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Abstract
The Burrows–Wheeler transform (BWT) is a permutation whose applications are prevalent in

data compression and text indexing. The bijective BWT is a bijective variant of it that has not yet
been studied for text indexing applications. We fill this gap by proposing a self-index built on the
bijective BWT. The self-index applies the backward search technique of the FM-index to find a
pattern P with O(|P | lg |P |) backward search steps. Additionally, we propose the first linear-time
construction algorithm that is based on SAIS, improving the best known result of O(n lgn/ lg lgn)
time to linear.
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1 Introduction
The Burrows–Wheeler transform (BWT) [20] is a transformation permuting the characters of a given
string T , defined as the last characters of all the cyclic rotations of T sorted in lexicographic order. The
BWT is the main ingredient of compressed text indexes such as the FM-index [28, 29], the run-length
FM-index [57], or the r-index [32]. It is used in mainstream bioinformatics tools such as SOAP2 [53],
BWA [52], Bowtie 2 [51], MONI [19, 71], or SPUMONI 2 [2]. It also has many applications in data
compression [1].

Despite that the BWT is used in the aforementioned self-indexes capable of restoring the original
text, the BWT is not a bijection on the set of strings since it is neither injective nor surjective, e.g.,
BWT(ab) = BWT(ba) = ba, and there is no string T such that the BWT of T is ab. However, the
BWT can be interpreted as a bijection between multisets of primitive, cyclic strings and strings, while
preserving the frequencies of the symbols [59, Theorem 20]: the BWT of a multiset of primitive, cyclic
strings is defined as the last characters of all the rotations of all the cyclic strings in the multiset sorted
in a lexicographic-like order called the ω-order. This BWT variant is also called the extended BWT [59]
or eBWT. For example, the extended BWT of the multiset {ab, ab, aba} is babbaaa. The inverse of the
eBWT, known as the Gessel–Reutenauer transform [33], has already been conceived more than ten years
prior to the discovery of the eBWT. Given a string T , the Gessel–Reutenauer transform maps T to the
multiset of strings whose eBWT is T . The eBWT can be turned into a bijection on the set of strings by
introducing another bijection between multisets of primitive, cyclic strings and strings. Such a variant
has been proposed as the bijective BWT [38, 50], or BBWT. The said bijection for BBWT is based on
the Lyndon factorization [23] of T , which is a unique factorization of a string into a lexicographically
non-increasing sequence of Lyndon words. Since Lyndon words are primitive, and any primitive string has
a unique rotation that is Lyndon, the Lyndon factorization induces a bijection between strings of length n
and multisets of primitive cyclic strings of total length n, which preserves the frequencies of the symbols.
Gil and Scott [38] experimentally evaluated on the Calgary corpus that the output of the BBWT was for
some datasets a little more compressible than the BWT. Unfortunately, not much is known about the
compressibility of the BBWT, which has remained a puzzling open problem when writing this article.
Nevertheless, the possibility of obtaining a new self-index based on the BBWT that might outperform
BWT-based solutions with respect to space has sparked new questions such as whether we can compute
the BBWT efficiently, and whether we can build a self-index upon it. We will address both questions in
this article affirmatively.

∗Parts of this work have already been presented at the 30th Annual Symposium on Combinatorial Pattern Matching [6]
and at the 32nd Annual Symposium on Combinatorial Pattern Matching [7].
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To make the connection between the BWT, the BBWT, and the eBWT clearer, we elaborate on the
aforementioned example. There, ab is Lyndon, while aba has the rotation aab that is Lyndon. We can
therefore identify the multiset {ab, ab, aba} with the string ab · ab · aab via the Lyndon factorization.
Since the extended BWT of a set containing just one string S is the same as the BWT of S, we can
regard the extended BWT as an extension of the BWT to a multiset of words, which is the BBWT of the
Lyndon conjugates of the input strings concatenated in lexicographically decreasing order. While other
generalizations to multisets of strings such as the BCR BWT [8] exist, only the eBWT does not require
to introduce artificial delimiters to map a set of input strings to a single string.

For instance, given the set of strings S = {a, c, bac, adacb, acbbcad, bbc}, the eBWT of S is given by
abddbcccccbbbaaabcaa. We can obtain the same output, if we rotate each input string to its lexicograph-
ically smallest rotation a, c, acbad, adacb, acbbcad, and bbc, and sort these strings lexicographically to
a, acbad, adacb, acbbcad, bbc, and c, concatenate them to a single string T and apply the BBWT on T .

In the following, we call the BWT traditional to ease the distinguishability of both transformations.
The crucial operation for text indexes built upon the BWT is the backward search [62]: given a pattern P
and the traditional BWT of T , the occurrences of P in a text T can be computed with O(|P |) backward
search steps. In this light, one may ask whether it is possible to build similar index data structures by
exchanging the traditional BWT with the bijective BWT.

1.1 Our Contributions
In this article, we answer affirmatively the above question: We show that searching a pattern P on the
bijective BWT can be conducted with O(|P |p̂) backward search steps, where p̂ is the number of distinct
factors in the Lyndon factorization of the longest pre-Lyndon suffix of P . Since p̂ is known to be in
O(lg |P |) [44], we can reduce the number of backward search steps to O(|P | lg |P |).

Our results are based on combinatoric properties of Lyndon words and the bijective BWT. They may
have applications in distributed implementations of the BWT index [45] or in practical database systems
storing dynamic yet compressed data [14, 15].

Our second contribution is the first linear-time algorithm computing the BBWT in the word RAM
model. The main idea is to adapt SAIS to compute the circular suffix array of the Lyndon factors. We
obtain linear running time by exploiting some facts based on the nature of the Lyndon factorization.

Compared to the conference versions [6, 7], we could improve the space bounds of the indexing
data structure in the light of novel advances for indexing the extended BWT. Further, we added a
comparison on the number of character runs of the standard BWT and the BBWT on various datasets.
The C++ implementation of the BBWT construction algorithm described in this paper is available at
https://github.com/mmpiatkowski/bbwt.

