

∣∣∣ =

2ζ + δ if m ≤ m,

2ζ − δ if m > m and b(SR) > b(SR), or
δ − 2ζ if m > m and b(SR) < b(SR).

Case 1: m ≤ m. Since m−d(1−β)/α ≤ x ≤ m ≤ m (due to the (1−β)/α-cover
property),

(5.12) ζ = m−m ≤ d(1− β)/α ≤ u(1− β),

because (UL, UR) is α-gapped. Due to Eq. (5.11), the starting positions of both
right copies SR and SR differ by b(SR) − b(SR) = 2ζ + δ > 0. By Eqs. (5.9)
and (5.12), we get

(5.13) 2ζ + δ ≤ 3d(1− β)/α ≤ 3u(1− β).

Depending on the relationships between b(UL) and b(UL), and between e(UL)
and e(UL), we split the case in four sub-cases. However, one of the four sub-
cases with b(UL) < b(UL) and e(UL) < e(UL) already leads to a contradiction
(without proving that one left arm has a periodic suffix): Assume that both

228

5.3 Combinatoric Result

UL UR

UL UR

SL SR

R 2ζ + δ SR

Fig. 5.26: Sub-
Case 1b in the
proof of Lemma 5.20
with m ≤ m and
b(UL) ≤ b(UL) ≤
e(UL) ≤ e(UL).

UL UR

UL ≥ δ UR

SL SR

2ζ + δ SR

R

Fig. 5.27: Sub-Case 1c in the proof of Lemma 5.20 with m ≤ m and b(UL) <
b(UL) ≤ e(UL) < e(UL). The second inequality holds because the overlap SL

cannot be empty due to the sub-claim.

inequalities b(UL) < b(UL) and e(UR) < e(UR) hold for the sake of contradiction.
Under these assumptions, with Fact 5.17(b) it must hold that b(UL) + 1/2 =
m− corr(u)− u/2 + 1 ≤ m− corr(u)− u/2 = b(UL)− 1/2 and e(UR) + 1/2 =
m− corr(u) + u/2 + 1 ≤ m− corr(u) + u/2 = e(UR)− 1/2. Adding the left sides
and the right sides of both inequalities gives m−m ≤ corr(u)− corr(u)− 1 < 0,
which contradicts that m−m ≥ 0.

Thus it is enough to consider the following three sub-cases 1a, 1b, and 1c.
Sub-Case 1a: SL ≡ UL, see Fig. 5.25. Since u/(2ζ + δ) ≥ u/(3u(1 − β)) ≥
7/3 > 2 holds (due to Eq. (5.13)) for 6/7 ≤ β < 1, we conclude that SR = UR

is periodic, which means that (UL, UR) ∈ Pβα (T), a contradiction.
Sub-Case 1b: SL ≡ UL, see Fig. 5.26. Recall that u = s ≥ dβ/α by Eq. (5.10).
It follows from Eq. (5.13) and 6/7 ≤ β < 1 that s/(2ζ + δ) ≥ dαβ/(3dα(1 −
β)) = β/(3(1 − β)) ≥ 2. Hence SR ≡ UR is periodic, which means that
(UL, UR) ∈ Pβα (T), a contradiction.
Sub-Case 1c: b(UL) < b(UL) and e(UL) < e(UL), see Fig. 5.27. Since SL is
a suffix of UL and a prefix of UL, the reverse copies SR and SR are a prefix of
UR and a suffix of UR, respectively. We have 1 ≤ b(UL)− b(UL) = m− u/2−
corr(u)−(m−u/2−corr(u)). A simple reshaping leads to m−u/2−(m−u/2) ≥
1 + corr(u) − corr(u). This inequality yields b(UR) − b(UR) = m + d − u/2 +
corr(u)− (m+ d− u/2 + corr(u)) ≥ δ + 1 + 2(corr(u)− corr(u)) ≥ δ ≥ 0. This
means that b(SR) = b(UR) ≤ b(UR) ≤ b(SR) ≤ e(SR) = e(UR). With b(SR) ≤
b(UR) = e(SR)−u+ 1 = b(SR) + s−u, it follows that s ≥ u− (2ζ + δ) > 2ζ + δ
because u/(2ζ + δ) ≥ u/(3u(1 − β)) ≥ 7/3 > 2 holds for 6/7 ≤ β < 1. Since
b(SR) − b(SR) = e(SR) − e(SR) = 2ζ + δ, SR ∩ SR 6= ∅. Putting everything
together, we have that UR ⊂ SR ∪ SR, and that UR is periodic with a period of
at most 2ζ + δ, a contradiction.

229

5 Gapped Regular Structures

UL UR

UL UR

SL |2ζ − δ| SR

R SR

Fig. 5.28: Sub-Case 2a in the proof of Lemma 5.20 with m > m and b(UL) ≤
b(UL) ≤ e(UL) ≤ e(UL).

UL UR

UL UR

SL SR

R SR

Fig. 5.29: Sub-Case 2b in the proof
of Lemma 5.20 with m > m and
b(UL) ≤ b(UL) ≤ e(UL) ≤ e(UL).

Case 2: m > m. Since m− d(1− β)/α ≤ x ≤ m < m,

(5.14) ζ = m−m ≤ d(1− β)/α ≤ d(1− β)/α ≤ u(1− β).

According to Eq. (5.11), the starting positions of both right copies differ by∣∣∣b(SR)− b(SR)
∣∣∣ = |2ζ − δ|. Equation (5.11) with Eqs. (5.9) and (5.14) yields

(5.15) |2ζ − δ| ≤

2ζ ≤ 2d(1− β)/α ≤ 2u(1− β) if b(SR) > b(SR), or
δ ≤ d(1− β)/α ≤ u(1− β) if b(SR) < b(SR).

Like Case 1, we split the case into sub-cases depending on the relation of
the starting and of the ending positions of the left arms. The sub-case with
b(UL) < b(UL) and e(UL) < e(UL) already leads to a contradiction, which can be
seen by an argument that is similar to the one used in Case 1 due to symmetry.
Sub-Case 2a: SL ≡ UL, see Fig. 5.28. Since s/ |2ζ − δ| ≥ u/(2u(1 − β)) =
1/(2(1− β)) ≥ 7/2 > 2 holds (due to Eq. (5.15)) for 6/7 ≤ β < 1, the distance
between b(SR) and b(SR) is small enough such that SR = UR is periodic, which
means that (UL, UR) ∈ Pβα (T), a contradiction.
Sub-Case 2b: SL ≡ UL, see Fig. 5.29. Recall that u = s ≥ dβ/α by Eq. (5.10).
It follows from 6/7 ≤ β < 1 and Eq. (5.15) that s/ |2ζ − δ| ≥ dαβ/(2dα(1 −
β)) = β/(2(1 − β)) ≥ 3 > 2. Hence SR ≡ UR is periodic, which means that
(UL, UR) ∈ Pβα (T), a contradiction.
Sub-Case 2c: b(UL) > b(UL) and e(UL) > e(UL). Since SL is a prefix of UL

and a suffix of UL, the reverse copies SR and SR are a suffix of UR and a prefix
of UR, respectively.
Subsub-Case 2c-i: b(UR) ≥ b(UR), see Fig. 5.30. Recall that u ≥ dβ/α
by Eq. (5.10). It follows from 6/7 ≤ β < 1 and Eq. (5.15) that u/ |2ζ − δ| ≥
dαβ/(2dα(1− β)) = β/(2(1− β)) ≥ 3 > 2. With b(UR) ≥ b(UR), this case is
symmetric to Sub-Case 1c, leading to the result that UR ⊂ SR ∪ SR, and that
UR is periodic with a period of at most |2ζ − δ|, a contradiction.
Subsub-Case 2c-ii: b(UR) < b(UR), see Fig. 5.31. It follows from b(UR) <
b(UR) that b(UR)− b(UR) = m+ d− u/2 + corr(u)− (m+ d− u/2 + corr(u)) =

230

5.3 Combinatoric Result

UL ≥ 0 UR

UL UR

SL |2ζ − δ| SR

SR

R

Fig. 5.30: Subsub-
Case 2c-i in the proof
of Lemma 5.20
with m > m,
b(UL) < b(UL) ≤
e(UL) < e(UL) and
b(UR) ≤ b(UR).

UL UR

UL UR

≤ δ SL SR

R SR ≤ δ

|2ζ − δ|

Fig. 5.31: Subsub-Case 2c-ii in the proof of Lemma 5.20 with m > m, b(UL) <
b(UL) ≤ e(UL) < e(UL) and b(UR) < b(UR).

b(UL)− b(UL)− δ + 2(corr(u)− corr(u)) ≤ −1, which leads to b(UL)− b(UL) ≤
δ + 2(corr(u) − corr(u)) − 1 ≤ δ. Combining this inequality with Eq. (5.9)
gives s = u − (b(UL) − b(UL)) ≥ u − δ ≥ βu. With Eq. (5.15) this yields
s/ |2ζ − δ| ≥ βu/(2u(1 − β)) = β/(2(1 − β)) ≥ 3 > 2 under the presumption
that 6/7 ≤ β < 1. Putting everything together, UL has a periodic suffix of
length βu, and that (UL, UR) ∈ Pβα (T), a contradiction.

Combining the results of Cor. 5.19 and Lemma 5.20 immediately gives the
following corollary:

Corollary 5.21. Given two real numbers α and β with α > 1 and 6/7 ≤ β < 1,
and a string T of length n, the number of all maximal α-gapped β-aperiodic
palindromes is bounded by the inequality

∣∣∣∣Pβα (T)
∣∣∣∣ < αn(π2/6− 1/2)/(1− β).

Theorem 5.22. Given a real number α with α > 1, and a string T of length n,
the number of all maximal α-gapped palindromes |Pα(T)| less than 7(π2/6 +
1/2)αn− 3n− 1.

Proof. Combining the results of Lemma 5.7 and Cor. 5.21 yields

|Pα(T)| = 2n− 1︸ ︷︷ ︸
max. palindromes

+
∣∣∣Pβα (T)

∣∣∣︸ ︷︷ ︸
β-periodic

+
∣∣∣∣Pβα (T)

∣∣∣∣︸ ︷︷ ︸
β-aperiodic

< 2n− 1︸ ︷︷ ︸
Lemma 2.3

+ 2(α− 1)E(T)
β

+ 2n︸ ︷︷ ︸
Lemma 5.7

+
(
π2

6 −
1
2

)
αn

1− β︸ ︷︷ ︸
Cor. 5.21

231

5 Gapped Regular Structures

R
UL

URq

UL

p

URq
p

Fig. 5.32: Two gapped repeats (UL, UR)
and (UL, UR) with overlapping arms. Both
gapped repeats are within a run R. They are
maximal if their arms border the run R. Each
such maximal gapped repeat with overlapping
arms has an arm-period (q or q in the figure)
that is a multiple of R’s smallest period p.

for every 6/7 ≤ β < 1. Applying Lemma 2.1, the term on the right side is upper
bounded by 4n− 1 + 2(α− 1)(3n/β) + (π2/6− 1/2)αn/(1− β). This number is
minimal when β = 6/7, yielding the bound 4n−1+7n(α−1)+7(π2/6−1/2)αn =
7(π2/6 + 1/2)αn− 3n− 1.

5.4 Computing All Maximal α-Gapped Repeats
We split the set of all maximal α-gapped repeats into four subsets. For each
subset, we devise an algorithm that computes this subset in O(αn) time. We
assign a maximal α-gapped repeat/palindrome to a subset depending on the
condition whether it has

Set 1: arms consisting of one character,

Set 2: arms that overlap,

Set 3: non-overlapping arms with a length between 2 and γ lg n characters, for
an integer constant γ with γ ≥ 4, or

Set 4: non-overlapping arms longer than γ lg n characters.

As a starter, we can find Set 1 very easily in our target time of O(αn):

Lemma 5.23. We can compute all maximal α-gapped repeats/palindromes
with an arm of one character in a string T of length n in O(αn) time.

Proof. For each position i with 1 ≤ i ≤ n, we check whether the characters T [i]
and T [i + j] are equal for each position j with 1 ≤ j ≤ α. If both characters
are equal, they form an α-gapped repeat. In particular, they are the arms of a
maximal α-gapped repeat if we can prolong T [i] and T [i+ j] neither to the left
nor to the right (check T [i− 1] 6= T [i+ j − 1] and T [i+ 1] 6= T [i+ j + 1]).

5.4.1 Overlapping Arms
We provide an O(n) time algorithm that finds all maximal α-gapped repeats/-
palindromes (UL, UR) of Set 2, i.e., with with e(UL) ≥ b(UR). When studying

232

5.4 Computing All Maximal α-Gapped Repeats

α-gapped repeats/palindromes of Set 2, we can neglect the parameter α, be-
cause a gapped repeat/palindrome (UL, UR) whose arms overlap obeys the
inequality b(UR) − b(UL) < |UL| ≤ α |UL| for every α ≥ 1. For a gapped
palindrome (UL, UR) with e(UL) ≥ b(UR), we already know that either (UL, UR)
is not maximal, or UL ≡ UR. Remembering that a maximal gapped palindrome
with an overlap is equal to a maximal ordinary palindrome, we are already
done because we can compute all maximal ordinary palindromes in O(n) time
according to Lemma 2.4. It remains to focus on the maximal gapped repeats of
Set 2:

Lemma 5.24. We can compute all maximal gapped repeats with overlapping
arms in O(n) time.

Proof. Given a maximal gapped repeat (UL, UR) with arm-period q := b(UR)−
b(UL) < |UL|, it induces a square with T [b(UL). .b(UL)+q−1] = T [b(UR). .b(UR)+
q − 1]. The square induces a run R whose smallest period p divides q (also
observed in [66, Conclusions]). Both arms UL and UR are contained in R.
Because (UL, UR) is maximal, b(UL) = b(R) and e(UR) = e(R) hold; otherwise
we could extend the arms to the left or to the right, respectively. This means
that the left arm UL covers at least the segment T [b(R) . . b(R) + exp(R)p/2]
(otherwise the arms would not overlap). Since q is a multiple of p, the number
of different lengths of UL is bounded by exp(R)/2. Figure 5.32 illustrates two
maximal gapped repeats with overlapping arms within the same run.

Our idea is to probe at the borders of each run R for all possible values of q
to find all gapped repeats whose arms (a) overlap and (b) are contained in R.
To find these borders, we first compute all runs in linear time with Lemma 2.2.
Then we linearly scan over all runs from left to right in text order. Having LCE↔
in the representation of Cor. 2.12, we spend O(exp(R)) time on each run R,
summing up to O(n) time due to Lemma 2.1. Since a gapped repeat (UL, UR)
with overlapping arms is uniquely defined by its arm-period and the borders of
the run containing UL and UR, we can report each such gapped repeat exactly
once.

5.4.2 Support Data Structures
In the following, we focus on the gapped repeats of Sets 3 and 4. The main tool
of our algorithms dealing with Sets 3 and 4 is LCE↔ for finding maximal equal
segments of a string that start or end at particular positions. We build LCE↔
in the representation of Cor. 2.12 using O(n) words while supporting LCE and
LCS queries in tLCE = O(1).

Our first goal is to find a representation of all occurrences of a substring Y
within a string Z of length ` |Y | with the properties that the representation (a)
can be stored in O(`) words, and (b) supports a sequential scan that retrieves an
occurrence in constant time. If Y is aperiodic, two occurrences of Y cannot have

233

5 Gapped Regular Structures

` |Y |

Z
Y Y Y Y Y
Y Yp
Y Y

R1 R2

first occurrence first occurrence single occ. single occ.

Fig. 5.33: Occurrences of Y in Z. The two rightmost segments are single
occurrences. The other segments are occurrences within a run. We store the
starting position of the first occurrence of Y appearing in a run, and the starting
positions of the segments that are not part of a run.

an overlap with more than Y/2 position according to Cor. 5.6. Consequently,
there can be at most 2` occurrences of Y in Z. We call these occurrences single
occurrences, and store the starting position of each occurrence in an array.

