Compression Sensitivity of the Bijective Burrows-Wheeler transform

Hyodam Jeon、 Dominik Köppl

Published in: Mathematics 2025, 13, 1070

University of Yamanashi Computer science and engineering

International Workshop on Discrete Mathematics and Algorithms 2025

Background

Setting: Need to store large text collections in compressed form

Examples:

- Biological data (ncbi),
- Source code (github),
- Websites (wayback machine)
- Expect that similar data can be stored compressed with similar sizes
- However: small changes of the input can cause large difference in compressed size!
- Difference can cause economic loss!
- Question: how bad can it get?

Research objective

How much impact has a single character edit of the input?

T': Tafter editing one character

Edit: insert/deletion/exchange

Here: exchange a with b

compression sensitivity =

small compressed size

Large compressed size

What is the max. difference between the compressed sizes of the edited text C(T') and the original C(T)?

Related work

Compression sensitivity has been studied for various compressors

Compression method	Related work	
Lempel-Ziv 78 (LZ78) (gif image compression)	Lagarde&Perifel '18	
Lempel-Ziv 77 (gzip/zip/etc.)	Akagi+ '23	
BWT (bzip2, compressed indexes)	Giuliani+ '23	
lex-parse	Nakashima+ '24	
string attractor, bidirectional macro scheme	Fujie+ '24	

however: the sensitivity of the **bijective BWT** (**BBWT**) has not yet been studied

Clustering effect of the BBWT

$$T$$
, $r(T) = 110$

BBWT(7),
$$r(BBWT(7)) = 2$$

 BBWT arranges characters by previous context such that characters in the same context are grouped together

BBWT

- BBWT(T) is likely to be better run-length compressible than the input
- Repetitiveness measure r(T): number of maximal consecutive character occurrences in text T (size of the run-length encoding/compression)

Bijective BWT (BBWT) [Gil&Scott '12]

Lyndon words and factors

- A word S is **Lyndon** if it is smaller than all its conjugates
- If S is not Lyndon, we can factorize it uniquely into Lyndon factors $L_1, L_2, L_3 \dots L_m$ such that the Lyndon factors are in lex. decreasing order $L_1 \geq L_2 \geq \dots \geq L_m$

m

Bijective BWT

- sort the conjugates of all number
 Lyndon factors of S and take the last character of each
 - BBWT(mammal) = lmamam
 - compression measure : $\rho(S) = r(BBWT(S))$

a 1 m a m m
a m m a l m
l m a m m a
m a l m a m
m a l m a m
m a m m a l
m m a l m a

Order: a < l < m

Inverting the BBWT

To obtain S from BBWT(S), we follow the cycles in the BBWT \rightarrow obtain S's Lyndon factors

First sorted characters **F** BBWT(mammal) m m

Loop to retrieve Lyndon factors **BBWT**

m

a m m Sort in descending order

Sensitivity: Results

Red: new results, (*x): edit operation with character x

Black: known results due to Giuliani+ '23

Input text method	Edit operation	BWT	BBWT
Fibonacci word	remove last letter	2 <i>k</i>	≥ <i>k</i>
• $r(BWT(F_{2k}))=2$ • $\rho(Lyndon conjugate of F_{2k})=2$	change last letter	2k +2(*a)	$\geq k + 1(*#)$
		2k +2(*#)	≥ <i>k</i> (*c)
	insert at specific positions	-	≥ <i>k</i> ≥ <i>k</i> +1

Fibonacci

Fibonacci words

•
$$F_0 = b$$
, $F_1 = a$, $F_k = F_{k-1}F_{k-2}$

- $F_2 = ab$
- $F_3 = aba$
- F_4 = abaab
- F_5 = abaababa
- F_6 = abaababaabaab
- F_7 = abaababaabaabaababa

Fibonacci numbers

•
$$f_0 = 1$$
, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$

- $f_2 = 2$
- $f_3 = 3$
- $f_4 = 5$
- $f_5 = 8$
- $f_6 = 13$
- $f_7 = 21$

Fibonacci

Fibonacci words

•
$$F_0 = b$$
, $F_1 = a$, $F_k = F_{k-1}F_{k-2}$

•
$$F_2 = ab$$

•
$$F_3 = aba$$

 X_k : palindrome

•
$$F_4 = abaab$$

•
$$F_5 = abaababa$$

•
$$F_6 = abaababaabaaba$$

•
$$F_7 =$$
 abaababaabaababaababa

$$F_k = X_k$$
ab if k is even
= X_k ba if k is odd

Fibonacci numbers

•
$$f_0 = 1$$
, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$

•
$$f_2 = 2$$

•
$$f_3 = 3$$

•
$$f_4 = 5$$

•
$$f_5 = 8$$

•
$$f_6 = 13$$

•
$$f_7 = 21$$

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2$ but $\rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

$$\begin{vmatrix} x_{2k} \end{vmatrix} = aX_{2k}$$

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2$ but $\rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2$ but $\rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

13

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2 \text{ but } \rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2 \text{ but } \rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

Green parts are not Lyndon, blue parts are Lyndon factors

Recap and future work

recap

- 1. compression measure ρ can increase by a factor of $\Theta(\log n)$
- 2. not shown but proved: size can increase by $+\Theta(\sqrt{n})$
- → a single edit can change the compressed size dramatically
- → BWT and BBWT are not well-designed measures for compressibility

future work

- experiments suggest that $\rho(S)=2k$ in the proof of the previous slides, but we could not prove it
- improve the bounds: is there a non-trivial upper bound for ρ ?
- determine the sensitivity of other compression methods