1.2 Related Work
We separate work related to the research results of this article into the two categories construction and
indexing.

1.2.1 Construction

In what follows, we review the traditional BWT construction via suffix arrays, and some algorithms
computing the BBWT or the extended BWT. For the complexity analysis, we take a text T of length n
whose characters are drawn from a polynomial bounded integer alphabet [1..nO(1)]. Let us start with the
traditional BWT, which we can construct in linear time thanks to linear-time suffix array construction
algorithms [47, 64]. That is because the traditional BWT, denoted by BWT[1..n], is determined by
BWT[i] = T [SA[i] − 1] for SA[i] > 1 and BWT[i] = T [n] for SA[i] = 1. This definition by the suffix
array only holds if the text is terminated by an artificial character smaller than all other characters
appearing in T (the famous dollar sign terminal), or T has been rotated such that it is strictly smaller
than all its rotations (for that, T must be primitive, i.e., T cannot be the iterated concatenation of a
same string). Considering the bijective BWT, Gil and Scott [38] postulated that it can be built in linear
time, but did not give a construction algorithm. It is clear that the time is upper bounded by the total
length of all conjugates [59, after Example 9], which is O(n2). In the same paper, Mantaci et al. [59]
also introduced the extended BWT. Later, Hon et al. [42] provided an algorithm building the extended
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BWT in O(n lg n) time. Later, in a larger number of authors [43], they refined the working space to
O(n lg σ), and gave the eBWT the alternative name circular BWT. Their idea is to construct the circular
suffix array SA◦ such that the i-th position of the extended BWT is given by T [SA◦[i] − 1], where T
is the concatenation of all strings in S. Bonomo et al. [13] presented an online algorithm building the
extended BWT in O(n lg n/ lg lg n) time; here, online means that a construction algorithm updates the
eBWT on reading a new input string; the input strings (of the multiset of strings to index) are expected
to be lexicographically sorted and given by their Lyndon conjugates. An interesting aspect regarding
the online construction is that the up so far only known online technique [65, 68] for computing the
traditional BWT needs the text to be given in reversed order (starting with the last character). In [13,
Sect. 6], they also gave a linear-time reduction from computing the extended BWT to computing the
BBWT. Knowing that an irreducible word has exactly one conjugate being a Lyndon word, the reduction
is done by exchanging each element of the set of irreducible strings S by the conjugate being a Lyndon
word, and concatenating these Lyndon words after sorting them in descending order. Consequently, a
linear-time BBWT construction algorithm can be used to compute the extended BWT in linear time. If
only constant space is allowed, Köppl et al. [49] gave an algorithm running in time quadratic to the input
string length.

The relationship between suffix array construction and Lyndon words is not new. In fact, there are
approaches [5, 10, 55, 60, 66] that use the Lyndon factorization, Lyndon words, or the Lyndon array
to compute the suffix array. Implicit in the suffix array construction algorithm of Olbrich et al. [66] is
another construction algorithm for the BBWT, which exploits the Lyndon factorization boundaries for
the suffix array computation, and seems to be able to compute the BBWT in linear time.

On the practical side, we are aware of the work of Branden Brown1, Yuta Mori in his OpenBWT
library2, and of Neal Burns3. While the first is a naive but easily understandable implementation calling
a general sorting algorithm on all conjugates to directly compute the BBWT, the second seems to be an
adaptation of the suffix array – induced sorting (SAIS) algorithm [64] to induce the BBWT. The last one
takes an already computed suffix array SA as input, and modifies SA such that reading the characters
T [SA[i]− 1]4 gives the BBWT. For that, this algorithm shifts entries in SA to the right until they fit.
Hence, the running time is based on the lengths of these shifts, which can be O(n2), but seem to be
negligible in practice for common texts.

With respect to the most recent progress on the computation of variations of the BWT, we have noted
the following results. Giancarlo et al. [35] can compute the alternating Burrows–Wheeler transform [34]
via a modification of the difference cover suffix sorting algorithm [47] with a linear time algorithm
for finding the minimal cyclic rotation of a word with respect to the alternating lexicographical order.
The alternating BWT can be briefly explained by the construction via the sorted rotations of an input
string T . While the standard BWT is determined by reading the last character of each string in the
list of all lexicographically sorted rotations of T , from start to end, we obtain the alternating BWT if
this list is sorted lexicographically by the first character, then inverse-lexicographically by the second,
again lexicographically for the third, and so on. Boucher et al. [17] proposed an adaptation of our
algorithm for computing the eBWT, and showed that it is possible to perform the computation without
rotating each input string to its Lyndon conjugate. Although their algorithm runs in the same asymptotic
time complexity, they can omit this extra step that we would need to perform if we would use our
BBWT-construction algorithm directly for the eBWT computation — for that it would be sufficient to
concatenate all Lyndon conjugates in lexicographically descending order of the input strings. However,
without the Lyndon rotations, they need to keep track for each text position they process, from which
input string that position came. To that end, they define the generalized conjugate array, mimicking the
cyclic suffix array, as an array of tuples of an input string index and a position inside that string. The
authors additionally propose a practical variant that uses the prefix-free parsing technique [16].