If Y is periodic with smallest period p, there can be O(` |Y | /p) occurrences of
Y in Z, which can be Ω(`) for a sufficiently small p. That is because occurrences
of Y can overlap, creating a run R with smallest period p. Instead of storing
the starting positions of all occurrences of Y within R, it suffices to store only
the first occurrence. The other occurrences within the run R can be computed
by an arithmetic progression with common difference p. More formally (see
Fig. 5.33), the segment Z[i . . i+ |Y | − 1] is

• a single occurrence if Y occurs neither at position i− p nor at position
i+ p in Z,

• within a run if Y occurs at position i− p (given i− p ≥ 1 or at position
i+ p (given i+ p ≤ |Z|) in Z, and

• a first occurrence if it is within a run, but Y does not occur at position
i− p.

According to Cor. 5.5, there are at most O(`) runs containing occurrences of Y
in Z, i.e., O(`) first occurrences of Y in Z.

Corollary 5.25 ([70, Remark 1]). Given a substring Y of T and a segment Z
of T with length ` |Y |, the occurrences of Y in Z can be represented succinctly
in O(`) words.

Proof. We only store the starting position of the single and first occurrences, and
the smallest period of Y . This is sufficient, since we can reconstruct the missing
information in constant time with LCE↔ according to Cors. 2.11 and 2.12.

234

5.4 Computing All Maximal α-Gapped Repeats

Y
Y Y

Y Y Y

i i+ 2k

Y Y Y Y
R1 R2 R3

Z = T [j . . j + 8 · 2j − 1]

Fig. 5.34: Occurrences of the basic factor Y = T [i . . i + 2k − 1] in Z =
T [j . . j + 8 · 2k − 1] as described in Lemma 5.26, with ` := 8. The overlapping
occurrences are part of a run. The occurrences within a run Rj with j = 1, . . . , 3
are represented only by the first (leftmost) occurrence of Y in Rj. In total,
the representation of the occurrences of Y in Z is composed of, along with the
smallest period of Y , four starting positions: three first occurrences and one
single occurrence.

Having the starting position of the first occurrence of Y in a run R, we can
compute all occurrences within the run R by an arithmetic progression with the
common difference equal to the smallest period of Y . The number of occurrences
within this run can be determined in constant time due to Cor. 2.11.

Our approach is based on the technique of Karp et al. [150], where substrings
of the length 2k for an integer k ≥ 1 are used to query whether two arbitrary
substrings are equal. In the literature, these substrings of the length 2k for
k ≥ 1 are called basic factors [59, 70, 157]. We additionally write k-basic factor
for a basic factor of length 2k. The algorithmic idea of Dumitran et al. [70] is to
search for α-gapped repeats whose arms are basic factors, and then extend the
arms to produce maximal α-gapped repeats. To find those α-gapped repeats,
we need a data structure that finds the occurrences of a basic factor. Luckily,
we can find the occurrences of a basic factor Y in a segment Z of length ` |Y |
efficiently due to the following lemma:

Lemma 5.26 ([70, Lemma 1]). Let T be a string of length n. Given an integer
` ≥ 2, a basic factor Y , and a segment Z of T with |Z| = ` |Y |, there is a
data structure that reports all occurrences of Y in Z within the representation
described in Cor. 5.25 in O(lg lg n + `) time. It can be constructed on T in
O(n lg n) time, taking O(n lg n) words of space.

Figure 5.34 gives a visual representation of the query described in Lemma 5.26.
To accelerate the search to O(αn) time, we devise techniques separately

tailored to Sets 3 and 4. We start with Set 3. Our idea is to first spot the right
arm UR, and then to apply some techniques to find the left arm UL: If we cover
the string T with the set of segments{

T [m lg n+ 1 . . (m+ γ + 1) lg n] | 0 ≤ m ≤ n

lg n − γ − 1
}
,

235

5 Gapped Regular Structures

γ lg n γ lg n γ lg n

T
γ lg n γ lg n γ lg n γ lg n

X1 X3

X2 X4

(γα + γ + 1) lg n (γα + γ + 1) lg n

Fig. 5.35: Covering the string T with
the superblocks Xm of Eq. (5.16).

then the right arm of each α-gapped repeat of Set 3 is contained in at least
one of these segments. For such an α-gapped repeat (UL, UR), the arm-period
b(UR)−b(UL) is at most αγ lg n. By stretching every segment of the above cover
to the left, the complete gapped repeat is contained in exactly one segment
(5.16)

Xm :=

T [1 . . (m+ γ + 1) lg n] if (m− γα) lg n+ 1 ≤ 0,
T [(m− γα) lg n+ 1 . . (m+ γ + 1) lg n] else,

for an integer m with γα ≤ m ≤ n
lgn − γ− 1. We call each Xm a superblock (see

Fig. 5.35). Our task is to enhance each superblock with a data structure that
supports querying for all possible positions of the left arm. We show that this
query can be answered efficiently under the invariant that the right arm is
always contained in the last γ lg n characters of a superblock. The main idea is
to use a bit vector marking the starting positions of a basic factor instead of
relying on the data structure described in Lemma 5.26. Nevertheless, we need
Lemma 5.26 for computing Set 4 (see Lemma 5.31).

Lemma 5.27 ([70, Lemma 3]). Let β be an integer constant with β > γ, and
let X be a string with |X| = β lg n. We can build a data structure on X in
O(β lg n) time that can, given a basic factor Y = X[j2k + 1 . . (j + 1)2k] with
j, k ≥ 0 and j2k + 1 > (β − γ) lg n, compute a bit vector of the length of X
marking the beginning positions of the occurrences Y within X in O(β) time.
The data structure takes O(β lg n) words of space.

After endowing a string X with the data structure of Lemma 5.27, it is easy
to find the occurrences of a basic factor Y in a small segment Z of X (see also
Fig. 5.36):

Lemma 5.28 ([70, Remark 2]). Let Y and X be defined as in Lemma 5.27, and
let Z be a segment of X with length ` |Y |. Given the bit vector of Lemma 5.27
marking the starting positions of all occurrences of Y in X, we can represent all
occurrences of Y in Z by the representation described in Cor. 5.25 in O(`) time.

236

5.4 Computing All Maximal α-Gapped Repeats

β lg n

X

` |Y | γ lg n

Z Y
Y Y Y Y

j2k + 1Y Y

Fig. 5.36: Setting of Lemma 5.28. Given a string X of length β lg n endowed
with the data structure described in Lemma 5.28, this data structure can find
all occurrences of the rightmost k-basic factor Y starting at a position j2k + 1
for an integer j. The difference to Lemma 5.26 is that Y has to appear in the
last γ lg n characters of X.

2γ lg n 2γ lg n 2γ lg n

T
2γ lg n 2γ lg n 2γ lg n 2γ lg n

≤ γ lg n

UL UR

2γ lg n
Xm

(2 + α)γ lg n

Fig. 5.37: Idea of the proof of
Lemma 5.29. The algorithm iterates
over m, and uses the data structures
built on each superblock Xm to spot
gapped repeats whose left and right
arms are contained Xm while the right
arms are at the last γ lg n positions
of Xm.

Algorithm 17: Scaffold of the proof of Lemma 5.29 computing all maxi-
mal α-gapped repeats with an arm length between 1 and γ lg n.
1 foreach 0 ≤ m ≤ n/ lg n− γ − 1 do
2 compute data structure of Lemma 5.27 on superblock Xm

3 foreach 0 ≤ k ≤ lg(γ lg n) do
4 foreach basic

factor YR = Xm[|Xm|−γ lg n+ 1 + j2k . . |Xm|−γ lg n+ (j+ 1)2k]
with an integer j do

5 Y ← query data structure of Lemma 5.27 on Xm with pattern
YR

6 foreach YL ∈ Y do
7 extend YL and YR to a gapped repeat with case

analysis (a)–(i)

237

5 Gapped Regular Structures

5.4.3 Short Arms
After having described all tools, we continue with the computation of all maximal
α-gapped repeats, and focus on Set 3. The proofs of Lemmas 5.29, 5.31 and 5.32
adapt the techniques and the structure of the proof of [70, Thm. 7], where
Dumitran et al. showed how to compute the longest α-gapped repeat in O(αn)
time. The main difference is that we take additional care in (a) reporting
each maximal α-gapped repeat only once, and (b) speeding up the detection of
maximal α-gapped repeats whenever parts of the arms are contained in a run
to guarantee O(1) time per reported maximal α-gapped repeat.

Lemma 5.29. Given a string T and α ≥ 1, we can find all maximal α-gapped
repeats (UL, UR) with 1 < |UR| ≤ γ lg n and e(UL) < b(UR) occurring in T , in
O(αn) time with O(αn) words of working space.

Proof. A maximal α-gapped repeat (UL, UR) with |UR| ≤ γ lg n has a right
arm UR that must be contained in a segment T [m lg n+ 1 . . (m+ γ + 1) lg n],
for an integer m with 0 ≤ m ≤ n

lgn − γ − 1. By fixing the interval where UR

can occur (i.e., fix m), we know that the entire repeat is contained in Xm (see
Fig. 5.37).

An overview of our algorithm follows (see also Algo. 17): As a preprocessing
step, we build LCE↔, and endow every superblock with the data structure
described in Lemma 5.27. The last step takes O(αγn) time and O(αγn) words
of space in total for all superblocks. For the actual search, we process each
superblock linearly. In each superblock Xm, we search for each maximal α-
gapped repeat (UL, UR) whose arm UR is contained in the suffix of length γ lg n
of Xm (and hence UL ⊂ Xm). To spot the right arm UR of a possible gapped
repeat, we iterate over all possible lengths. Since a linear scan over all lengths
would take too much time, we first compute an α-gapped repeat whose right
arm is a basic factor, and then try to extend such an α-gapped repeat to a
maximal α-gapped repeat.

In more detail, we iterate over the integer k with
0 ≤ k ≤ lg(γ lg n) to find α-gapped repeats with an
arm length between 2k+1 and 2k+2: For a fixed k, we
partition the text into k-basic factors of length 2k,
and iterate over each such k-basic factor (there are
γ lgn

2k many). To avoid confusion, we call the elements
of this partitioning k-basic segments.

T
2 2 2 2 2 2 2 2
4 4 4 4

8 8
16

Suppose that a k-basic segment YR is contained in the right arm of a maximal
repeat, we retrieve its previous occurrences (i.e., all k-basic factors equal to
this k-basic segment) such that each previous occurrence YL forms an α-gapped
repeat (YL, YR). Subsequently, we extend both arms YL and YR to their left
and to their right. The partitioning of the text into (non-overlapping) k-basic
segments is sufficient to detect the right arms of all maximal gapped repeats,
since we do not allow the arms to overlap (which belong to Set 2).

238

5.4 Computing All Maximal α-Gapped Repeats

2γ lg n

Xm

b(YL) b(YL) + |YR| j2k + 1 (j + 1)2k

2k+1 ≤ |UR| ≤ 2k+2

UL UR

HL YL SL HR YR SR

2k ≤ 2k − 1

lcp(e(YL), e(YR))− 1 lcp(e(YL), e(YR))− 1

lcs(b(YL), b(YR))− 1 lcs(b(YL), b(YR))− 1

Fig. 5.38: Extending a gapped repeat whose right arm is a k-basic segment YR.
Fixing Xm in the proof of Lemma 5.29, we try to spot gapped repeats whose
arms contain an occurrence of YR. If we can extend this gapped repeat to a
maximal gapped repeat, we output it. The prefix HR has to be at most 2k − 1
characters long, since otherwise (UL, UR) will be found with the next k-basic
segment T [(j + 1)2k + 1 . . (j + 2)2k].

We start with fixing a superblock Xm. We build the maximal α-gapped
repeats whose right arms are contained in the last 2γ lg n positions of Xm

by extending gapped repeats whose arms are basic factors (see Fig. 5.38). A
maximal α-gapped repeat (UL, UR) with 2k+1 ≤ |UR| ≤ 2k+2 has a right arm
UR that contains at least one segment YR = T [j2k + 1 . . (j + 1)2k] starting
within the first 2k positions of UR (b(UR) ≤ b(YR) < b(UR) + 2k). By definition,
there is an occurrence YL of the segment YR that occurs also within the first 2k
positions of UL, namely YL = T [b(UL) + b(YR)− b(UR) . . b(UL) + e(YR)− b(UR)].
Finding the respective occurrence YL of YR helps us discovering the location of
UL.

Suppose that we identified the occurrence YL with b(YL) < b(YR). We try to
build UL and UR by extending YL and YR to the left and to the right. To this
end, we compute the LCS H ending at j2k at b(YL)− 1, and the LCP S starting
at (j + 1)2k + 1 and at e(YL) + 1. We obtain e(UL) = b(YL) + |Y | + |S| − 1
and b(UR) = j2k + 1 − |H|. If e(UL) ≥ b(UR), then UL and UR overlap, and
hence can be ignored (they are already found with Lemma 5.24). Otherwise,
let SL and SR denote the left and right occurrences of S, and let HL and HR

denote the left and right occurrences of H, respectively. Then UL is obtained
by concatenating HL, YL, and SL, while UR is obtained by concatenating HR,
YR, and SR. To avoid duplicates, the determined repeat is only reported if its
right arm contains the position b(YR) = j2k + 1 within its first 2k positions.

239

5 Gapped Regular Structures

RL S RR S
UL UR

(a) b(RR) < b(UR) ∧
e(RR) < e(UR)

RL RR

UL UR

U ′ U ′

pi

(b) b(RR) <
b(UR)∧ e(RR) =
e(UR)

RL RR

UL UR

Z Z Z ′ Z Z Z

f f + `p
p

(c) b(RR) < b(UR) ∧ e(RR) > e(UR)

RL S RR S
UL UR

(d) b(RR) = b(UR) ∧
e(RR) < e(UR)

RL RR

UL UR

(e) b(RR) =
b(UR) ∧ e(RR) >
e(UR)

RL RR

UL UR

Z Z Z Z Z Z ′

f f + `p
p

(f) b(RR) = b(UR) ∧ e(RR) = e(UR)

H RL H RR

UL UR

(g) b(RR) > b(UR)∧
e(RR) = e(UR)

H RL H RR

UL UR

(h) b(RR) > b(UR)∧
e(RR) > e(UR)

H RL S H RR S
UL UR

(i) b(RR) > b(UR)∧
e(RR) < e(UR)

Fig. 5.39: Spotting gapped repeats with periodicity in the case analysis of the
proof of Lemma 5.29.

Otherwise we found (UL, UR) with the previous k-basic segment.
The algorithm above does not describe how to find the occurrence YL (effi-

ciently). We rectify this omission now: Since |UR| < 2k+2 and |YR| = 2k, the
occurrence YL is contained in the segment T [−α2k+2 + j2k + 1 . . j2k] ⊂ Xm

of length α2k+2 ending at position j2k. In our preprocessing, we already en-
dowed Xm with the data structure of Lemma 5.27. We use this data structure
as described in Lemma 5.28: It allows us to retrieve every possible segment YL
inside the segment of length α2k+2 ending at position j2k, in O(α) time. These
occurrences are given in the representation of Cor. 5.25. They consist of sin-
gle occurrences and the first occurrences within runs. There are O(α) single
occurrences, and we can process each single occurrence YL individually to find
the maximal α-gapped repeat that is determined by YR and its respective
occurrence YL.

However, it is not efficient to do the same for the occurrences of YL that are
within a run (there can be Ω(α) many occurrences). If YL is within a run R, YR is
periodic. Let p be the smallest period of YR. Instead of examining all occurrences
of YR in R, we focus on its first occurrence, since there are O(α) many first

240

5.4 Computing All Maximal α-Gapped Repeats

occurrences of YR in Xm. Let Y denote the substring of YR. Suppose that there
is a repetition of Y ’s inside the segment T [−α2k+2 + j2k + 1 . . j2k] ⊂ Xm. With
Cor. 2.11 we can determine the run RL. Similarly, we can determine the run RR

with smallest period p that contains YR.
Our goal is to spend O(α+ occ) time on all previous occurrences of YR in X,

where occ is the number of all reported maximal α-gapped repeats while having
X and YR fixed. We achieve this goal with a thorough case analysis, which
is illustrated in Fig. 5.39. We group the cases depending on the relationship
between b(UR) and b(RR). Each case is further differentiated into sub-cases
according to the relationship between e(UR) and e(RR). In each sub-case, we
determine the exact location of UL and UR by querying LCE↔ on Xm:
Cases (a-c): b(RR) < b(UR). Then b(UR) < e(RR), because we search arms
with a length of at least two (arms of length one belong to Set 1). Then UL

starts at the first position of RL (otherwise, we could extend both arms to the
left, a contradiction to the maximality of the gapped repeat (UL, UR)).

(a) If UR ends at a position to the right of RR, then UL ends at a position
to the right of RL (otherwise, it would contradict the maximality of RL

or RR). The suffix T [e(RL) + 1 . . e(UL)] of UL occurring after the end
of RL is equal to the suffix T [e(RR) + 1 . . e(UR)] of UR occurring after
the end of RR. This common suffix is determined by the LCP starting
at positions e(RL) + 1 and e(RR) + 1. Together with the length of RL it
determines (UL, UR).

(b) If UR ends exactly at the same position as RR (e(UR) = e(RR)), then UR is
periodic with smallest period p (like RR). We compute the longest prefix
U ′ of RL that is a suffix of RR. By knowing the period p (determined
by two subsequent occurrences of YL) and the length of RL and RR, the
segment U ′ can be determined in constant time.5

Since UL is longer than p, the α-gapped repeats under consideration
have the left arm UL := RL[1 . . |U ′| − pi] and the right arm UR :=
RR[|RR| − (|U ′| − pi) + 1 . . |RR|] for i ≥ 0 such that (UL, UR) is α-gapped.
To obtain a time linear in the number of reported gapped repeats, we
iterate over all values of i, starting at zero and stopping when the computed
gapped repeat is no longer α-gapped.

(c) The final case is when UR ends at a position of RR prior to RR’s last
position (e(UR) < e(RR)). In that case, we obtain that UL = RL (otherwise,
we could extend both arms to the right). The left arm UL is equal to a
substring ZhZ ′ for an integer h ≥ 2, where Z = RL[1 . . p], p is the smallest
period of RL, and Z ′ is a prefix of Z.
We obtain the position of the first and the last occurrence of Z in RR by
an arithmetic progression with common difference p: If the first occurrence

5 It can happen that RL ≡ RR, such that U ′ ≡ RL.

241

5 Gapped Regular Structures

starts at f , then the starting positions of the succeeding occurrences of Z
form the arithmetic progression f , f + p, . . . , f + `p for an integer ` ≥ 1.
For each integer i with 0 ≤ i ≤ `, we let UR start at position f + ip (and
check whether UR = UL by knowing the length of UR and RR).
Additional care has to be taken for the border case that UR is a suffix of
RR. In this case, we have to check that we cannot extend simultaneously
UR and UL to the right. The other border case that UR is a prefix of RR

cannot happen, since we assumed in Cases (a-c) that b(UR) > b(RR).

Cases (d-f): b(UR) = b(RR).

(d) If UR ends at a position to the right of RR, then UL ends after RL

(e(RR) < e(UR) and e(RL) < e(UL)), and the suffix T [e(RL) + 1 . . e(UL)]
of UL occurring after RL is equal to the suffix T [e(RR) + 1 . . e(UR)] of UR

occurring after RR. This common suffix is equal to the LCP starting at
the positions e(RL) + 1 and e(RR) + 1. Together with the length of RR it
determines (UL, UR).

(e) If UR ends at a position inside RR prior to its last position (b(RR) =
e(UR) < e(RR)), then UL ends at the last position of RL (otherwise, both
arms could be extended to the right). This means that the gap between
the two arms is uniquely determined, and that the arms are periodic with
smallest period p. We compute the longest suffix T [e(RL)− `+ 1 . . e(RL)]
of RL that is a prefix of RR (by knowing the starting positions of Y ’s
occurrences in RL and RR), and check whether (T [e(RL)− `+ 1 . . e(RL)],
T [b(RR) . . b(RR) + `− 1]) is a maximal α-gapped repeat.

(f) If UR ends at the last position of RR, then we know the exact location
of UR. We can proceed analogously to Case (c) by symmetry.

Cases (g-i): b(UR) < b(RR). Since RL and RR are maximal repetitions, UL

starts at a position before the first position of RL (b(UL) < b(RL) < e(UL)); the
prefix of UR occurring before the beginning of RR is equal to the prefix of UL

occurring before RL. The length of this common prefix can be retrieved with a
longest common suffix query.

(g) Given e(UR) = e(RR), the length of the gapped repeat (UL, UR) is deter-
mined by the common prefix and the length of RR.

(h) The case e(UR) < e(RR) is symmetric to Case (g): Since e(UR) < e(RR),
it holds that e(UL) = e(RL), and therefore the length of the gapped repeat
is determined by their common prefix and the length of RL.

(i) The last case is e(RR) < e(UR). Since RL and RR are maximal repetitions,
we follow that e(RL) < e(UL). Consequently, UL and UR contain RL and
RR, respectively. We determine the arms UL and UR by the LCP starting

242

5.4 Computing All Maximal α-Gapped Repeats

at e(RL) + 1 and e(RR) + 1, and the longest common suffix ending at
b(RL)− 1 and b(RR)− 1.

To sum up, we can determine the locations of both arms of each reported
maximal α-gapped repeat in constant time for all the cases with LCE/LCS
queries. For each found pair of arms, we have to check whether the arms form
a valid maximal α-gapped repeat without overlap. To avoid duplicates, we
additionally check whether

• the length of the arms is between 2k+1 and 2k+2 (otherwise we find these
arms later with a k′-basic segment for k′ > k), and whether

• the right arm contains position j2k + 1 of Xm within its first 2k positions
(otherwise we find the right arm with the next k-basic segment T [(j +
1)2k + 1 . . (j + 2)2k]).

To ensure the last condition in Cases (b) and (c), where the right arm cannot be
uniquely determined in general, we select those gapped repeats (UL, UR) with
b(YR) ∈ [b(UR) . . b(UR) + 2k − 1].

This concludes our analysis for finding all α-gapped repeats of Xm, for
each m separately. We can ensure that our algorithm finds and outputs each
maximal repeat exactly once when processing Xm+1 after having processed Xm:
We check that the right arm of each found maximal α-gapped repeat is not
completely contained in Xm (which means that we have already found it while
processing Xm). To discard these gapped repeats, we modify our search as
follows: When constructing the arms that are determined by a single occurrence
of YR, we check the above containment condition separately; when constructing
the arms determined by a run of YR-occurrences (cf. Cases (b) and (c)), we
impose the condition that the right arm extends out of Xm when determining the
starting positions of all possible arms. This is done by iterating over all possible
starting positions of the right arm, beginning with the rightmost position, and
stopping when the right arm is completely contained in Xm.

Finally, we analyze the complexity of the algorithm. We need O(n) pre-
processing time for building LCE↔, and O(|Xm|) = O(γα lg n) preprocessing
time for each Xm according to Lemma 5.27. For fixed m, k, and j (and hence
fixing Xm and YR), our algorithm (finding all YL-candidates and performing
the case analysis) takes O(α + occm,k,j) time, where occm,k,j is the number of
all maximal α-gapped repeats determined with the fixed values m, k, and j.
Iterating over all values m, k and j gives the overall time complexity of the
algorithm, which is order of

n︸︷︷︸
precomp. on T

+
n

lgn∑
m=0︸︷︷︸

for all Xm

 γα lg n︸ ︷︷ ︸
precomp. on Xm

+
lg(γ lgn)∑
k=0

γ lgn

2k∑
j=0

(α + occm,k,j)︸ ︷︷ ︸
for all k-basic segments YR

 =

243

5 Gapped Regular Structures

O(αn), since ∑lg(γ lgn)
k=0

∑γlgn/2k
j=0 α = ∑lg(γ lgn)

k=0 (1 + γlg n/2k)α = O(α lg n), and
the total number of maximal α-gapped repeats ∑n/lgn

m=0
∑lg(γ lgn)
k=0

∑γlgn/2k
j=0 occm,k,j

is O(αn) according to Thm. 5.16.

5.4.4 Long Arms
With the superblocks Xm in Lemma 5.29 we can only find arms with a length
of at most γ lg n. Supporting longer arms would slow down the computation
in Lemma 5.29 such that we need another trick to find the long arms. We
borrow such a trick from Dumitran et al. [70, Thm. 7], where the authors
introduced a block-representation of a string T : We partition T into segments
of lg n characters T [1 + i lg n . . (i + 1) lg n] for every 0 ≤ i < n/ lg n (we can
ensure that every block has the same number of characters by padding T with
dummy characters such that n

lgn is integer). We call these segments blocks of T .
The lexicographic order on Σ induces a linear order on the blocks. Since there
are at most n/ lg n different blocks, we can enumerate the blocks with ranks
from 1 to at most n/ lg n such that the j-th smallest block receives rank j. For
our purpose, an enumeration from 1 to n (we omit some ranks) is sufficient.
Before showing how to compute the enumeration, we start with the definition
of the block-representation: A string T̃ is the block-representation of T if

• T̃ is a string of length n/ lg n on the alphabet {1, . . . , n}, and

• T̃ [i] = j (1 ≤ i ≤ n/ lg n) if and only if the block of T with rank j is equal
to T [1+(i−1) lg n. .i lg n]; in this case we say that T [1+(i−1) lg n. .i lg n]
corresponds to T̃ [i], and vice versa.

It is easy to provide a linear-time algorithm computing the enumeration: We
start with building LCE↔. Subsequently, we cluster together the suffixes of the
suffix array that share a common prefix of length at least lg n. There are at
most n different clusters; hence we can enumerate all clusters, starting from 1
to at most n. A block is associated with the number of a cluster if the cluster
contains the suffix that starts at the same position as the block.

Lemma 5.30. We can build the block-representation T̃ of a string T of length n
in O(n) time.

Having Lemma 5.30, we are ready to present the algorithm finding long-armed
maximal α-gapped repeats with large values for α:

Lemma 5.31. Given a string T of length n, and an α ≥ lg n, we can find
all maximal α-gapped repeats (UL, UR) with |UR| > γ lg n and e(UL) < b(UR)
occurring in T , in O(αn) time using O(αn) words of working space.

Proof. We use similar techniques as presented in Lemma 5.29 to prove this
lemma: We partition the text into segments, and iterate over each segment YR

244

5.4 Computing All Maximal α-Gapped Repeats

≤ α2k+2 lg n

UL UR

ZL ZR

lg n lg n lg n lg n lg n lg n lg n lg n lg n lg n lg n lg n lg n lg n
YL YR

` δ ` δ

2k−1 lg n

k-block k-block k-block

Fig. 5.40: Finding occurrences of Y starting with a block in proof of Lemma 5.31.
The distance δ is smaller than lg n, and the distance ` is smaller than 2k lg n,
since Z is the first k-block contained in Z.

of this partition, trying to build a gapped repeat with YR as its right arm. The
main difference is that we cannot use the result of Lemma 5.27, since we deal
with gapped repeats with arms longer than γ lg n. Instead, we use the data
structures described in Lemma 5.26. However, to obtain the stated complexity,
we apply Lemma 5.26 to the block-representation of T , rather than to T itself.

In this sense, the first step is to construct the block-representation T̃ of T .
Subsequently, we construct LCE↔T and LCE↔

T̃
, as well as the data structure of

Lemma 5.26 for the string T̃ . Finally, we compute all runs of T with Lemma 2.2.
Every step is conducted in O(n) time.

Like in the proof of Lemma 5.29, we iterate over all possible arm lengths.
For an integer k with lg γ − 1 ≤ k ≤ lg(n/ lg n)− 2, we search for all maximal
α-gapped repeats (UL, UR) in T with 2k+1 lg n ≤ |UL| ≤ 2k+2 lg n.

For the following, we fix k. We partition the string T into segments. Each
segment has the length 2k lg n, and is called a k-block. As for blocks, we assume
that each k-block has the same number of characters (by padding the input text).
The idea of this partition is the following: If a maximal α-gapped repeat (UL, UR)
with 2k+1 lg n ≤ |UL| ≤ 2k+2 lg n exists, then it contains a k-block within its
first 2k lg n positions. Let ZR be the first k-block contained in UR. Since UR

contains ZR, the left arm UL also contains an occurrence ZL of ZR. However,
ZL is not necessarily starting at a position j lg n+ 1 for an integer j ≥ 0, i.e.,
it does not have to start with a block. In general, we cannot capture ZL with
our block-representation. Fortunately, at least one of the segments YR of length
2k−1 lg n starting within the first lg n positions of ZR has an occurrence YL in UL

starting with a block (YR itself does not have to start with a block, see also
Fig. 5.40). To find such a segment YR, we iterate over the first lg n positions
of ZR. Let us fix a segment YR of length 2k−1 lg n that starts within the first
lg n positions of ZR. Since we search for an α-gapped repeat (UL, UR) with (a)
b(UR) − b(UL) ≤ α |UR| ≤ α2k+2 lg n, (b) YL ⊂ UL, (c) YR ⊂ UR, and (d) ZR

starts within the first 2k lg n positions of UR, we look for the occurrences YL

245

5 Gapped Regular Structures

of YR starting at one of the 2k lg n + α2k+2 lg n = (4α + 1)2k lg n positions to
the left of ZR. For each such occurrence YL that corresponds to a sequence of
blocks, we try to extend both YL and YR to an α-gapped repeat (which is the
same strategy as used in the proof of Lemma 5.29).

Since YR is not necessarily a sequence of 2k−1 blocks, i.e., YR is not represented
by a segment of T̃ in general, we search for a sequence of blocks Ỹ in T̃ that
corresponds to YR with the suffix array of T̃ . With this search we can figure
out the characters contained in Ỹ (speaking of the characters induced by the
enumeration of the block-representation) if there is an occurrence of Ỹ in T̃ .
Let Y denote the substring of YR. By binary searching the suffix array of T̃
(using LCE queries on T to compare the factors of lg n characters of Y and
the blocks of T̃ , at each step of the search) we try to detect a substring of T̃
that encodes a string equal to Y . Suppose that we can find such a sequence
Ỹ of blocks in T̃ (otherwise, Y cannot correspond to a sequence of blocks
from UL, so we choose a new YR by taking the next starting position). By
Lemma 5.26, we can spot the occurrences of Ỹ in the (4α+1)2k blocks of T̃ that
occur before the blocks of ZR, in O(lg lg

∣∣∣T̃ ∣∣∣+α) time; this range corresponds to
T [e(ZR)−(4α+1)2k . .e(UR)−1]. Each of those occurrences of Ỹ fixes a possible
left arm UL. We can construct this arm UL together with its corresponding arm
UR with the same techniques as in Lemma 5.29:

• In the case of a single occurrence ỸL (there are at most O(α) many of such
single occurrences), ỸL represents a single occurrence YL of Y . We extend
YL and YR in both directions to obtain two arms UL and UR, respectively,
for which we have to check if they define a valid α-gapped repeat (UL, UR)
without overlaps. To avoid duplicates, we check that the length of each
arm is between 2k+1 and 2k+2, and that ZR is the first k-block of the right
arm.

• If an occurrence ỸL of Ỹ is within a run, then Ỹ is periodic. Given that
p is Ỹ ’s period, the smallest period of Y is at most p lg n ≤ |Y | /2, since
p ≤ Ỹ /2 = Y/(2 lg n). This means that Y is periodic, too. We can
determine the actual period of Y with the computed runs of T analogously
to Lemma 5.24, since we linearly scan the text from left to right such that
we know the run containing YR. Knowing the smallest period of YR, we
can compute the run RL containing the segment YL that has ỸL as its
block-representation (see Cor. 2.11). Finally, we conduct the case analysis
as described in the proof of Lemma 5.29 on YR and the run RL.

It remains to prove that each maximal gapped repeat is counted only once:

• If YR is within a run RR with smallest period p, we skip the starting
positions T [b(YR)+p. .e(RR)−|YR|+1] (segments starting at these positions
with a length of |YR| = 2k−1 lg n have the same block-representation as

246

5.4 Computing All Maximal α-Gapped Repeats

the segments of the same length starting p positions earlier). Every other
two segments YR and YR starting within the first lg n characters of ZR

cannot have the same block-representation, and therefore, they cannot
determine the same YL-occurrences. Nevertheless, if they are periodic,
they can determine the same run of YL-occurrences. To handle such a
case, we mark the starting positions of all already visited runs in a bit
vector (which gets cleared after processing ZR), such that we can skip a
run of YL-occurrences whenever it is already marked.