Besides the eBWT, there are other BWT variants that support multiple input strings, notably the
BCR BWT [8] and the BWT on the concatenated input separated by delimiters such as dollar signs.
Both variants require, unlike the eBWT, that every string ends with a terminal symbol. More precisely,
given t texts T1, . . . , Tt over an alphabet Σ, it is required to append to each input text Tj a distinct

1https://github.com/zephyrtronium/bwst
2https://web.archive.org/web/20170306035431/https://encode.ru/attachment.php?attachmentid=959&d=

1249146089
3https://github.com/NealB/Bijective-BWT
4Special care has to be taken when SA[i] is the start of a Lyndon factor.
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terminal symbol $j being smaller than any character appearing in Σ. If we order the texts by their
lexicographic order and assign the symbols $j the order $1 < . . . < $t, then the BCR BWT and the eBWT
of the set {T1$1, . . . , Tt$t} are the same, for instance abddcc$1$2$3$4bccc$5cbbb$6baaaaa for our running
example {a$1, acb$2, acbad$3acbbcad$4, bbc$5, c$6}. Here, the ω-order coincides with the lexicographic
ordering of the suffixes by the use of the distinct delimiters $1, . . . , $t. With respect to algorithmic
aspects, the construction of the BCR BWT differs to applying the BWT over the concatenation of the
strings T1$1, . . . , Tt$t, meaning that we first linearize the input before application of the BWT. A similar
approach to the concatenation of the strings was introduced by Boucher et al. [16], who made all dollar
signs equal but appended another delimiter # being smaller than dollar. By doing so, the dollar signs
separate the input strings, while # marks the end of the entire concatenated string. If we prepend # to
the concatenated string instead of appending #, then the resulting string is Lyndon.

With respect to research on the BCR BWT, Díaz-Domínguez and Navarro [25] showed how to construct
the BCR BWT from a grammar [24], which is based on the LMS-substrings of the SAIS algorithm. Finally,
Cenzato and Lipták [21] conducted an empirical survey of the number of character runs in different BWT
variations that are capable for presenting multiple strings.

1.2.2 Indexing

Besides the introduction of the circular suffix array, Hon et al. [42] proposed, in the same paper, an
algorithm for circular pattern matching on the extended BWT. Circular pattern matching is the task to
count all occurrences of a pattern P inside every string of S, where the substrings P [1..ℓ] and P [ℓ+1..|P |]
for a split position ℓ ∈ [1..|P | − 1] occurring respectively as a suffix and a prefix of one string of S is also
considered as an occurrence. In that sense, circular pattern matching does not only report substrings
T [i..i+ |P | − 1] with T ∈ S equal to P , but also occurrences of TT that contain the middle position.

Like our approach, this technique is based on the backward search. Applied on the bijective BWT,
it allows us to perform circular pattern matching on the Lyndon factors (S becomes the set of Lyndon
factors in this context). Boucher et al. [18] revisited this problem, and gave an adaptation of the r-index
for the eBWT, using space linear in the number of runs of the eBWT, and locating queries in the same
time bounds as the r-index. While their index works only for circular pattern matching, our index on the
bijective BWT supports both types of queries,

• the circular matching when interpreting the Lyndon factors as independent input strings and

• the classic matching as performed by the standard BWT.

The former is an implicit consequence of [18], while the latter involves several technical proofs based on
properties the Lyndon factorization.

With respect to different BWT variants, Giancarlo et al. [35] translated the backward search technique
of the FM-index to the alternating BWT. They generalized their methods in a follow-up [36] for Burrows–
Wheeler transforms whose orders are so-called local orderings-based transformations. This class contains
the alternating BWT as well as the classic BWT. The authors proved that these BWT variations can
support pattern matching taking time quadratic in the pattern length, and improved the time bounds to
linear for a special subset of these orderings. For that special subset, including the alternating BWT,
they additionally could prove that the pattern locating queries can be answered in words of space linear
to the number of runs of the underlying BWT variant, which makes these BWT variants indexable in
space linear to the number of character runs like the r-index for the standard BWT. The connection to
the BBWT is that the BBWT as well as the eBWT apply the ω-order instead of the lexicographic order
on all conjugates of the input. Their approach can be considered as orthogonal as we are unsure whether
alternative orderings for the ω-order have already been investigated.

2 Preliminaries
Our computational model is the word RAM model with word size Ω(lg n). Accessing a word costs O(1)
time. In this article, we study strings on an integer alphabet Σ = [1..σ] with size σ = nO(1).
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Table 1: Used symbols and variables in this article
symbol meaning

T input text
F1 · · ·Ff Lyndon factorization of T
T τ1
1 · · ·T τt

t composed Lyndon factorization of T
R reduced text, R = T1 · · ·Tt

Strings. We call an element T ∈ Σ∗ a string. Its length is denoted by |T |. Given an integer j ∈ [1..|T |],
we access the j-th character of T with T [j]. Given a string T ∈ Σ∗, we denote with T k that we concatenate
k times the string T . The i-th conjugate conji(T ) of a string T [1..n] is defined as T [i+ 1..n]T [1..i] for an
integer i ∈ [1..n].

A bit vector B is a string on the binary alphabet {0, 1}. A rank-support data structure provides
support for a rank query on B, i.e., retrieving the number of ones up to a queried position in B. There
exist rank-support data structures that use o(|B|) space on top of B, can be built in time linear to the
length of B, and answer rank queries in constant time [46].

When T is represented by the concatenation of X,Y, Z ∈ Σ∗, i.e., T = XYZ, then X, Y , and Z are
called a prefix, substring, and suffix of T , respectively. A prefix X, substring Y , or suffix Z is called
proper if X ̸= T , Y ̸= T , or Z ̸= T , respectively. A proper prefix X of T is called a border of T if it is also
a suffix of T . T is called border-free if it has no border. For two integers i and j with 1 ≤ i ≤ j ≤ |T |,
let T [i..j] denote the substring of T that begins at position i and ends at position j in T . If i > j, then
T [i..j] is the empty string. In particular, the suffix starting at position j of T is denoted with T [j..n].
A cyclic occurrence of a string S in T is that S is a prefix of conji(T ) for some i ∈ [1..n]. A string T is
called primitive if it cannot be written as T = Se for a string S ∈ Σ+ and an integer e ≥ 2. The root
of a string T denotes the primitive string S such that T = Se for an integer e ≥ 1; in particular, T is
primitive if e = 1.

Text Data Structures. Suppose we have given a text T [1..n]. If [conjπ(1)(T ), conjπ(2)(T ), . . . , conjπ(n)(T )]
is the lexicographically sorted list of all conjugates of T , then the Burrows–Wheeler transform (BWT) [20]
of T is BWT = conjπ(1)(T )[n] · conjπ(2)(T )[n] · · · conjπ(n)(T )[n].