• On finding a segment YR occurring in the first lg n characters of a k-
block ZR such that YR determines a maximal α-gapped repeat, the same
maximal α-gapped repeat will not be found by a segment with the same
length as YR contained in another k-block (than ZR), since ZR is the first
k-block of UR.

Finally, we analyze the complexity of the above described algorithm. The
preprocessing, i.e., the construction of T̃ and all of the needed data structures,
takes O(n) time. We have multiple nested iterations:

(a) We iterate over all integers k with lg γ− 1 ≤ k ≤ lg(n/ lg n)− 2 to find all
maximal α-gapped repeats with arms having a length between 2k+1 lg n
and 2k+2 lg n.

(b) For a fixed integer k, we examine every k-block ZR, and there are n/(2k lg n)
many.

(c) For a fixed segment ZR, we analyze each segment YR of length 2k−1 lg n
starting within the first lg n positions of the chosen k-block ZR.

(d) For each such segment YR we compute its block-representation Ỹ with a
search in the suffix array taking O(lg(n/ lg n)) time.

(e) Given that Ỹ occurs in T̃ , we find all occurrences of Ỹ that are possible
substrings of the left arm of an α-gapped repeat in O(lg lg n+ α) time.

(f) For each YL of the O(α) single occurrences, we check whether it is possible
to extend YL and YR to a maximal α-gapped repeat in O(1) time. We
also have O(α) occurrences of the block encoding YL within runs, all of
them are processed in O(α + occZR,YR) time overall, where occZR,YR is
the number of maximal α-gapped repeats we find for given segments ZR

and YR.

Overall, this adds up to

(5.17)
lg n

lgn−2∑
k=lg γ−1

n

2k lg n︸ ︷︷ ︸
#ZR

lg n︸︷︷︸
#YR

(
lg n

lg n + lg lg n+ α + occZR,YR

)
︸ ︷︷ ︸

process every possible YL

= O(n lg n+ αn),

247

5 Gapped Regular Structures

1 1 + ` 1 + 2` 1 + 3`

X1

X2

UL UR

< 2 lg2 n

≤ `

2`

Fig. 5.41: Covering {Xm}m of T de-
fined as in the proof of Lemma 5.32.
EachXm has a length of 2` and starts
at the text position 1+m`. A gapped
repeat (UL, UR) with e(UR)−b(UL)+
1 ≤ ` is completely contained in one
segment Xm of the cover.

since the total number of maximal α-gapped repeats in T is upper bounded by
O(αn). Since α ≥ lg n, the statement of the lemma follows.

Unfortunately, the algorithm presented in Lemma 5.31 does not run in O(αn)
time for α = o(lg n), but rather in O(n lg n) time. The following lemma shows
how to achieve the O(αn) time bound for α < lg n, with a trick presented (again)
in [70, Thm. 7]. Remembering that we partition the text T into k-blocks in
Lemma 5.31 to find all maximal α-gapped repeats with an arm length between
2k+1 lg n and 2k+2 lg n, the idea is to apply Lemma 5.31 for large values of k,
then apply Lemma 5.31 on a cover of the text, and finally Lemma 5.29 for small
values of k.

Lemma 5.32. Given a string T of length n, and an α < lg n, we can find
all maximal α-gapped repeats (UL, UR) with |UR| > γ lg n and e(UL) < b(UR)
occurring in T , in O(αn) time.

Proof. Initially, we run the algorithm of Lemma 5.31 only for k > lg lg n to find
all maximal α-gapped repeats with an arm length of at least 2lg lgn+1 lg n. We
see that Eq. (5.17) with k > lg lg n yields O(αn) time.

In the rest of this proof, we search for maximal α-gapped repeats whose
arms’ length is upper bounded by 2lg lgn+1 lg n = 2 lg2 n. Setting ` := α ·
2 lg2 n + 2 lg2 n = 2(α + 1) lg2 n, the lengths of those gapped repeats (i.e.,
e(UR) − b(UL) + 1 for a gapped repeat (UL, UR)) is at most `. If we cover T
with the set of segments {T [1 +m` . . (m+ 2)`] | 0 ≤ m ≤ n/`− 2}, then such
an α-gapped repeat is contained in (at least) one segment of this cover (see
Fig. 5.41).

Having this cover, we can apply the algorithm of Lemma 5.31 to each segment
in the cover (iterating over all m) to detect all maximal α-gapped repeats with
an arm length of at least 2lg lg(2`)+1 lg(2`) and less than 2lg lgn+1 lg n that are
completely contained in a segment of the cover. Given that occm is the number
of occurrences of all those maximal α-gapped repeats in the m-th segment of
the cover, Equation (5.17) with k ≥ lg lg(2`) gives O(α`+ occm) time for the

248

5.4 Computing All Maximal α-Gapped Repeats

algorithm of Lemma 5.31 running on the m-th segment of the cover, since each
cover is of length 2`, and we build the suffix array and the block representation on
each cover, such that n becomes 2` in Eq. (5.17). Summing over all segments of
the cover, we get O(αn) time in total. By knowing the overlap of two subsequent
segments of the cover, it is easy to adapt the algorithm of Lemma 5.31 in such
a way that no gapped repeat is reported twice.

It is left to find all maximal α-gapped repeats with an arm length smaller
than 2lg lg(2`)+1 lg(2`). For n large enough, it holds that 2lg lg(2`)+1 lg(2`) ≤ γ lg n,
since α ≤ lg n. But those maximal α-gapped repeats are already found by the
algorithm of Lemma 5.29 running in O(αn) time.

Putting the results of Lemmas 5.23, 5.24, 5.29, 5.31 and 5.32 together yields
the following theorem:

Theorem 5.33. Given a string T and an α ≥ 1, we can compute Rα(T) in
O(αn) time with O(αn) words of working space.

Computing Pα(T) can be done very similarly, as can be seen by the highly
similar proofs of [70, Thm. 7] and [70, Thm 8].

Corollary 5.34. Given a string T and α > 1, we can compute Pα(T) in O(αn)
time.

Proof. We construct the data structure of Cor. 2.13 to test in constant time
whether a substring T [i . . j]ᵀ occurs at a position in T . We split T into blocks
and k-blocks (like in Lemma 5.31) for each k ≤ lg |T |, to check whether there
exists a gapped palindrome (UL, UR) with 2k ≤ |UR| ≤ 2k+1. This search is
conducted analogously to the case of gapped repeats, with the difference that
when fixing the segment YR in UR, we look for the occurrences YL with YL = YR

ᵀ

(instead of UL = YR) in the segment of length O(α2k+1) preceding it. To find
gapped palindromes with long arms, we compute the block-representation of
YR
ᵀ with the suffix array of TT ᵀ.

The case α = 1 is already solved in Lemma 2.4. Corollary 5.34 generalizes
the result of Kolpakov and Kucherov [163], who presented an algorithm working
on an alphabet with constant size.

Remark 5.35. The presented bounds are still valid when working with the
more general definition of α-gapped ϕ-repeats or α-gapped ϕ-palindromes: Let
ϕ : Σ∗ → Σ∗ be a string isomorphism, i.e., ϕ(SV) = ϕ(S)ϕ(V), and ϕ is bijective.
A pair of segments (UL, UR) with e(UL) + 1 ≤ b(UR) is called a gapped ϕ-repeat
(resp. gapped ϕ-palindrome) if UL = ϕ(YR) (resp. UL = ϕ(YRᵀ) = ϕ(YR)ᵀ).
The properties α-gapped and maximal are defined analogously to the gapped
repeats (resp. gapped palindromes). Since the identity is a string isomorphism,
gapped ϕ-repeats and gapped ϕ-palindromes are a generalization of gapped
repeats and gapped palindromes without overlaps, respectively. It is easy to

249

5 Gapped Regular Structures

see that our results are also applicable for α-gapped ϕ-repeats or α-gapped
ϕ-palindromes. This generalizes the analysis in [163, Sec. 5]; there, ϕ is equal
to a function building the base complements of a DNA string (the Watson-Crick
base complement as in Fig. 5.1). The problem of enumerating all 1-gapped
ϕ-repeats or all 1-gapped ϕ-palindromes was already investigated in [105, 106].

5.5 Conclusion
We presented two major achievements that shed light on the combinatorial and
computational aspects of α-gapped repeats. First, we succeeded in giving the
concrete upper bounds 3(π2/6 + 5/2)αn and 7(π2/6 + 1/2)αn− 3n− 1 on the
maximum number of all maximal α-gapped repeats Rα(T) and on all maximal
α-gapped palindromes Pα(T), respectively, of a text T of length n. Second, we
elaborated an algorithm computing the set Rα(T) of a text T of length n whose
characters are drawn from an integer alphabet. The algorithm runs in O(αn)
time, and can be adapted to compute the set Pα(T). The combinatorial bounds
and the time bounds of the algorithms are asymptotically optimal. Our proofs
work for both supporting overlaps and prohibiting overlaps, and thus generalize
the analysis of former studies. Our study does not lead to a dead end, as can
be seen by the following open problems:

Space efficient computation. Throughout Sect. 5.4, we deliberately omitted
the exact memory consumption of the created data structures (currently O(αn)
words). Current approaches for succinct LCE query data structures (replacing
Cor. 2.12 with a data structure of Fig. 4.2) shed a positive light on lowering the
space requirements. With a more careful analysis of the space we could give
refined bounds (e.g., measured in bits) of the selected data structures, perhaps
devising an algorithm working on succinct space.

Output-sensitive running time. It is also interesting to further refine both
algorithms to such an extent that their running time is output-sensitive, i.e., hav-
ing O(|T |+ |Rα(T)|) and O(|T |+ |Pα(T)|) worst case running time, respectively,
for a string T .

Online algorithm. To the best of our knowledge, there is no efficient algorithm
for computing all maximal α-gapped repeats/palindromes of a given string
online. We are aware of the algorithm of Fujishige et al. [99] finding all gapped
palindromes with a fixed gap (b(UR) − e(UL) − 1 = g for a constant g) in
O(n lg σ) time online while taking O(n) words of working space.

Compression based on α-gapped repeats and palindromes. Already sug-
gested by Chairungsee [43] or Crochemore et al. [64, Thm. 4], it would be

250

5.5 Conclusion

interesting to implement a compressor that considers gapped palindromes for
compressing redundancy. In the setting of α-gapped repeats or palindromes,
we could devise a compressor based on the LZ77 factorization. Like the coding
defined in Sect. 3.3.4, we can replace a substring F with a referred position j
and a length ` such that F = T [j . . j+ `− 1] (resp. F = T [j . . j + `− 1]ᵀ). The
referred position j and the length ` are stored in a tuple (j, `) in the compressed
file such that a decompressor can restore the original text based on the values
stored in each tuple. Usually, LZ77 compressors store the referred position j
relatively to the starting position b(F), i.e., b(F)− j instead of j, if the referred
positions are coded with a coder favoring small numbers (cf. the rightmost pars-
ing problem in Sect. 3.9). The value b(F)− j can be upper bounded by α |F | if
we restrict (T [j . . j + `− 1], F) to be an α-gapped repeat (resp. palindrome).
Informally, the inequality b(F)− j ≤ α |F | is a trade-off between the gain of
the factor (the |F | characters of F can be replaced by a reference) and the cost
for storing the referred position. This trade-off is influenced by the choice of
the parameter α. Additionally, instead of choosing the longest α-gapped repeat
or palindrome, it would be interesting to apply ideas similar to [76] for aiming
at multiple goals (like compression ratio, (de-)/compression speed, etc.).

Distinct sets. From the literature it is already known that searching all distinct
squares (see Sect. 3.5) or all distinct ordinary palindromes [119] of a string of
length n can be done in O(n) time. An extension is computing all distinct
α-gapped repeats/palindromes, for which we are unaware of any results, both
on the combinatorial (like giving an upper bound on the number of all distinct
α-gapped repeats/palindromes) and on the algorithmic aspects. We call a set
of gapped repeats (resp. palindromes) distinct, if the set does not contain two
gapped repeats (resp. palindromes) (UL, UR) and (UL, UR) with UL = UL.

Generalizing gaps. A generalization of α-gapped repeats are (µ, ν)-gapped
repeats, i.e., gapped repeats (UL, UR) with the additional property that ν(|UL|) ≤
b(UR)− e(UL)− 1 ≤ µ(|UL|) for two functions µ, ν : N→ R. The (µ, ν)-gapped
repeats with µ(j) := 1, ν(j) := αj are exactly the α-gapped repeats without
overlap. Kolpakov [159] showed that the number of all maximal (µ, ν)-gapped
repeats is bounded by

O(n(1 + max(sup
j∈N

(1/j)(µ(j)− ν(j)), sup
j∈N
|µ(j + 1)− µ(j)| ,

sup
j∈N
|ν(j + 1)− ν(j)|))).

Improving the upper bound, or devising a lower bound for certain µ and ν is
left for future work.

Regarding the algorithmic part, Brodal et al. [37] presented an algorithm
computing all maximal (µ, ν)-gapped repeats in O(n lg n + occ) time, where
occ is the number of occurrences. In the light that we achieved O(αn) running

251

5 Gapped Regular Structures

time for finding all maximal α-gapped repeats, it looks feasible to devise an
algorithm whose running time depends linearly on n and on the values of µ
and ν. Needless to say, (µ, ν)-gapped palindromes are also an unexplored topic.

252

Chapter

6 Epilogue
In the current information-oriented society, efficiently
processing massive volumes of data that grow daily is a
key topic. Specifically, we need to develop technologies
that can compress large volumes of data to make data
burdens as light and manageable as possible, while also
enabling high-speed search. Achieving both goals isn’t
easy. . . Technology that decompresses only the portions
of the data actually needed can help resolve these issues.

— Kunihiko Sadakane [218]

Sophisticated ways of handling regular structures lead to efficient algorithms
and data structures working on texts. For instance, by handling discovered
gapped repeats sophisticatedly, we could bound the running time of sorting
suffixes with a näıve string sorter in Chapter 4. Similar concepts can be applied
to devising index data structures based on the LZ77 (e.g., [102, 142]) or LZ78
(e.g., [13, 219]) factorization.

In this thesis, we worked with succinct and compact data structures. Their
field of application is limited, since their space consumption is at least linear in
the number of characters of their input text. However, compressed representa-
tions of the text or compressed data structures do not necessarily scale with
the number of the characters. Instead, they can take a small fraction of space
of the original input. The spotlight of current research moves towards highly
repetitive texts (e.g., [103, Sect. 1]). It is reasonable to analyze algorithms and
data structures to work in compressed space, or to work on compressed texts.
Popular models are counting space or time consumption in the number of LZ77
factors, in the size of a grammar, or the size of the run-length encoding of the
text or its BWT (see again [103, Sect. 1] for a survey on the connections between
those numbers). It is left open whether we can take ideas from our presented
algorithms to devise algorithms working within compressed space or working
on compressed texts, for which several solutions are already known for finding
regular structures (e.g., [131, 133]).

253

Symbol Register

Abbreviation Written-Out

Algo. Algorithm
Cor. Corollary
Def. Definition
Eq. Equation
Fig. Figure
Sect. Section
Thm. Theorem
cf. compare to
e.g. for example
i.e. that is

Symbol Meaning

⊥ invalid entry
ε real constant, 0 < ε ≤ 1
Λ the empty string
I,J ,K intervals
n text size (= |T |)
p period
σ alphabet size
Σ (usually an integer) alphabet
τ trade-off constant
T input text

Left: Register of reference abbreviations (top) and abbreviated words with Latin
origin (bottom). Right: Register of common variables.

Function Meaning

⊕ bitwise exclusive OR
& bitwise AND
B.rank1(j) ∑j

i=1B[i]
B.select1(k) min

{
j ∈ N | ∑j

i=1B[i] = k
}

exp(S) exponent of a string S
E(T) ∑

R run of T exp(R)
Hk(T) k-th order empirical entropy of T ∈ Σ∗ for an integer k ≥ 0
lg n binary logarithm of n
lg∗ n iterated logarithm min

{
k ∈ N | lg(k)(n) ≤ 1

}
Register of functions.

255

Symbol Register

Symbol Meaning

N natural numbers starting with one
Z integer numbers
R real numbers

Register of number sets.

Data Structure Definition

BWT BWT of T : BWT[i] = T [(SA[i] + n− 2 mod n) + 1]
ISA inverse suffix array of T : SA[ISA[i]] = i
LCE↔T data structure answering LCE queries on T and T ᵀ

LCP LCP array of T with LCP[1] = 0 and LCP[i] =
lcp(T [SA[i] . . n], T [SA[i− 1] . . n])] for all i = 2, . . . , n

Ψ Ψ-function of T : Ψ[i] = ISA[(SA[i] mod n) + 1]
PLCP permuted LCP array of T : PLCP[SA[i]] = LCP[i]
SA suffix array of T : T [SA[i−1]. .n] ≺ T [SA[i]. .n] ∀i = 2, . . . , n

Register of text data structures.

Notation Meaning

T [i . . j] substring from position i to j (inclusively) of a string T
[i . . j] integer interval {i, . . . , j} for integers i, j with i ≤ j.
b([i . . j]) beginning position i
e([i . . j]) ending position j
|T | either the cardinality of a set T , or the length of the

string T
|I| e(I)− b(I) + 1
(f ◦ g)(x) f(g(x))
f (k)(x) k-th iterated application of f to x: (f ◦ · · · ◦ f)︸ ︷︷ ︸

k times

(x)

fk(x) (f(x))k, especially lgk x = (lg x)k
Σk set of strings of length k drawn from the alphabet Σ
a ≤ i1, . . . , ij ≤ b a ≤ ik ≤ b ∀k = 1, . . . , j
T ≡ S T and S are the same segments
S ≺ T S ∈ Σ∗ is lexicographically smaller than T
x := y or y =: x assign x the value y
T ᵀ reverse of T : T [|T |] · · ·T [1]

Register of notations.

256

Symbol Register

Symbol Meaning

α load factor of a hash table
D concatenation of the lists Lλ ∀λ
Fx factor
λ leaf
Lλ list of witnesses encountered during a leaf-to-root traversal from λ
L list storing pairs representing squares
M hash table size
m m := αM maximal number of elements a hash table can store
nv exploration counter of the in-going edge of a suffix tree node v
u, v, w nodes of a tree
x, y counting variables for the range 1, . . . , z
X, Y arrays
z number of LZ77 or LZ78 factors

Register of common variables in Chapter 3.

257

Symbol Register

Symbol Meaning

β, γ blocks
B binary search prefix tree
C number of characters that have to be compared to decide

the sorting of all m suffixes
D dictionary of a CFG
η height at which to cut an HSP tree to form an η-truncated

HSP tree
ET(T) ESP tree of T
HT(T) HSP tree of T
L search tree storing created LCE intervals
µ, ν meta-blocks
M an instance of dynLCE
m size of P
P set of starting positions of suffixes subject to sorting
SAVL(Suf (P)) suffix AVL tree storing all suffixes of T whose starting posi-

tions belong to P
SLCP(T,P) sparse LCP array of T with respect to P
SSA(T,P) sparse suffix array of T indexing all suffixes whose starting

positions belong to P
Suf (P) the set of all suffixes whose starting positions belong to P
tHTη(T) η-truncated HSP tree tree of T for a height η
tC(`) time to construct an dynLCE on ` characters
tM(`) time to merge two dynLCEs covering ` characters
tQ(`) time to query an dynLCE covering ` characters
X, Y, Z substrings of T

Register of common variables in Chapter 4.

258

Symbol Register

Symbol Meaning

α α ∈ R with α ≥ 1. (UL, UR) α-gapped :⇔ g + |UL| = q ≤ α |UL|
β β ∈ (0, 1] ⊂ R. (UL, UR) β-periodic :⇔ UL[1 . . β |UL|] or UR[1 . .

β |UR|] periodic in case of gapped repeats or gapped palindromes,
respectively

γ constant with γ ≥ 4 to separate α-gapped repeats/palindromes
based on whether their arms are at most or longer than γ lg n

Cn {(x, y) | 1 ≤ y ≤ n− 1 and 1 ≤ x ≤ n− y}
C subset of Cn
corr(i) (i+ 1 mod 2)/2
ϕ string isomorphism
g gap of (UL, UR), i.e., g := b(UR)− e(UL)− 1
µ, ν functions
m combinatoric part: center of the left arm of a gapped palindrome
m algorithmic part: counting variable for superblocks
Pα(T) all maximal α-gapped palindromes in T
Pβα (T) all maximal α-gapped β-periodic palindromes in T

Pβα (T) all maximal α-gapped β-aperiodic palindromes in T
q arm-period of (UL, UR), i.e., q := b(UR)− b(UL)
R run
Rα(T) all maximal α-gapped repeats in T
Rβ
α(T) all maximal α-gapped β-periodic repeats in T

Rβ
α(T) all maximal α-gapped β-aperiodic repeats in T

(SL, SR) a gapped repeat/palindrome contained in the gapped repeat/
palindrome (UL, UR)

T̃ block-representation of T
(UL, UR) gapped repeat or gapped palindrome
weight(p̂) weight of a point p̂ ∈ Z2

ξR ξR(UL, UR) := (e(UL), b(UR)− b(UL))
ξP ξP(UL, UR) := (d(b(UL) + e(UL))/2e , b(b(UR) + e(UR))/2c −

d(b(UL) + e(UL))/2e)
Xm superblock

Register of common variables in Chapter 5.

259

Symbol Register

List of Identifiers in Chapter 3
While describing the LZ77 and LZ78 factorization algorithms in Sects. 3.4 and 3.7,
we used several data structures, among others bit vectors, some with rank or
select-support, to achieve the small space bounds. We denote bit vectors with Bα

for an α consisting of one or two upper case letters.
For all types of LZ-factorizations we use

• BW marking all witness nodes,

• the array W mapping witness ranks to
LZ77 text positions, or
LZ78 factor indices.

In LZ77 we use

• BV marking visited nodes, and

In LZ78 we use

• the array W ′ mapping LZ nodes to factor indices,

• BC counting nv of each partially explored node v,

• BV marking suffix tree nodes represented in the LZ trie (their ingoing
edges are fully explored),

• BLZ marking explicit LZ nodes, and

• BE marking the edge witnesses.

The algorithms based on the SST additionally use

• BT marking the starting positions of all factors, used also for representing
the length of a factor.

We count the number of

• factors by z,

• witnesses by zW,

• referencing factors by zR, and

• fresh factors by zF.

260

Symbol Register

LZ77 Output-Streaming with SST, see Sect. 3.4.1

Name Bits Rank Select In-Place
SA.RMQ 2n+ o(n)
BV

Common in Sects. 3.4 and 3.7 except for Sect. 3.4.1

Name Bits Rank Select In-Place
BW n+ o(n) ©

BV

LZ77 with CST, see Sect. 3.4.2

Name Bits (a) (b) Rank Select In-Place
W z lg n © ©

LZ77 with SST In-Place, see Sect. 3.4.3

Name Bits (a) (b) (c) (M) Rank Select In-Place
D (zW + zR) lg n © ©

BD n+ zW + zR © © ©

BM zW + zR ©

BT n+ o(n) © © © © ©

BZ z © ©

Common for LZ78, see Sect. 3.7.1

Name Bits Rank Select In-Place
BC

BV

LZ78 with CST, see Sect. 3.7.2

Name Bits (a) (b) (b’) Rank Select In-Place
BLZ z + o(z) © ©

BE 2n ©

W/W ′ z lg z © © ©

261

Symbol Register

LZ78 with SST, Sect. 3.7.3

Name Bits (b) (M) Rank Select In-Place
L z lg n © © ©

W zW lg n © ©

BL z + zW ©

BT n+ o(n) © ©

List of data structures with names. The list comprises additional data structures
used while computing the LZ factorizations of a text of length n. The letters
written in brackets represent a pass (e.g., (a) refers to Pass (a)). The number
of bits is omitted if it is exactly n. Circles symbolize that the data structure is
used during a pass, or that it is used with a rank or select structure, or that the
data structure is stored in space of X and Y (Column In-Place).

262

Acronyms

BP balanced parentheses

BSPT binary search prefix tree

BWT Burrows-Wheeler transform

CFG context free grammar

CPU central processing unit

CST compressed suffix tree

DNA deoxyribonucleic acid

DFUDS depth-first unary degree se-
quence

dynLCE dynamic LCE data structure

ESP edit sensitive parsing

HSP hierarchical stable parsing

LCA lowest common ancestor

LCE longest common extension

LCG linear congruential generator

LCP longest common prefix

LCS longest common suffix

LPF longest previous factor

LZ77 Lempel-Ziv-77

LZ78 Lempel-Ziv-78

LZ Lempel-Ziv

LZSS Lempel-Ziv-Storer-Szymanski

LZW Lempel-Ziv-Welch

MAST minimal augmented suffix tree

RAM random-access memory or ma-
chine

RNA ribonucleic acid

RMQ range minimum query

SDSL Succinct Data Structure Li-
brary

SEDM string edit distance with
moves

SLCP sparse longest common prefix
array

SSA sparse suffix array

SSD solid-state disk

SST succinct suffix tree

263

Bibliography

[1] A. Abeliuk, R. Cánovas, and
G. Navarro. Practical compressed
suffix trees. Algorithms, 6(2):319–
351, 2013.

[2] M. I. Abouelhoda, S. Kurtz, and
E. Ohlebusch. Replacing suffix
trees with enhanced suffix arrays.
JDA, 2(1):53–86, 2004.

[3] J. A. Adam. Mathematics in Na-
ture: Modeling Patterns in the
Natural World. Princeton Univer-
sity Press, 2006.

[4] S. Alstrup, T. Husfeldt, and
T. Rauhe. Marked ancestor prob-
lems. In Proc. FOCS, pages 534–
543, 1998.

[5] S. Alstrup, G. S. Brodal, and
T. Rauhe. Pattern matching in
dynamic texts. In Proc. SODA,
pages 819–828, 2000.

[6] A. Amir, M. Farach, R. M.
Idury, J. A. L. Poutré, and
A. A. Schäffer. Improved dy-
namic dictionary matching. In-
formation and Computation, 119
(2):258–282, 1995.

[7] A. Amir, M. Farach, R. M.
Idury, J. A. L. Poutré, and
A. A. Schäffer. Improved dy-
namic dictionary matching. In-
formation and Computation, 119
(2):258–282, 1995.

[8] A. Andersson and S. Nilsson. A
new efficient radix sort. In Proc.
FOCS, pages 714–721, 1994.

[9] D. Angluin and L. G. Valiant.

Fast probabilistic algorithms for
hamiltonian circuits and match-
ings. J. Computer and System
Sciences, 18(2):155–193, 1979.

[10] A. Apostolico and S. Lonardi.
Compression of biological se-
quences by greedy off-line tex-
tual substitution. In Proc. DCC,
pages 143–152, 2000.

[11] A. Apostolico and F. P.
Preparata. Data structures
and algorithms for the string
statistics problem. Algorithmica,
15(5):481–494, 1996.

[12] A. Apostolico, D. Breslauer, and
Z. Galil. Parallel detection of all
palindromes in a string. TCS, 141
(1–2):163–173, 1995.

[13] D. Arroyuelo and G. Navarro.
Space-efficient construction of
Lempel-Ziv compressed text in-
dexes. Information and Compu-
tation, 209(7):1070–1102, 2011.

[14] D. Arroyuelo, P. Davoodi, and
S. R. Satti. Succinct dynamic
cardinal trees. Algorithmica, 74
(2):742–777, 2016.

[15] D. Arroyuelo, R. Cánovas,
G. Navarro, and R. Raman.
LZ78 compression in low main
memory space. In Proc. SPIRE,
volume 10508 of LNCS, pages
38–50, 2017.

[16] J. Arz and J. Fischer. LZ-
compressed string dictionaries. In
Proc. DCC, pages 322–331, 2014.

265

Bibliography

[17] N. Askitis. Fast and com-
pact hash tables for integer keys.
In Proc. Australasian Computer
Science Conference, volume 91
of Conferences in Research and
Practice in Information Technol-
ogy, pages 101–110, 2009.

[18] G. Badkobeh, S. Chairungsee,
and M. Crochemore. Hunting re-
dundancies in strings. In Proc.
Developments in Language The-
ory, volume 6795 of LNCS, pages
1–14, 2011.

[19] H. Bannai. Grammar compres-
sion. In Encyclopedia of Algo-
rithms, pages 861–866. Springer,
2016.

[20] H. Bannai, S. Inenaga, and
M. Takeda. Efficient LZ78 factor-
ization of grammar compressed
text. In Proc. SPIRE, volume
7608 of LNCS, pages 86–98, 2012.

[21] H. Bannai, T. I, S. Inenaga,
Y. Nakashima, M. Takeda, and
K. Tsuruta. The ”runs” theorem.
SICOMP, 46(5):1501–1514, 2017.

[22] H. Bannai, S. Inenaga, and
D. Köppl. Computing all dis-
tinct squares in linear time for
integer alphabets. In Proc. CPM,
volume 78 of LIPIcs, pages 22:1–
22:18, 2017.

[23] J. Barbay, T. Gagie, G. Navarro,
and Y. Nekrich. Alphabet parti-
tioning for compressed rank/se-
lect and applications. In Proc.
ISAAC, volume 6507 of LNCS,
pages 315–326, 2010.

[24] J. D. Barrow. The Artful Uni-
verse. Clarendon Press, 1995.

[25] J. D. Barrow. New Theories of
Everything: The Quest for Ulti-
mate Explanation. Oxford Uni-
versity Press, 2007.

[26] P. Beame and F. E. Fich. Op-
timal bounds for the predeces-
sor problem and related problems.
JCSC, 65(1):38–72, 2002.

[27] D. Belazzougui and S. J. Puglisi.
Range predecessor and Lempel-
Ziv parsing. In Proc. SODA,
pages 2053–2071, 2016.

[28] D. Belazzougui, V. Mäkinen, and
D. Valenzuela. Compressed suffix
array. In Encyclopedia of Algo-
rithms, pages 386–390. Springer,
2016.

[29] D. Benoit, E. D. Demaine, J. I.
Munro, R. Raman, V. Raman,
and S. S. Rao. Representing trees
of higher degree. Algorithmica, 43
(4):275–292, 2005.

[30] J. L. Bentley and R. Sedgewick.
Fast algorithms for sorting and
searching strings. In Proc. SODA,
pages 360–369, 1997.

[31] P. Bille, I. L. Gørtz, B. Sach, and
H. W. Vildhøj. Time-space trade-
offs for longest common exten-
sions. JDA, 25:42–50, 2014.

[32] P. Bille, I. L. Gørtz, M. B. T.
Knudsen, M. Lewenstein, and
H. W. Vildhøj. Longest common
extensions in sublinear space.
In Proc. CPM, volume 9133 of
LNCS, pages 65–76, 2015.

[33] P. Bille, J. Fischer, I. L. Gørtz,
T. Kopelowitz, B. Sach, and
H. W. Vildhøj. Sparse text in-
dexing in small space. TALG, 12
(3):39:1–39:19, 2016.

[34] J. R. Black, C. U. Martel, and
H. Qi. Graph and hashing al-
gorithms for modern architec-
tures: Design and performance.
In Proc. Workshop on Algorithms
and Data Structures, pages 37–48,
1998.

266

Bibliography

[35] A. Blumer, J. Blumer, D. Haus-
sler, A. Ehrenfeucht, M. T. Chen,
and J. I. Seiferas. The smallest
automaton recognizing the sub-
words of a text. TCS, 40:31–55,
1985.

[36] D. Breslauer and G. F. Italiano.
Near real-time suffix tree con-
struction via the fringe marked
ancestor problem. JDA, 18:32–48,
2013.