If we assume that T is terminated with a delimiter smaller than all other characters appearing in
T , the following data structures are well-defined. Let SA denote the suffix array [58] of T , which is a
permutation of the integers in [1..n]. The entry SA[i] is the starting position of the i-th lexicographically
smallest suffix such that T [SA[i]..] ≺ T [SA[i + 1]..] for all integers i with 1 ≤ i ≤ n − 1. With SA, we
can give an alternative definition of the BWT of T , which is given by BWT[i] = T [n] if SA[i] = 1 and
BWT[i] = T [SA[i]− 1] otherwise, for every i with 1 ≤ i ≤ n.

Orders on Strings. We denote the lexicographic order with ≺lex. Given two strings S and T , then
S ≺lex T if S is a proper prefix of T or there exists an integer ℓ with 1 ≤ ℓ ≤ min(|S|, |T |) such that
S[1..ℓ− 1] = T [1..ℓ− 1] and S[ℓ] < T [ℓ]. We write S ≺ω T if the infinite concatenation Sω := SSS · · · is
lexicographically smaller than Tω := TTT · · · . For instance, ab ≺lex aba but aba ≺ω ab. The relation
≺ω induces an order on the set of primitive strings. Although not needed here, ≺ω can be generalized to
general strings by comparing the exponent if two strings have the same root [59, Definition 4], meaning
ab ≺ω abab since both have the root ab, but the left has exponent one, while the right has exponent two.
The relation ≺ω is computable in time linear in the lengths of both strings by leveraging Fine and Wilf’s
Theorem [31].

Lemma 2.1 (Lemma 5 by Hon et al. [43]). For two primitive strings S and T with ℓ := max(|S|, |T |),
S ≺ω T if and only if Sω[1..2ℓ] ≺lex Tω[1..2ℓ].

For a set of primitive strings S = {T1, . . . , Tx} of total length n, the circular suffix array [43] SA◦[1..n]
of S is an integer array determined by the list L of the conjugates of all the strings in S sorted by the
ω-order. If L[r] = conji(Ty), then SA◦[r] =

∑y−1
x=1 |Tx|+ (i mod |Ty|). To put this definition into words,

we conceptionally consider the concatenation T := T1 · · ·Tx, for which SA◦[r] maps to a position T , where

5



T
=

cb
bc

ac
bb

ca
da

cb
ad

ac
ba

↓
Ly

nd
on

Fa
ct

or
iz

at
io

n
↓

c
|b

bc
|a

cb
bc

ad
|a

cb
ad
|a

cb
|a

↓
C

ol
le

ct
th

e
co

nj
ug

at
es

of
al

lL
yn

do
n

fa
ct

or
s
↓ c

bbc
bcb
cbb
acbbcad
cbbcada
bbcadac
bcadacb
cadacbb
adacbbc
dacbbca
acbad
cbada
badac
adacb
dacba
acb
cba
bac
a

↓
So

rt
al

lc
on

ju
ga

te
s

in
≺

ω
-o

rd
er
↓ a

acb
acbad
acbbcad
adacb
adacbbc
bac
badac
bbcadac
bbc
bcadacb
bcb
cadacbb
cba
cbada
cbbcada
cbb
c
dacba
dacbbca

↓
Se

t
B
B
W
T
[i
]
to

la
st

ch
ar

ac
te

r
of

i-
th

en
tr

y
↓ a

b
d
d
b
c
c
c
c
c
b
b
b
a
a
a
b
c
a
a

T
he

co
rr

es
po

nd
in

g
st

ar
ti

ng
po

si
ti

on
in

th
e

te
xt

: 20
17
12
5

15
10
19
14
7
2
8
3
9

18
13
6
4
1

16
11

Figure 1: Constructing BBWT of T = cbbcacbbcadacbadacba. The Lyndon factors are highlighted ( ).
Reading the characters of the penultimate column top-down yields BBWT. The last column shows in
its i-th row the starting position of the i-th smallest conjugate of a Lyndon factor in the text. It is the
circular suffix array studied later in Sect. 3.2.1. Note that cbb ≺lex cbbcada, but cbbcada ≺ω cbb.

we can read the r-th smallest conjugate (among all conjugates of S) if we stop reading at the end of an
input string Tx and continue reading at its beginning.

Lyndon Words. Let us suppose we have given a primitive text T [1..n]. Then all its conjugates are
distinct. We say that every conjugate of T (including itself) belongs to the conjugate class conj(T ) :=
{conj1(T ), . . . , conjn(T )}. Since T is primitive, its conjugate class contains exactly one conjugate that
is lexicographically smaller than all other conjugates; this conjugate is called a Lyndon word [56].
Equivalently, a string T is said to be a Lyndon word if and only if T ≺ S for every proper suffix S of T .
A consequence is that a Lyndon word is border-free. A pre-Lyndon word is a string that is a prefix of a
Lyndon word.

The Lyndon factorization [23] of T ∈ Σ+ is the unique factorization of T into a sequence of Lyndon
words F1 · · ·Ff , where (a) each Fx ∈ Σ+ is a Lyndon word, and (b) Fx ⪰lex Fx+1 for each x ∈ [1..f).

Lemma 2.2 ([27, Algo. 2.1]). The Lyndon factorization of a string can be computed in linear time.

Each Lyndon word Fx for x ∈ [1..f ] is called a Lyndon factor. We denote the multiset of T ’s Lyndon
factors by LynF(T ) := {F1, . . . , Ff}. There is a bijection between LynF(T ) and T in such a sense that
LynF(T ) uniquely defines T . That is because we can restore T by

1. sorting the Lyndon factors of LynF(T ) in lexicographically descending order, and

2. subsequently concatenating them.

The last factor Ff is special, as it has the following property:

Lemma 2.3 ([27, Prop. 1.9]). The last Lyndon factor of a string T is the smallest suffix of T .