[37] G. S. Brodal, R. B. Lyngsø,
C. N. S. Pedersen, and J. Stoye.
Finding maximal pairs with
bounded gap. In Proc. CPM, vol-
ume 1645 of LNCS, pages 134–
149, 1999.

[38] G. S. Brodal, R. B. Lyngsø,
A. Östlin, and C. N. S. Pedersen.
Solving the string statistics prob-
lem in time O(n log n). In Proc.
ICALP, volume 2380 of LNCS,
pages 728–739, 2002.

[39] G. S. Brodal, P. Davoodi, and
S. S. Rao. Path minima queries in
dynamic weighted trees. In Proc.
WADS, volume 6844 of LNCS,
pages 290–301, 2011.

[40] M. Burrows and D. J. Wheeler.
A block-sorting lossless data com-
pression algorithm. Technical Re-
port 124, Digital Equipment Cor-
poration, 1994.

[41] V. Bush. As we may think. The
Atlantic, 176(1):101–108, 1945.

[42] L. Carter and M. N. Wegman.
Universal classes of hash func-
tions. JCSC, 18(2):143–154,
1979.

[43] S. Chairungsee. Searching for
gapped palindrome. In Proc.
DEXA, pages 61–63, 2016.

[44] S. Chairungsee and

M. Crochemore. Efficient
computing of longest previous
reverse factors. In Proc. Com-
puter Science and Information
Technologies, pages 27–30, 2009.

[45] S. Chairungsee and
M. Crochemore. Longest
previous non-overlapping factors
table computation. In Proc.
Combinatorial Optimization and
Applications, volume 10628 of
LNCS, pages 483–491, 2017.

[46] S. Chairungsee, T. Bu-
trak, S. Chareonrak, and
T. Charuphanthuset. Longest
previous non-overlapping factors
computation. In Proc. DEXA,
pages 5–8, 2015.

[47] T. M. Chan, J. I. Munro, and
V. Raman. Selection and sorting
in the ”restore” model. In Proc.
SODA, pages 995–1004, 2014.

[48] K. Chung, M. Mitzenmacher, and
S. P. Vadhan. Why simple hash
functions work: Exploiting the
entropy in a data stream. Theory
of Computing, 9:897–945, 2013.

[49] D. R. Clark. Compact Pat Trees.
PhD thesis, University of Water-
loo, Canada, 1996.

[50] J. G. Cleary. Compact hash
tables using bidirectional linear
probing. IEEE Transactions on
Computers, 33(9):828–834, 1984.

[51] J. G. Cleary and I. H. Witten.
Data compression using adap-
tive coding and partial string
matching. IEEE Transactions on
Communications, 32(4):396–402,
1984.

[52] C. J. Colbourn and A. C. H. Ling.
Quorums from difference covers.
IPL, 75(1-2):9–12, 2000.

[53] R. Cole and R. Hariharan. Dy-

267

Bibliography

namic LCA queries on trees.
SICOMP, 34(4):894–923, 2005.

[54] G. Cormode and S. Muthukrish-
nan. Substring compression prob-
lems. In Proc. SODA, pages 321–
330, 2005.

[55] G. Cormode and S. Muthukrish-
nan. The string edit distance
matching problem with moves.
TALG, 3(1):2:1–2:19, 2007.

[56] M. Crochemore. Recherche
linéaire d’un carré dans un mot.
Comptes Rendus des Séances de
l’Académie des Sciences. Série I.
Mathématique, 296(18):781–784,
1983.

[57] M. Crochemore. Transducers and
repetitions. TCS, 45(1):63–86,
1986.

[58] M. Crochemore and L. Ilie. Com-
puting longest previous factor in
linear time and applications. IPL,
106(2):75–80, 2008.

[59] M. Crochemore and W. Rytter.
Usefulness of the Karp-Miller-
Rosenberg algorithm in parallel
computations on strings and ar-
rays. TCS, 88(1):59–82, 1991.

[60] M. Crochemore and G. Tischler.
Computing longest previous non-
overlapping factors. IPL, 111(6):
291–295, 2011.

[61] M. Crochemore, G. M. Landau,
and M. Ziv-Ukelson. A sub-
quadratic sequence alignment al-
gorithm for unrestricted scoring
matrices. SICOMP, 32(6):1654–
1673, 2003.

[62] M. Crochemore, L. Ilie, C. S. Il-
iopoulos, M. Kubica, W. Rytter,
and T. Walen. LPF computa-
tion revisited. In Proc. IWOCA,
volume 5874 of LNCS, pages 158–
169, 2009.

[63] M. Crochemore, L. Ilie, and
W. Rytter. Repetitions in strings:
Algorithms and combinatorics.
TCS, 410(50):5227–5235, 2009.

[64] M. Crochemore, C. S. Iliopou-
los, M. Kubica, W. Rytter, and
T. Walen. Efficient algorithms for
three variants of the LPF table.
JDA, 11:51–61, 2012.

[65] M. Crochemore, C. S. Iliopou-
los, M. Kubica, J. Radoszewski,
W. Rytter, and T. Walen. Ex-
tracting powers and periods in
a word from its runs structure.
TCS, 521:29–41, 2014.

[66] M. Crochemore, R. Kolpakov,
and G. Kucherov. Optimal
bounds for computing α-gapped
repeats. In Proc. LATA, volume
9618 of LNCS, pages 245–255,
2016.

[67] A. L. Delcher, S. Kasif, R. D.
Fleischmann, J. Peterson,
O. White, and S. L. Salzberg.
Alignment of whole genomes.
Nucleic Acids Research, 27(11):
2369–2376, 1999.

[68] A. Deza, F. Franek, and
A. Thierry. How many double
squares can a string contain?
Discrete Applied Mathematics,
180:52–69, 2015.

[69] P. Dinklage, J. Fischer, D. Köppl,
M. Löbel, and K. Sadakane.
Compression with the tudocomp
framework. In Proc. SEA, vol-
ume 75 of LIPIcs, pages 13:1–
13:22, 2017.

[70] M. Dumitran, P. Gawrychowski,
and F. Manea. Longest gapped
repeats and palindromes. Dis-
crete Mathematics & Theoreti-
cal Computer Science, 19(4):1–32,
2017.

268

Bibliography

[71] J. Duval, R. Kolpakov,
G. Kucherov, T. Lecroq,
and A. Lefebvre. Linear-time
computation of local periods.
TCS, 326(1-3):229–240, 2004.

[72] H. El-Zein, J. I. Munro, and
M. Robertson. Raising permuta-
tions to powers in place. In Proc.
ISAAC, volume 64 of LIPIcs,
pages 29:1–29:12, 2016.

[73] P. Elias. Universal codeword sets
and representations of the inte-
gers. ITIT, 21(2):194–203, 1975.

[74] S. Evans, J. Hershey, and
G. Saulnier. Kolmogorov com-
plexity estimation and analysis.
Technical Report 2002GRC177,
GE Global Research, 2002.

[75] M. Farach-Colton, P. Ferragina,
and S. Muthukrishnan. On the
sorting-complexity of suffix tree
construction. JACM, 47(6):987–
1011, 2000.

[76] A. Farruggia, P. Ferragina,
A. Frangioni, and R. Venturini.
Bicriteria data compression. In
Proc. SODA, pages 1582–1595,
2014.

[77] J. A. Feldman and J. R. Low.
Comment on Brent’s scatter stor-
age algorithm. Communications
of the ACM, 16(11):703, 1973.

[78] P. Ferragina and G. Manzini. In-
dexing compressed text. JACM,
52(4):552–581, 2005.

[79] P. Ferragina, I. Nitto, and
R. Venturini. On the bit-
complexity of Lempel-Ziv com-
pression. SICOMP, 42(4):1521–
1541, 2013.

[80] N. J. Fine and H. S. Wilf. Unique-
ness theorem for periodic func-
tions. Proc. AMS, 16:109–114,
1965.

[81] J. Fischer. Wee LCP. IPL, 110
(8–9):317–320, 2010.

[82] J. Fischer. Inducing the LCP-
array. In Proc. WADS, volume
6844 of LNCS, pages 374–385,
2011.

[83] J. Fischer. Combined data
structure for previous- and next-
smaller-values. TCS, 412(22):
2451–2456, 2011.

[84] J. Fischer and P. Gawrychowski.
Alphabet-dependent string
searching with wexponen-
tial search trees. ArXiv,
abs/1302.3347, 2013.

[85] J. Fischer and P. Gawrychowski.
Alphabet-dependent string
searching with wexponential
search trees. In Proc. CPM,
volume 9133 of LNCS, pages
160–171, 2015.

[86] J. Fischer and V. Heun. Space ef-
ficient preprocessing schemes for
range minimum queries on static
arrays. SICOMP, 40(2):465–492,
2011.

[87] J. Fischer and D. Köppl. Practi-
cal evaluation of Lempel-Ziv-78
and Lempel-Ziv-Welch tries. In
Proc. SPIRE, volume 10508 of
LNCS, pages 191–207, 2017.

[88] J. Fischer, T. Gagie,
P. Gawrychowski, and T. Koci-
umaka. Approximating LZ77
via small-space multiple-pattern
matching. In Proc. ESA, volume
9294 of LNCS, pages 533–544,
2015.

[89] J. Fischer, T. I, and D. Köppl.
Lempel-Ziv computation in small
space (LZ-CISS). In Proc. CPM,
volume 9133 of LNCS, pages 172–
184, 2015.

[90] J. Fischer, T. I, and D. Köppl.

269

Bibliography

Deterministic sparse suffix sort-
ing on rewritable texts. In Proc.
LATIN, volume 9644 of LNCS,
pages 483–496, 2016.

[91] J. Fischer, T. I, and D. Köppl.
Deterministic sparse suffix sort-
ing in the restore model. ArXiv,
abs/1509.07417v2, 2018.

[92] J. Fischer, T. I, D. Köppl, and
K. Sadakane. Lempel-Ziv factor-
ization powered by space efficient
suffix trees. Algorithmica, 80(7):
2048–2081, 2018.

[93] A. S. Fraenkel and J. Simpson.
How many squares can a string
contain? J. Combinatorial
Theory, Series A, 82(1):112–120,
1998.

[94] G. Franceschini and R. Grossi.
No sorting? Better searching!
TALG, 4(1):2:1–2:13, 2008.

[95] G. Franceschini and S. Muthukr-
ishnan. In-place suffix sorting.
In Proc. ICALP, volume 4596 of
LNCS, pages 533–545, 2007.

[96] G. Franceschini and S. Muthukr-
ishnan. Optimal suffix selection.
In Proc. STOC, pages 328–337,
2007.

[97] G. Franceschini, S. Muthukrish-
nan, and M. Pǎtraşcu. Radix
sorting with no extra space. In
Proc. ESA, volume 4698 of LNCS,
pages 194–205, 2007.

[98] F. Franek, J. Holub, W. F.
Smyth, and X. Xiao. Comput-
ing quasi suffix arrays. J. of Au-
tomata, Languages and Combina-
torics, 8(4):593–606, 2003.

[99] Y. Fujishige, M. Nakamura, S. In-
enaga, H. Bannai, and M. Takeda.
Finding gapped palindromes on-
line. In Proc. IWOCA, volume

9843 of LNCS, pages 191–202,
2016.

[100] S. Fukunaga, Y. Takabatake,
T. I, and H. Sakamoto. On-
line grammar compression for
frequent pattern discovery. In
Proc. International Conference
on Grammatical Inference, vol-
ume 57 of Workshop and Confer-
ence Proceedings, pages 93–104,
2016.

[101] T. Gagie, P. Gawrychowski,
J. Kärkkäinen, Y. Nekrich, and
S. J. Puglisi. A faster grammar-
based self-index. In Proc. LATA,
volume 7183 of LNCS, pages 240–
251, 2012.

[102] T. Gagie, P. Gawrychowski,
J. Kärkkäinen, Y. Nekrich, and
S. J. Puglisi. LZ77-based self-
indexing with faster pattern
matching. In Proc. LATIN, vol-
ume 8392 of LNCS, pages 731–
742, 2014.

[103] T. Gagie, G. Navarro, and
N. Prezza. Optimal-time text
indexing in BWT-runs bounded
space. In Proc. SODA, pages
1459–1477, 2018.

[104] P. Gawrychowski and T. Kociu-
maka. Sparse suffix tree construc-
tion in optimal time and space.
In Proc. SODA, pages 425–439,
2017.

[105] P. Gawrychowski, F. Manea,
R. Mercas, D. Nowotka, and
C. Tiseanu. Finding pseudo-
repetitions. In Proc. STACS, vol-
ume 20 of LIPIcs, pages 257–268,
2013.

[106] P. Gawrychowski, F. Manea, and
D. Nowotka. Testing gener-
alised freeness of words. In Proc.

270

Bibliography

STACS, volume 25 of LIPIcs,
pages 337–349, 2014.

[107] P. Gawrychowski, T. I, S. In-
enaga, D. Köppl, and F. Manea.
Efficiently finding all maximal α-
gapped repeats. In Proc. STACS,
volume 47 of LIPIcs, pages 39:1–
39:14, 2016.

[108] P. Gawrychowski, T. I, S. In-
enaga, D. Köppl, and F. Manea.
Tighter bounds and optimal algo-
rithms for all maximal α-gapped
repeats and palindromes. TOCS,
62(1):162–191, 2018.

[109] P. Gawrychowski, A. Karczmarz,
T. Kociumaka, J. Laçki, and
P. Sankowski. Optimal dynamic
strings. In Proc. SODA, pages
1509–1528, 2018.

[110] S. Gog and E. Ohlebusch. Com-
pressed suffix trees: Efficient
computation and storage of lcp-
values. JEA, 18, 2013.

[111] S. Gog, T. Beller, A. Moffat, and
M. Petri. From theory to prac-
tice: Plug and play with succinct
data structures. In Proc. SEA,
volume 8504 of LNCS, pages 326–
337, 2014.

[112] A. Goldberg, S. Plotkin, and
G. Shannon. Parallel symmetry-
breaking in sparse graphs. In
Proc. STOC, pages 315–324,
1987.

[113] G. H. Gonnet and R. A. Baeza-
Yates. An analysis of the Karp-
Rabin string matching algorithm.
IPL, 34(5):271–274, 1990.

[114] K. Goto. Optimal time and space
construction of suffix arrays and
LCP arrays for integer alphabets.
ArXiv, abs/1703.01009, 2017.

[115] K. Goto and H. Bannai. Simpler
and faster Lempel Ziv factoriza-

tion. In Proc. DCC, pages 133–
142, 2013.

[116] K. Goto and H. Bannai. Space ef-
ficient linear time Lempel-Ziv fac-
torization for small alphabets. In
Proc. DCC, pages 163–172, 2014.

[117] K. Goto, H. Bannai, S. In-
enaga, and M. Takeda. LZD
factorization: Simple and practi-
cal online grammar compression
with variable-to-fixed encoding.
In Proc. CPM, volume 9133 of
LNCS, pages 219–230, 2015.

[118] R. Grossi and J. S. Vitter. Com-
pressed suffix arrays and suffix
trees with applications to text
indexing and string matching.
SICOMP, 35(2):378–407, 2005.

[119] R. Groult, É. Prieur, and G. Ri-
chomme. Counting distinct palin-
dromes in a word in linear time.
IPL, 110(20):908–912, 2010.

[120] D. Gusfield. Algorithms on
Strings, Trees, and Sequences.
Cambridge University Press,
1997.

[121] D. Gusfield and J. Stoye. Linear
time algorithms for finding and
representing all the tandem re-
peats in a string. JCSC, 69(4):
525–546, 2004.

[122] T. Hagerup. Sorting and search-
ing on the word RAM. In Proc.
STACS, volume 1373 of LNCS,
pages 366–398, 1998.

[123] G. L. Heileman and W. Luo. How
caching affects hashing. In Proc.
ALENEX, pages 141–154, 2005.

[124] W.-K. Hon, K. Sadakane, and
W.-K. Sung. Breaking a time-
and-space barrier in constructing
full-text indices. In Proc. FOCS,

271

Bibliography

pages 251–260. IEEE Computer
Society, 2003.

[125] J. Hong and G. Chen. Efficient
on-line repetition detection. TCS,
407(1-3):554–563, 2008.

[126] D. A. Huffman. A method for
the construction of minimum-
redundancy codes. Proceedings of
the Institute of Radio Engineers,
40(9):1098–1101, 1952.

[127] L. C. K. Hui. Color set size prob-
lem with application to string
matching. In Proc. CPM, vol-
ume 644 of LNCS, pages 230–243,
1992.

[128] T. I. Longest common extensions
with recompression. In Proc.
CPM, volume 78 of LIPIcs, pages
18:1–18:15, 2017.

[129] T. I and D. Köppl. Improved
upper bounds on all maximal α-
gapped repeats and palindromes.
ArXiv, abs/1802.10355, 2018.

[130] T. I, J. Kärkkäinen, and
D. Kempa. Faster sparse suffix
sorting. In Proc. STACS, vol-
ume 25 of LIPIcs, pages 386–396,
2014.

[131] T. I, W. Matsubara, K. Shi-
mohira, S. Inenaga, H. Bannai,
M. Takeda, K. Narisawa, and
A. Shinohara. Detecting regu-
larities on grammar-compressed
strings. Information and Compu-
tation, 240:74–89, 2015.

[132] L. Ilie. A note on the number of
squares in a word. TCS, 380(3):
373–376, 2007.

[133] S. Inenaga and H. Bannai. Find-
ing characteristic substrings from
compressed texts. Interna-
tional Journal of Foundations of
Computer Science, 23(2):261–280,
2012.

[134] R. W. Irving and L. Love. The
suffix binary search tree and suf-
fix AVL tree. JDA, 1(5-6):387–
408, 2003.

[135] G. J. Jacobson. Space-efficient
static trees and graphs. In Proc.
FOCS, pages 549–554. IEEE
Computer Society, 1989.

[136] J. Jansson, K. Sadakane, and W.-
K. Sung. Ultra-succinct represen-
tation of ordered trees with appli-
cations. J. Computer and System
Sciences, 78(2):619–631, 2012.

[137] J. Jansson, K. Sadakane, and
W.-K. Sung. Linked dynamic
tries with applications to LZ-
compression in sublinear time
and space. Algorithmica, 71(4):
969–988, 2015.

[138] N. Jonoska, F. Manea, and
S. Seki. A stronger square con-
jecture on binary words. In Proc.
SOFSEM, volume 8327 of LNCS,
pages 339–350, 2014.

[139] J. Jurka. Repeats in genomic
DNA: mining and meaning. Cur-
rent Opinion in Structural Biol-
ogy, 8(3):333–337, 1998.

[140] S. Kanda, K. Morita, and
M. Fuketa. Practical implemen-
tation of space-efficient dynamic
keyword dictionaries. In Proc.
SPIRE, volume 10508 of LNCS,
pages 221–233, 2017.

[141] J. Kärkkäinen and D. Kempa.
LCP array construction using
O(sort(n)) (or less) I/Os. In
Proc. SPIRE, volume 9954 of
LNCS, pages 204–217, 2016.

[142] J. Kärkkäinen and E. Sutinen.
Lempel-Ziv index for q-grams. Al-
gorithmica, 21(1):137–154, 1998.

[143] J. Kärkkäinen and E. Ukko-
nen. Lempel-Ziv parsing and

272

Bibliography

sublinear-size index structures for
string matching. In South Ameri-
can Workshop on String Process-
ing, pages 141–155, 1996.

[144] J. Kärkkäinen and E. Ukkonen.
Sparse suffix trees. In Proc. Com-
puting and Combinatorics, vol-
ume 1090 of LNCS, pages 219–
230, 1996.

[145] J. Kärkkäinen, P. Sanders, and
S. Burkhardt. Linear work suffix
array construction. JACM, 53(6):
918–936, 2006.

[146] J. Kärkkäinen, G. Manzini, and
S. J. Puglisi. Permuted longest-
common-prefix array. In Proc.
CPM, volume 5577 of LNCS,
pages 181–192, 2009.

[147] J. Kärkkäinen, D. Kempa, and
S. J. Puglisi. Lightweight Lempel-
Ziv parsing. In Proc. SEA, vol-
ume 7933 of LNCS, pages 139–
150, 2013.

[148] J. Kärkkäinen, D. Kempa, and
S. J. Puglisi. Linear time Lempel-
Ziv factorization: Simple, fast,
small. In Proc. CPM, volume
7922 of LNCS, pages 189–200,
2013.

[149] R. M. Karp and M. O. Rabin.
Efficient randomized pattern-
matching algorithms. IBM Jour-
nal of Research and Development,
31(2):249–260, 1987.

[150] R. M. Karp, R. E. Miller, and
A. L. Rosenberg. Rapid identi-
fication of repeated patterns in
strings, trees and arrays. In Proc.
STOC, pages 125–136, 1972.

[151] T. Kasai, G. Lee, H. Arimura,
S. Arikawa, and K. Park. Linear-
time longest-common-prefix com-
putation in suffix arrays and its
applications. In Proc. CPM, vol-

ume 2089 of LNCS, pages 181–
192, 2001.

[152] D. Kempa and S. J. Puglisi.
Lempel-Ziv factorization: Sim-
ple, fast, practical. In Proc.
ALENEX, pages 103–112, 2013.

[153] Z. Khan, J. S. Bloom,
L. Kruglyak, and M. Singh.
A practical algorithm for finding
maximal exact matches in large
sequence datasets using sparse
suffix arrays. Bioinformatics, 25
(13):1609–1616, 2009.

[154] D. Knuth. Sorting and Searching,
volume III of The Art of Com-
puter Programming. Addison-
Wesley, 1973.

[155] P. Ko and S. Aluru. Space effi-
cient linear time construction of
suffix arrays. JDA, 3(2-4):143–
156, 2005.

[156] T. Kociumaka, M. Kubica, J. Ra-
doszewski, W. Rytter, and
T. Walen. A linear time algo-
rithm for seeds computation. In
Proc. SODA, pages 1095–1112,
2012.

[157] T. Kociumaka, J. Radoszewski,
W. Rytter, and T. Walen. Effi-
cient data structures for the fac-
tor periodicity problem. In Proc.
SPIRE, volume 7608 of LNCS,
pages 284–294, 2012.

[158] R. Kolpakov. On primary and
secondary repetitions in words.
TCS, 418:71–81, 2012.

[159] R. Kolpakov. On the number
of gapped repeats with arbitrary
gap. Theor. Comput. Sci., 723:
11–22, 2018.

[160] R. Kolpakov and G. Kucherov.
Finding maximal repetitions in
a word in linear time. In Proc.
FOCS, pages 596–604, 1999.

273

Bibliography

[161] R. Kolpakov and G. Kucherov.
Finding repeats with fixed gap.
In Proc. SPIRE, pages 162–168,
2000.

[162] R. Kolpakov and G. Kucherov.
Finding approximate repetitions
under Hamming distance. TCS,
1(303):135–156, 2003.

[163] R. Kolpakov and G. Kucherov.
Searching for gapped palin-
dromes. TCS, 410(51):5365–5373,
2009.

[164] R. Kolpakov, G. Kucherov, and
T. A. Starikovskaya. Pat-
tern matching on sparse suffix
trees. In Proc. Data Compression,
Communications and Processing,
pages 92–97, 2011.

[165] R. Kolpakov, M. Podolskiy,
M. Posypkin, and N. Khrapov.
Searching of gapped repeats and
subrepetitions in a word. ArXiv,
abs/1309.4055, 2013.

[166] R. Kolpakov, M. Podolskiy,
M. Posypkin, and N. Khrapov.
Searching of gapped repeats and
subrepetitions in a word. JDA,
46-47:1–15, 2017.

[167] D. Köppl and K. Sadakane.
Lempel-Ziv computation in com-
pressed space (LZ-CICS). In
Proc. DCC, pages 3–12, 2016.

[168] D. Kosolobov. Faster lightweight
Lempel-Ziv parsing. In Proc.
MFCS, volume 9235 of LNCS,
pages 432–444, 2015.

[169] S. Kurtz. Reducing the space
requirement of suffix trees. Soft-
ware: Practice and Experience,
29(13):1149–1171, 1999.

[170] S. Kurtz, J. V. Choudhuri,
E. Ohlebusch, C. Schleiermacher,
J. Stoye, and R. Giegerich. RE-
Puter: the manifold applications

of repeat analysis on a genomic
scale. Nucleic Acids Research, 29
(22):4633–4642, 2001.

[171] D. Lemire. The universality of
iterated hashing over variable-
length strings. Discrete Applied
Mathematics, 160(4-5):604–617,
2012.

[172] D. Lemire and O. Kaser. Re-
cursive n-gram hashing is pair-
wise independent, at best. Com-
puter Speech & Language, 24(4):
698–710, 2010.

[173] D. Lemire and O. Kaser. Faster
64-bit universal hashing using
carry-less multiplications. J.
Cryptographic Engineering, 6(3):
171–185, 2016.

[174] H. Leung, Z. Peng, and H. Ting.
An efficient algorithm for online
square detection. TCS, 363(1):
69–75, 2006.

[175] M. Li and R. Sleep. An LZ78
based string kernel. In Proc. Ad-
vanced Data Mining and Appli-
cations, volume 3584 of LNCS,
pages 678–689, 2005.

[176] M. Li and Y. Zhu. Image clas-
sification via LZ78 based string
kernel: A comparative study. In
Proc. Pacific-Asia Conference on
Knowledge Discovery and Data
Mining, volume 3918 of LNCS,
pages 704–712, 2006.

[177] Z. Li, J. Li, and H. Huo. Opti-
mal in-place suffix sorting. ArXiv,
abs/1610.08305, 2016.

[178] M. Lothaire. Applied Combina-
torics on Words. Number 105
in Encyclopedia of Mathemat-
ics. Cambridge University Press,
2005.

[179] H. Luan, X. Du, S. Wang, Y. Ni,
and Q. Chen. J+-tree: A new in-

274

Bibliography

dex structure in main memory. In
Proc. Database Systems for Ad-
vanced Applications, volume 4443
of LNCS, pages 386–397, 2007.

[180] T. Maier and P. Sanders. Dy-
namic space efficient hashing. In
Proc. ESA, volume 87 of LIPIcs,
pages 58:1–58:14, 2017.

[181] M. G. Main. Detecting left-
most maximal periodicities. Dis-
crete Applied Mathematics, 25(1-
2):145–153, 1989.

[182] G. Manacher. A new linear-time
“on-line” algorithm for finding the
smallest initial palindrome of a
string. JACM, 22(3):346–351,
1975.

[183] U. Manber and E. W. Myers. Suf-
fix arrays: A new method for on-
line string searches. SICOMP, 22
(5):935–948, 1993.

[184] F. Manea and S. Seki. Square-
density increasing mappings. In
Proc. Combinatorics on Words,
volume 9304 of LNCS, pages 160–
169, 2015.

[185] G. Marsaglia. Xorshift RNGs.
J. Statistical Software, 8(14):1–6,
2003.

[186] S. Maruyama, M. Nakahara,
N. Kishiue, and H. Sakamoto.
ESP-index: A compressed index
based on edit-sensitive parsing.
JDA, 18:100–112, 2013.

[187] E. M. McCreight. A space-
economical suffix tree construc-
tion algorithm. JACM, 23(2):262–
272, 1976.

[188] M. D. McIlroy. A research UNIX
reader: Annotated excerpts from
the programmer’s manual, 1971–
1986. Technical Report CSTR
139, AT&T Bell Laboratories,
1987.

[189] K. Mehlhorn, R. Sundar, and
C. Uhrig. Maintaining dynamic
sequences under equality-tests in
polylogarithmic time. In Proc.
SODA, pages 213–222, 1994.

[190] J. I. Munro, G. Navarro, and
Y. Nekrich. Space-efficient con-
struction of compressed indexes
in deterministic linear time. In
Proc. SODA, pages 408–424,
2017.

[191] Y. Nakashima, T. I, S. Inenaga,
H. Bannai, and M. Takeda. Con-
structing LZ78 tries and position
heaps in linear time for large al-
phabets. IPL, 115(9):655–659,
2015.

[192] G. Navarro. Indexing text using
the Ziv-Lempel trie. JDA, 2(1):
87–114, 2004.

[193] G. Navarro. Implementing the
LZ-index: Theory versus practice.
JEA, 13(2):2:1.1–2:1.49, 2008.

[194] G. Navarro. Compact Data
Structures – A practical ap-
proach. Cambridge University
Press, 2016.

[195] G. Navarro and Y. Nekrich. Op-
timal dynamic sequence represen-
tations. SICOMP, 43(5):1781–
1806, 2014.

[196] G. Navarro and E. Providel.
Fast, small, simple rank/select
on bitmaps. In Proc. SEA, vol-
ume 7276 of LNCS, pages 295–
306, 2012.

[197] G. Navarro and K. Sadakane.
Fully functional static and dy-
namic succinct trees. TALG, 10
(3):16:1–16:39, 2014.

[198] T. Nishimoto, T. I, S. Inenaga,
H. Bannai, and M. Takeda.
Fully dynamic data structure for
LCE queries in compressed space.

275

Bibliography

In Proc. MFCS, volume 58 of
LIPIcs, pages 72:1–72:15, 2016.

[199] G. Nong. Practical linear-time
O(1)-workspace suffix sorting for
constant alphabets. ACM Trans-
actions on Information Systems,
31(3):15, 2013.

[200] G. Nong, S. Zhang, and W. H.
Chan. Two efficient algorithms
for linear time suffix array con-
struction. IEEE Transactions
on Computers, 60(10):1471–1484,
2011.

[201] E. Ohlebusch and S. Gog.
Lempel-Ziv factorization revis-
ited. In Proc. CPM, volume 6661
of LNCS, pages 15–26, 2011.

[202] E. Ohlebusch, J. Fischer, and
S. Gog. CST++. In Proc. SPIRE,
volume 6393 of LNCS, pages 322–
333, 2010.

[203] D. Okanohara and K. Sadakane.
An online algorithm for finding
the longest previous factors. In
Proc. ESA, volume 5193 of LNCS,
pages 696–707, 2008.

[204] J. Ouyang, H. Luo, Z. Wang,
J. Tian, C. Liu, and K. Sheng.
FPGA implementation of GZIP
compression and decompression
for IDC services. In Proc. In-
ternational Conference on Field-
Programmable Technology, pages
265–268, 2010.

[205] R. Pagh. Low redundancy in
static dictionaries with constant
query time. SICOMP, 31(2):353–
363, 2001.

[206] A. Poyias and R. Raman. Im-
proved practical compact dy-
namic tries. In Proc. SPIRE, vol-
ume 9309 of LNCS, pages 324–
336, 2015.

[207] A. Poyias, S. J. Puglisi, and

R. Raman. Compact dynamic
rewritable (CDRW) arrays. In
Proc. ALENEX, pages 109–119,
2017.

[208] N. Prezza. In-place sparse suffix
sorting. In Proc. SODA, pages
1496–1508, 2018.

[209] S. J. Puglisi, W. F. Smyth, and
A. Turpin. A taxonomy of suf-
fix array construction algorithms.
ACM Computing Surveys, 39(2):
1–31, 2007.

[210] N. Rahman and R. Raman. Rank
and select operations on binary
strings. In Encyclopedia of Algo-
rithms, pages 748–751. Springer,
2008.

[211] G. G. Richard and A. Case. In
lieu of swap: Analyzing com-
pressed RAM in Mac OS X and
Linux. Digital Investigation, 11,
Supplement 2(0):3–12, 2014.

[212] R. M. Robinson. Mersenne and
Fermat numbers. Proc. AMS, 5
(5):842–846, 1954.

[213] M. Rodeh, V. R. Pratt, and
S. Even. Linear algorithm
for data compression via string
matching. JACM, 28(1):16–24,
1981.

[214] G. Roelofs. PNG: The Definitive
Guide. O’Reilly, 1999.

[215] L. M. S. Russo, G. Navarro, and
A. L. Oliveira. Fully compressed
suffix trees. TALG, 7(4):53:1–
53:34, 2011.