We borrow from [44, Sect. 2.2] the notation lfsT (j) := Fj · · ·Ff for the suffix of T starting with
the j-th Lyndon factor. For what follows, we fix a string T [1..n] over an alphabet Σ of size σ. We
use the string T := cbbcacbbcadacbadacba as our running example. Its Lyndon factorization is
c, bbc, acbbcad, acbad, acb, a.

We further define the composed Lyndon factorization of T , writing T as F1 · · ·Ff = T τ1
1 · · ·T τt

t , where
T1, . . . , Tt is a sequence of strictly lexicographically decreasing Lyndon words and τx ≥ 1 denotes the
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Table 2: Suffix array and BWT variants of the example string T = cbbcacbbcadacbadacba. The Lyndon
factorization T = F1 · · ·F6 of the text is symbolized by vertical bars. Note that the produced BWT does
not coincide with the usual one defined by the lexicographically sorted rotations; it would coincide if we
had appended an artificial delimiter smaller than all characters appearing in T . Nevertheless, we keep
that erroneous BWT since the construction would work algorithmically in the same way as with the
delimiter, and because we want to emphasize on the difference of the construction between BWT and
BBWT. See Table 3 for an example with a correctly computed BWT.

F1 F2 F3 F4 F5 F6

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T c b b c a c b b c a d a c b a d a c b a

SA 20 17 12 5 15 10 19 14 2 7 3 8 4 9 18 13 1 6 16 11
BWT b d d c b c c c c c b b b b a a a a a a
SA◦ 20 17 12 5 15 10 19 14 7 2 8 3 9 18 13 6 4 1 16 11
BBWT a b d d b c c c c c b b b a a a b c a a

Table 3: Suffix array and BWT variants of the example string T$ = cbbcacbbcadacbadacba$ with a
delimiter $ smaller than all characters appearing in T . By definition of $, it always creates a new Lyndon
factor, which gets sorted on top of all cyclic rotations of all Lyndon factors such that BBWT[1] = $. The
rest of the BBWT entries are the same as in Table 2.

F1 F2 F3 F4 F5 F6 F7

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T$ c b b c a c b b c a d a c b a d a c b a $

SA 21 20 17 12 5 15 10 19 14 2 7 3 8 4 9 18 13 1 6 16 11
BWT a b d d c b c c c c c b b b b a a $ a a a
BBWT $ a b d d b c c c c c b b b a a a b c a a
SA◦ 21 20 17 12 5 15 10 19 14 7 2 8 3 9 18 13 6 4 1 16 11

multiplicity of the appearance of the factor Tx, for every x ∈ [1..t]. For each x ∈ [1..t] there exists a
y ∈ [x..f ] such that Tx = Fy. Let R := T1 · · ·Tt denote the text, in which all duplicate Lyndon factors
are removed. Obviously, the Lyndon factorization of R is T1, . . . , Tt. Let bR(Tx) and eR(Tx) denote the
starting and ending position of the x-th Lyndon factor in R, i.e., R[bR(Tx)..eR(Tx)] is the x-th Lyndon
factor Tx of R. The used symbols are summarized in Table 1.

Bijective Burrows–Wheeler Transform. We denote the bijective BWT of T by BBWT, where
BBWT[i] is the last character of the i-th string in the list storing the conjugates of all Lyndon factors
F1, . . . , Ff of T sorted with respect to ≺ω. Figure 1 shows the BBWT of our running example, and
Table 2 presents the suffix array variants involved in the computation of the BBWT and the traditional
BWT. The careful reader can observe that the BWT shown there does not coincide with BWT defined
on the rotations-matrix, i.e., taking the last character of all cyclic rotations of T , after sorting them
lexicographically. Doing so gives us the string ddbcbcccccbbbbaaaaaa as BWT, which differs from
the BWT defined by BWT[i] = T [SA[i]− 1]. Both BWT definitions coincide, however, if we append a
unique delimiter $ to the text with $ < c for every c ∈ Σ. We omit $ here since we emphasize on the
BBWT, which does not need this delimiter character. Like the SA-based definition of the BWT, we can
similarly define the BBWT in terms of the SA◦ built on the set of Lyndon factors as input strings, where
BBWT[i] = T [SA◦[i]− 1] if T [SA◦[i]− 1] and T [SA◦[i]] belong to the same Lyndon factor, or BBWT[i] = c,
where c is the last character of the Lyndon factor that contains SA◦[i].

3 Constructing
We start with a brief review of the SAIS algorithm that constructs SA in linear time.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c b b c a c b b c a d a c b a d a c b a
L S* S L S* L S* S L S* L S* L L S* L S* L L S*

T =
1 2 3 4 5 6 7 8

E C E D B D B A
L S* L L S* L L S*

T (1) =

Figure 2: Splitting T and T (1) into LMS substrings. The rectangular brackets below the types represent
the LMS substrings. T (1) is T after the replacement of its LMS substrings with their corresponding ranks
defined in Sect. 3.2.3 and on the left of Fig. 3.

LMS Substring Contents Non-Terminal

T [2..5] bbca E
T [5..7] acb C
T [7..10] bbca E
T [10..12] ada D
T [12..15] acba B
T [15..17] ada D
T [17..20] acba B
T [20..20] a A

S∗ Suffix Contents

T [20] a
T [17..20] acba
T [12..20] acbadacba
T [5..20] acbbcadacbadacba
T [15..20] adacba
T [10..20] adacbadacba
T [2..20] bbcacbbcadacbadacba
T [7..20] bbcadacbadacba

Figure 3: Ranking of the LMS substrings and the S∗ suffixes of our running example given in Sect. 3.2.3 and
Fig. 2. Left : LMS substrings assigned with non-terminals reflecting their corresponding rank in≺LMS-order.
Right : S∗ suffixes of T sorted in ≺lex-order. Note that T [5..7] = acb ≺lex acba = T [12..15] = T [17..20],
but acba ≺LMS acb.

3.1 Reviewing SAIS
Our idea is to adapt SAIS to compute SA◦ instead of the suffix array. To explain this adaptation, we
briefly review SAIS. First, SAIS assigns each suffix a type, which is either L or S:

• T [i..|T |] is an L suffix if T [i..|T |] ≻lex T [i+ 1..|T |], or

• T [i..|T |] is an S suffix otherwise, i.e., T [i..|T |] ≺lex T [i+ 1..|T |],

where we stipulate that T [|T |] is always type S. Since it is not possible that T [i..|T |] = T [i+1..|T |], SAIS
assigns each suffix a type. An S suffix T [i..|T |] is additionally an S∗ suffix (also called LMS suffix in [64])
if T [i− 1..|T |] is an L suffix. The substring between two succeeding S∗ suffixes is called an LMS substring.
In other words, a substring T [i..j] with i < j is an LMS substring if and only if T [i..|T |] and T [j..|T |] are
S∗ suffixes and there is no k ∈ [i+1..j − 1] such that T [k..|T |] is an S∗ suffix. A border case is T [|T |..|T |],
which has to be the smallest suffix of T (and can be achieved by appending the artificial character $
to T lexicographically smaller than all other characters appearing it T ) such that T ||T |..|T |] in an S∗

suffix. We additionally treat T [|T |..|T |] as an LMS substring. The types for the suffixes of our running
example are given in Fig. 2. Regarding the defined types, we make no distinction between suffixes and
their starting positions (e.g., the statements that (a) T [i] is type L and (b) T [i..|T |] is an L suffix are
equivalent).

Next, Nong et al. [64, Def. 3.3] define a relation ≺LMS on substrings of T based on the lexicographic
order and the types: Given two substrings S and U . Let i be the smallest integer such that (1) S[i] < U [i]
or (2) S[i] is type L and U [i] is type S or S∗. If such an i exists, then we write S ≺LMS U . For two
LMS substrings S and U with S ̸= U , either S ≺LMS U or U ≺LMS S, even if S is a prefix of U (cf.
the discussion below of Def. 3.3 in [64]). So ≺LMS is an order on the LMS substrings. The ≺LMS-order
is shown on the left side of Fig. 3 for the LMS substrings listed of the left side of Fig. 2. The crucial
observation is that the ≺LMS-order of the distinct LMS substrings coincides with the lexicographic order
of the suffixes starting with these LMS substrings [64, Lemma 3.8]. See Fig. 6 for a juxtaposition of the
different orders defined in this article.

Nong et al. [64, A3.4] compute the ≺LMS-order of all LMS substrings with the induced sorting (which
we describe below for the step of computing the rank of all suffixes). Figure 4 visualizes this computation
on our running example. Hence, we can assign each LMS substring a rank based on the ≺LMS-order.
Next, we build a string T (1) of LMS substring ranks with T (1)[i] being the rank of the i-th LMS substring
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 5 10 12 15 17 2 7 4

19 14 4 9 18 13 1 6 11 16 5

17 12 5 10 15 2 7 3 8 6

A A B C C D D 7

S∗ suffixes

L suffixes

S suffixes

≺LMS-ranks

S L S L L

a b c d
2

1

types

starting
character

Figure 4: Inducing LMS substrings. Rows 1 and 2 show the partitioning of SA into buckets, first divided
by the starting characters of the respective LMS substrings, and second by the types L and S. In Row 4,
the S∗ suffixes are inserted into their respective S buckets. Here it is sufficient to only put the smallest S∗
suffix in the correct order among all other S∗ suffixes in the same bucket. This suffix is T [20..20] in our
example, stored at the suffix array entry 1. The S∗ (resp. L) suffixes induce the L (resp. S) suffixes in
Row 5 (resp. Row 6). The last row assigns each S∗ suffix a meta-character representing its ≺LMS-rank.
We can compute two subsequent suffixes by character-wise comparison, spending O(|T |) time in total
since the LMS substrings have a total length of O(|T |).

of T in text order.5 See the right side of Fig. 2 for our running example. We recursively call SAIS on
this text of ranks until the ranks of all LMS substrings are distinct. Given that we have computed T (k)

and all characters of T (k) (i.e., the ranks of the respective LMS substrings) are distinct, then these ranks
determine the order of the S∗ suffixes of T (k−1). That is because each S∗ suffix in T (k−1) starts with an
LMS substring, and because all LMS substrings in T (k−1) are distinct, the lexicographical order of two S∗

suffixes are given by the order of the ranks of the LMS substrings they have as prefixes. We terminate the
recursion for T (k−1) after having built the suffix array by inducing the ranks of the other suffixes from the
S∗ suffixes, and move up the recursion level until returning to the original input string T while knowing
the ranks of its S∗ suffixes. The order of the S∗ suffixes of our running example are given in Fig. 3 on
the right side. Having the order of the S∗ suffixes, we allocate space for the suffix array, and divide the
suffix array into buckets, grouping each suffix with the same starting character and same type (either L
or S) into one bucket. Among all suffixes with the same starting character, the L suffixes precede the S
suffixes [48, Corollary 3]. Putting S∗ suffixes in their respective buckets according to their order (smallest
elements are the leftmost elements in the buckets), we can induce the L suffixes, as these precede either L
or S∗ suffixes. For that, we scan SA from left to right, and take action only for suffix array entries that are
not empty: When accessing the entry SA[k] = i with i > 1, write i− 1 to the leftmost available slot of the
L bucket with the character T [i− 1] if T [i− 1..|T |] is an L suffix. Finally, we can induce the ≺lex-order of
the S suffixes by scanning the suffix array from right to left: When accessing the entry SA[k] = i, write
i− 1 to the rightmost available slot of the S type bucket with the character T [i− 1] if T [i− 1..|T |] is an S
suffix. As an invariant, we always fill an L bucket and an S bucket from left to right and from right to left,
respectively. So we can think of each L bucket and each S bucket as a list with an insertion operation at
the end or at the beginning, respectively. We conduct these steps for our running example in Fig. 5.