[216] K. Sadakane. Succinct rep-
resentations of lcp informa-
tion and improvements in the
compressed suffix arrays. In
Proc. SODA, pages 225–237.
ACM/SIAM, 2002.

[217] K. Sadakane. Compressed suf-

276

Bibliography

fix trees with full functionality.
TOCS, 41(4):589–607, 2007.

[218] K. Sadakane. For equitable
human intellect sharing in an
information-oriented society. In-
terview, National Institute of In-
formatics, 2010.

[219] K. Sadakane and R. Grossi.
Squeezing succinct data struc-
tures into entropy bounds. In
Proc. SODA, pages 1230–1239.
ACM/SIAM, 2006.

[220] S. C. Sahinalp and U. Vishkin.
Symmetry breaking for suffix tree
construction. In Proc. STOC,
pages 300–309, 1994.

[221] H. Sakamoto, S. Maruyama,
T. Kida, and S. Shimozono. A
space-saving approximation algo-
rithm for grammar-based com-
pression. IEICE Transactions,
92-D(2):158–165, 2009.

[222] R. V. Samonte and E. E. Eichler.
Segmental duplications and the
evolution of the primate genome.
Nature Reviews Genetics, 3(1):65–
72, 2002.

[223] G. L. Steele Jr., D. Lea, and
C. H. Flood. Fast splittable pseu-
dorandom number generators.
In Proc. Object-Oriented Pro-
gramming, Systems, Languages
and Applications, pages 453–472,
2014.

[224] J. A. Storer and T. G. Szyman-
ski. Data compression via textual
substitution. JACM, 29(4):928–
951, 1982.

[225] S. Sugimoto, T. I, S. Inenaga,
H. Bannai, and M. Takeda. Com-
puting reversed Lempel-Ziv fac-
torization online. In Proc. Prague
Stringology Conference, pages
107–118, 2013.

[226] P. Svoboda and A. D. Cara. Hair-
pin RNA: a secondary structure
of primary importance. Cellular
and Molecular Life Sciences, 63
(7):901–908, 2006.

[227] Y. Takabatake, Y. Tabei, and
H. Sakamoto. Improved ESP-
index: A practical self-index
for highly repetitive texts. In
Proc. SEA, volume 8504 of LNCS,
pages 338–350, 2014.

[228] Y. Takabatake, K. Nakashima,
T. Kuboyama, Y. Tabei, and
H. Sakamoto. siEDM: An effi-
cient string index and search al-
gorithm for edit distance with
moves. Algorithms, 9(2):26:1–
26:18, 2016.

[229] Y. Tanimura, Y. Fujishige, T. I,
S. Inenaga, H. Bannai, and
M. Takeda. A faster algorithm for
computing maximal α-gapped re-
peats in a string. In Proc. SPIRE,
volume 9309 of LNCS, pages 124–
136, 2015.

[230] Y. Tanimura, T. I, H. Bannai,
S. Inenaga, S. J. Puglisi, and
M. Takeda. Deterministic sub-
linear space LCE data structures
with efficient construction. In
Proc. CPM, volume 54 of LIPIcs,
pages 1:1–1:10, 2016.

[231] Y. Tanimura, T. Nishimoto,
H. Bannai, S. Inenaga, and
M. Takeda. Small-space LCE
data structure with constant-
time queries. In Proc. MFCS,
volume 83 of LIPIcs, pages 10:1–
10:15, 2017.

[232] M. Tarailo-Graovac and N. Chen.
Using RepeatMasker to iden-
tify repetitive elements in ge-
nomic sequences. Current Proto-

277

Bibliography

cols in Bioinformatics, 25:4.10.1–
4.10.14, 2009.

[233] P. Tchebychev. Mémoire sur
les nombres premiers. Journal
de mathématiques pures et ap-
pliquées, 1:366–390, 1852.

[234] B. Trombetta and F. Cruciani.
Y chromosome palindromes and
gene conversion. Human Genet-
ics, 136(5):605–619, May 2017.

[235] Y. Ueki, Diptarama, M. Kuri-
hara, Y. Matsuoka, K. Nari-
sawa, R. Yoshinaka, H. Ban-
nai, S. Inenaga, and A. Shi-
nohara. Longest common sub-
sequence in at least k length
order-isomorphic substrings. In
Proc. SOFSEM, volume 10139 of
LNCS, pages 363–374, 2017.

[236] E. Ukkonen. On-line construc-
tion of suffix trees. Algorithmica,
14(3):249–260, 1995.

[237] N. Välimäki, V. Mäkinen,
W. Gerlach, and K. Dixit.
Engineering a compressed suffix
tree implementation. JEA, 14:
4.2:2–4.2:23, 2009.

[238] M. Vyverman, B. De Baets,
V. Fack, and P. Dawyndt. es-
saMEM: finding maximal exact
matches using enhanced sparse
suffix arrays. Bioinformatics, 29
(6):802–804, 2013.

[239] S. Wandelt and U. Leser.
FRESCO: referential compres-
sion of highly similar sequences.
IEEE/ACM Transactions on
Computational Biology and
Bioinformatics, 10(5):1275–1288,
2013.

[240] P. Warburton, J. Giordano,
F. Cheung, Y. Gelfand, and
G. Benson. Inverted repeat struc-
ture of the human genome: The

X-chromosome contains a prepon-
derance of large, highly homolo-
gous inverted repeats that con-
tain testes genes. Genome Re-
search, 14:1861–1869, 2004.

[241] P. Weiner. Linear pattern match-
ing algorithms. In Proc. of the
Annual Symposium on Switch-
ing and Automata Theory, pages
1–11. IEEE Computer Society,
1973.

[242] T. A. Welch. A technique for
high-performance data compres-
sion. IEEE Computer, 17(6):8–
19, 1984.

[243] I. H. Witten, A. Moffat, and T. C.
Bell. Managing Gigabytes: Com-
pressing and Indexing Documents
and Images. Morgan Kaufmann,
1999.

[244] Z. Xu. A minimal periods algo-
rithm with applications. In Proc.
CPM, volume 6129 of LNCS,
pages 51–62, 2010.

[245] N. Yoshinaga and M. Kitsure-
gawa. A self-adaptive classifier
for efficient text-stream process-
ing. In Proc. Computing and
Combinatorics, pages 1091–1102,
2014.

[246] J. Ziv and A. Lempel. A uni-
versal algorithm for sequential
data compression. ITIT, 23(3):
337–343, 1977.

[247] J. Ziv and A. Lempel. Compres-
sion of individual sequences via
variable length coding. ITIT, 24
(5):530–536, 1978.

[248] A. L. Zobrist. A new hash-
ing method with application for
game playing. Technical Re-
port 88, Computer Sciences De-
partment, University of Wiscon-
sin, 1970.

278

Bibliography

Abbreviations in the Bibliography
The following abbreviations are used in the bibliography to shorten names of
conferences, series, and journals.

Common Abbreviations

Proc. Proceedings (of)

J. Journal (of)

Conferences

ALENEX Algorithm Engineering and
Experiments

CPM Annual Symposium on Combi-
natorial Pattern Matching

DCC Data Compression Conference

DEXA Database and Expert Systems
Applications

ESA European Symposium on Algo-
rithms

FOCS Annual Symposium on Foun-
dations of Computer Science

ICALP International Colloquium on
Automata, Languages, and
Programming

ISAAC International Symposium on
Algorithms and Computation

IWOCA International Workshop on
Combinatorial Algorithms

LATA International Conference on
Language and Automata The-
ory and Applications

LATIN Latin American Theoretical
Informatics Symposium

MFCS International Symposium on
Mathematical Foundations of
Computer Science

SEA International Symposium on
Experimental Algorithms

SODA Symposium on Discrete Algo-
rithms

SOFSEM Conference on Current
Trends in Theory and Prac-
tice of Informatics

SPIRE String Processing and Infor-
mation Retrieval

STACS Symposium on Theoretical
Aspects of Computer Science

STOC Symposium on the Theory of
Computing

WADS Workshop on Algorithms and
Data Structures

Series

LIPIcs Leibniz International Proceed-
ings in Informatics

LNCS Lecture Notes in Computer
Science

Journals

IPL Information Processing Letters

ITIT IEEE Transactions on Informa-
tion Theory

JACM Journal of the ACM

JCSC Journal of Computer and Sys-
tem Sciences

JDA Journal of Discrete Algorithms

279

Bibliography

JEA ACM Journal of Experimental
Algorithmics

Proc. AMS Proc. of the American
Mathematical Society

SICOMP SIAM Journal on Comput-

ing

TALG ACM Transactions on Algo-
rithms

TCS Theoretical Computer Science

TOCS Theory of Computing Systems

280

Index

α-gapped, 210
β-aperiodic, 212
β-periodic, 212
η-nodes, 177
η-truncated HSP tree, 177
j-th suffix, 16
k-basic factor, 235
k-basic segments, 238
k-block, 245
k-th order empirical entropy, 17

all distinct squares, 56
alphabet reduction, 133
arm, 18, 209
arm length, 18
arm-period, 209

basic factors, 235
bit vector, 16
block-representation, 244
blocks, 133, 136, 244
bridging, 189
built, 139
BWT, 21

center, 18
classic-LZ77 factorization, 30
coding, 40
consecutive, 208
corresponding leaf, 39
corresponds, 244
corresponds to, 39
covers, 217
CST, 34

distinct, 56

dynLCE, 167

edge label, 31
edge witness, 90
effective alphabet, 20
empty string, 16
ESP, 136
ESP tree, 138
exploration counter, 88
explored, 88
exponent, 17

factor, 29
factorization, 29
first occurrence, 234
fragile, 142
fresh factor, 31

gap, 209
gapped palindrome, 209
gapped repeat, 209
generated substring, 138

HSP, 156
HSP tree, 156

initial address, 105
integer alphabets, 16
integer intervals, 16
interval, 16
inverse suffix array, 21

Las Vegas, 16
LCE, 17
LCE interval, 168
LCP, 17
LCS, 17

281

Index

leftmost covering set, 57
lexicographic order, 17
local surrounding, 134, 141
lower nodes, 177
LPF, 52
LZ trie, 31
LZ77 factorization, 29
LZ77 pass, 41
LZ78 factorization, 30
LZ78 pass, 88
LZSS, 30
LZW factorization, 103

MAST, 71
maximal, 17, 18, 210
meta-blocks, 136
Monte Carlo, 16

names, 137
near-linear, 15
non-overlapping LZ77 factorization,

75
non-overlapping reversed LZ77 fac-

torization, 80
non-surrounded, 141

occurrence of a palindrome, 18
occurs, 208
ordinary palindrome, 210
overlapping reversed LZ77 factoriza-

tion, 84

palindrome, 18
partially explored nodes, 90
pass, 39
period, 17
periodic, 17
permuted longest-common-prefix ar-

ray, 36
point, 216
predecessor query, 19
prefix, 16
proper, 16
protected, 186

rank, 18

rank-support, 19
recyclable, 186
referencing factors, 31
referred entry, 48
referred factor, 30
referred index, 30, 103
referred position, 30
repeating meta-blocks, 136
repetitive, 137
restore model, 128
reverse, 17
right-rotating, 57
rightmost, 117
RMQ, 19
run, 17

segment, 208
select, 18
select-support, 19
semi-stable, 142
shifts, 142
single occurrence, 234
single occurrences, 234
SLCP, 127
smallest period, 17
sparse suffix sorting problem, 127
sparse suffix tree, 127
square-free, 18
squares, 18
SSA, 127
SST, 36
stable, 142
starting position, 30
string, 16
string depth, 31
string label, 31
subsequent, 208
substring, 16
successor query, 19
suffix, 16
suffix array, 21
suffix AVL tree, 167
suffix number, 31
suffix tree, 31

282

Index

suffix trie, 31
superblock, 236
surname, 156
surname-length, 156
surrounded, 134, 141
symbol, 137
symbols, 138

the text, 19

upper node, 177

within a run, 234
witness, 39, 88
witness rank, 39
word-packing, 20

zeroth order empirical entropy, 17

283

	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Joining the Dots
	1.2 Our Results
	1.2.1 LZ Factorizations
	1.2.2 Applications of the LZ77 Factorization
	1.2.3 Sparse Suffix Sorting
	1.2.4 Gapped Repeats and Palindromes
	1.2.5 The Big Picture

	1.3 Publications Contributed to this Thesis
	1.4 Style Policies

	2 Preliminaries
	2.1 Basic Notation
	2.2 Model of Computation
	2.3 Intervals
	2.4 Strings
	2.5 Regular Structures
	2.6 Support Data Structures
	2.7 Input Text
	2.8 Effective Alphabet
	2.9 Text Data Structures

	3 Lempel-Ziv Factorizations
	3.1 Our Contribution
	3.2 Related Work
	3.3 Preliminaries
	3.3.1 Factorizations
	3.3.2 Suffix Trees
	3.3.3 Operations on the Suffix Tree
	3.3.4 Framework of the LZ Algorithms

	3.4 LZ77 with Space-Efficient Suffix Trees
	3.4.1 Alphabet-Independent Output-Streaming
	3.4.2 Alphabet-Sensitive Algorithm
	3.4.3 Alphabet-Independent In-Place Algorithm
	3.4.4 Adaptation to Computing the LPF Table

	3.5 Application: Distinct Squares
	3.5.1 Preliminaries
	3.5.2 Set of All Distinct Squares
	3.5.3 Algorithmic Improvement
	3.5.4 Elaborated Example
	3.5.5 Need for RMQs on the LPF Table
	3.5.6 Practical Results
	3.5.7 Computing All Distinct Squares Online
	3.5.8 Decorating the Suffix Tree with All Squares
	3.5.9 On the Tree Topology of the MAST

	3.6 Variants of the LZ77 Factorization
	3.6.1 Non-Overlapping LZ77
	3.6.2 Non-Overlapping Reversed LZ77
	3.6.3 Overlapping Reversed LZ77

	3.7 LZ78 with Space-Efficient Suffix Trees
	3.7.1 Storing the LZ Trie Topology
	3.7.2 Alphabet-Sensitive Algorithm
	3.7.3 Alphabet-Independent Algorithm

	3.8 Practical LZ78 and LZW Computation
	3.8.1 LZ-Trie Representations
	3.8.2 Practical Results

	3.9 Conclusion
	3.10 Landscape Oriented Figures

	4 Sparse Suffix Sorting
	4.1 Algorithm Outline and Our Contribution
	4.1.1 Suffix Sorting and LCE Queries
	4.1.2 Outline of this Chapter

	4.2 Edit Sensitive Parsing
	4.2.1 Alphabet Reduction
	4.2.2 Meta-Blocks
	4.2.3 Edit Sensitive Parsing Trees
	4.2.4 Fragile and Stable Nodes in ESP Trees

	4.3 Hierarchical Stable Parsing Trees
	4.3.1 Upper Bound on the Number of Fragile Nodes
	4.3.2 Tree Representation
	4.3.3 LCE Queries with HSP Trees

	4.4 Sparse Suffix Sorting
	4.4.1 Abstract Algorithm
	4.4.2 Sparse Suffix Sorting with HSP Trees

	4.5 Sparse Suffix Sorting in Text Space
	4.5.1 Truncated HSP Trees
	4.5.2 Sparse Suffix Sorting with Truncated HSP Trees

	4.6 Alternative to the Suffix AVL Tree
	4.7 Conclusion
	4.8 Landscape Oriented Figures

	5 Gapped Regular Structures
	5.1 Related Work and Our Contribution
	5.2 Preliminaries
	5.2.1 Periodicity
	5.2.2 Gapped Repeats and Palindromes

	5.3 Combinatoric Result
	5.3.1 Beta-Periodic Repeats and Palindromes
	5.3.2 Improved Point Analysis
	5.3.3 Beta-Aperiodic Repeats
	5.3.4 Beta-Aperiodic Palindromes

	5.4 Computing All Maximal Alpha-Gapped Repeats
	5.4.1 Overlapping Arms
	5.4.2 Support Data Structures
	5.4.3 Short Arms
	5.4.4 Long Arms

	5.5 Conclusion

	6 Epilogue
	Symbol Register
	List of Identifiers for LZ parsing

	Acronyms
	Bibliography
	Abbreviations in the Bibliography

	Index