In total, the induced sorting procedure takes O(|T |) time. The recursion step takes also O(|T |) time
since there are at most |T |/2 LMS substrings (there are no two text positions T [i] and T [i + 1] with
type S∗ for i ∈ [1..n− 1]). This gives T (n) = T (n/2) + cn ∈ O(n) total time, where c > 0 is a constant
and T (n) denotes the time complexity for computing a suffix array of length n.

However, with SAIS we cannot obtain SA◦ ad hoc since we need to (a) exchange ≺lex with ≺ω and
(b) make the algorithm run on a multiset of Lyndon factors instead of a single string. For the former (a)

5We can obtain T (1) by scanning T from left to right and replacing each LMS substring by its respective rank, but keep
its last character in T if this character is the first character of the subsequent LMS substring. We further omit the first
characters of T that are not part of an LMS substring (which must be of type L).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3

20 17 12 5 15 10 2 7 4

19 14 4 9 18 13 1 6 16 11 5

3 8 6

20 17 12 5 15 10 19 14 2 7 3 8 4 9 18 13 1 6 16 11 7

19 16 11 4 14 9 18 13 1 6 2 7 3 8 17 12 20 5 15 10 8

b d d c b c c c c c b b b b a a a a a a 9

S∗ suffixes

L suffixes
S suffixes

BWT =

SA− 1 =

SA =

S L S L L

a b c d
2

1

types

starting
character

Figure 5: Inducing L and S suffixes from the ≺lex-order of the S∗ suffixes given in Fig. 2. Rows 1 and 2
show the partitioning of SA into buckets, first divided by the starting characters of the respective suffixes,
and second by the types L and S. Row 4 is SA after inserting the S∗ suffixes according to their ≺lex-order
rank obtained from the right of Fig. 3. The S∗ (resp. L) suffixes induce the L (resp. S) suffixes in Row 5
(resp. Row 6). Putting all together yields SA in Row 7. In the penultimate row SA − 1, each text
position stored in SA is decremented by one, or set to n if this position was 1. The last row shows
T [(SA− 1)[i]] = BWT[i] in its i-th column, which is the BWT of T . This BWT is not reversible since
the input is not terminated with a unique character like $. To obtain the BWT of T$, we first write
T [SA[1]] = T [20] = a to the output, and then BWT, but exchanging BWT[SA−1[1]] = BWT[17] = a with
$, i.e., abddcbcccccbbbbaa$aaa.

U V ≺lex ≺ω ≺LMS

aba aca < < <
adc adcb < < >
acb acba < > >

Figure 6: Comparison of the three orders studied in this paper applied to LMS substrings. Assume that
U and V are substrings of the text surrounded by a character d (i.e., T = . . . dUd . . . dV d . . .) such that
the first and the last character of both U and V start with an S∗ suffix. We mark with the signs < and >
whether U is smaller or respectively larger than V according to the corresponding order. The orders can
differ only when one string is the prefix of another string, as this is the case in the last two rows. Finally,
occurrences of U and V can be ≺LMS-incomparable in different contexts such as . . . dUa . . . dV d . . ., for
instance.
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we note that ≺lex and ≺ω are interchangeable for Lyndon words [13, Thm. 8]. Since the SAIS algorithm
sorts LMS substrings by ≺LMS that retains the lexicographical order of the LMS substrings, we can be
sure that the Lyndon factors can be correctly sorted. To cope with (b), we remove duplicate Lyndon
factors, and slightly modify the behavior of SAIS when it accesses positions prior to the first position of a
Lyndon factor.

3.2 Our Adaptation
We want SAIS to sort Lyndon conjugates in ≺ω-order instead of suffixes in ≺lex-order. For that, we first
get rid of duplicate Lyndon factors to facilitate the analysis, and then subsequently introduce a slightly
different notion to the types of suffixes and LMS substrings, which translates the suffix sorting problem
into computing the BBWT.

3.2.1 Reduced String and Composed Lyndon Factorization

In a pre-computation step, we want to facilitate our analysis by removing all identical Lyndon factors
from T yielding a reduced string R. We want to remove them to make conjugates unique; thus we can
linearly order them. Consequently, the first step is to show that we can obtain the BBWT of T from the
circular suffix array of R (which we will subsequently define).

Our aim is to compute the ≺ω-order of all conjugates of all Lyndon factors of R, which are given by
the set S :=

⋃t
x=1 conj(Tx). Like Hon et al. [43], we present this order in the circular suffix array SA◦ of

{T1, . . . , Tt}. For these input strings, SA◦ is of length |R| with SA◦[k] = i if R[i..eR(Tx)]R[bR(Tx)..i− 1]
is the k-th smallest string in S with respect to ≺ω, where i ∈ [bR(Tx)..eR(Tx)]. The length of SA◦ is |R|
since we can associate each text position SA◦[k] in R with a conjugate starting with R[SA◦[k]].

Having the circular suffix array SA◦ of {T1, . . . , Tt}, we can compute the BBWT of T by reading
SA◦[k] for k ∈ [1..|R|] from left to right: Given SA◦[k] = i ∈ [bR(Tx)..eR(Tx)], we append T [i−] exactly
τx times to BBWT, where i− is i − 1 or eR(Tx) if i = bR(Tx). (This is analogous to the definition of
BWT where we set BWT[i] = T [n] for SA[i] = 1, but here we wrap around each Lyndon factor.)

Algorithm 1: BBWT(T ) – linear-time construction of BBWT. We have SA◦[i] ∈ [bR(Tk)..eR(Tk)]
and SA◦[i]

− = SA◦[i]−1 for bR(Tk) < SA◦[i] ≤ eR(Tk) and SA◦[i]
− = eR(Tk) for SA◦[i] = bR(Tk).

Input: string T ∈ Σ+ over a finite alphabet Σ
Output: BBWT of T

1 T = T τ1
1 · · ·T τt

t ; // Lyndon factorization of T
2 R = T1 · · ·Tt ; // reduced version of T

3 SA◦ ←Algorithm 2(R, T1 · · ·Tt) // compute circular suffix array of R with Algo. 2
4 B = ε ; // build BBWT(T ) in B based on SA◦(R)
5 for i← 1 to |R| do
6 B = B + (R[SA◦[i]

−])
τk ; // here + denotes concatenation

7 return B;

3.2.2 Translating Types to Inf-Suffixes

In what follows, we continue working with R defined in Sect. 3.2.1 instead of T . Let R[i..] denote the
infinite string R[i..eR(Tx)]TxTx · · · = conjk(Tx)conjk(Tx) · · · with x such that i ∈ [bR(Tx)..eR(Tx)] and
k = i − bR(Tx) or k = n if i = bR(Tx). We say that R[i..] is an inf-suffix. As a shorthand, we also
write Tx[i..] = conji−1(Tx)conji−1(Tx) · · · for the inf-suffix starting at R[bR(Tx) + i − 1]. In particular,
Tx[|Tx|+ 1..] = Tx[1..] = TxTx · · · .

Like in SAIS, we distinguish between L and S inf-suffixes:

• R[i..] is an L inf-suffix if R[i..] ≻lex R[i+..], and

• R[i..] is an S inf-suffix if R[i..] ≺lex R[i+..],
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Algorithm 2: Linear-time construction of circular suffix array SA◦ of R = T1 · · ·Tt

Input: string R = T1 · · ·Tt ∈ Σ+ together with its Lyndon factorization T1 ≺ T2 ≺ . . . ≺ Tt

Output: circular suffix array SA◦ of R

1 assign each position in R type S or L ; // O(n) time
2 mark starting positions of LMS inf-suffixes of R ; // O(n) time
3 compute bucket sizes for R ;

// pre-sort all LMS inf-substrings
4 rank each LMS inf-substring of R preserving their lexicographical order ;
5 if not all LMS inf-substrings are distinct then
6 create a string R(1) by exchanging each LMS inf-suffix in R by its rank ; // |R(1)| ≤ |R|/2

// The recursive call for a string of at most half the length of the input
7 SA(1)

◦ ← output of Algorithm 2 for the input R(1) ;
8 determine ranks of LMS inf-suffixes by SA(1)

◦ ;

9 else
10 rank of an LMS inf-suffix is the rank of its respective LMS inf-substring ;

11 allocate space for SA◦ and create S and L type buckets for each character ;
12 insert each LMS inf-suffix of R at the beginning of its proper S bucket ;

// induce SA◦ from R and the inf-suffixes
13 foreach L-type inf-suffix v of R (scanning succeeding positions from left to right in SA◦) do
14 insert v into the leftmost available slot of its proper L bucket ;

15 clear all S type inf-suffixes from SA◦ ;
16 foreach S-type inf-suffix v of R (scanning succeeding positions from right to left in SA◦) do
17 insert v into the rightmost available slot of its proper S bucket ;

18 return SA◦ ;

where i+ is either i+1 or bR(Tx) if i = eR(Tx), and x is given such that i ∈ [bR(Tx)..eR(Tx)]. Finally, we
introduce the S∗ inf-suffixes as a counterpart to the S∗ suffixes: If R[i..] is an S inf-suffix, it is further an
S∗ inf-suffix if R[i−..] is an L inf-suffix with i− being either i− 1 or eR(Tx) if i = bR(Tx), and x ∈ [1..t]
chosen such that i ∈ [bR(Tx)..eR(Tx)].

When speaking about types, we do not distinguish between an inf-suffix and its starting position in R.
This definition assigns all positions of R a type except those belonging to a Lyndon factor of length one.
We solve this by stipulating that all Lyndon factors of length one start with an S∗ inf-suffix. However, in
what follows, we temporarily omit all Lyndon factors of length one because we will later see that they can
be placed at the beginning of their corresponding buckets in the circular suffix array. They nevertheless
appear in the examples for completeness. To show that suffixes and inf-suffixes starting at the same
position have the same type (except for some border-cases), the following lemma will be particularly
useful:

Lemma 3.1 ([13, Lemma 7]). For i, j ∈ [1..|Tx|] and x ∈ [1..t], the following statements are equivalent:

1. conji−1(Tx) = Tx[i..|Tx|]Tx[1..i− 1] ≺lex Tx[j..|Tx|]Tx[1..j − 1] = conjj−1(Tx);

2. conji−1(Tx) ≺ω conjj−1(Tx), i.e., Tx[i..] ≺lex Tx[j..];

3. Tx[i..|Tx|] ≺lex Tx[j..|Tx|].

Proof. The statements follow directly from the properties of Lyndon words.

Lemma 3.2. Omitting all Lyndon factors of length one from R, the types of all positions match the
original SAIS types, except maybe R[1] and R[|R|..], where R[1..] and R[|R|..|R|] are always an S∗ inf-suffix
and an S∗ suffix, respectively.

Proof. We show that inf-suffixes as well as suffixes starting with Lyndon factors have the same type S∗:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

c b b c a c b b c a d a c b a d a c b a
S* S* S L S* L S* S L S* L S* L L S* L S* L L S*

T1 T2 T3 T4 T5 T6

R =
1 2 3 4 5 6 7

E B D C A C A
S* S* L L S* L S*

T
(1)
1 T

(1)
2 T

(1)
3 T

(1)
4

R(1) =

Figure 7: Splitting R and R(1) into LMS inf-substrings. The rectangular brackets below the types
represent the LMS inf-substrings. Broken brackets denote that the corresponding LMS inf-substring ends
with the first character of the Lyndon factor in which it is contained. They are colored in green ( ); all
other LMS inf-substrings are represented by brackets colored in blue ( ). R(1) is R after the replacement
of its LMS inf-substrings with their corresponding ranks defined in Sect. 3.2.3 and on the left of Fig. 8.

inf-suffixes. Assume that R[bR(Tx)..] is an L inf-suffix for an x ∈ [1..t]. According to the definition
of the Lyndon factorization, R[bR(Tx) + 1..] ≺lex R[bR(Tx)..], i.e., Tx[2..] ≺lex Tx[1..], and with
Lemma 3.1, Tx[2..|Tx|] ≺lex Tx, contradicting that Tx is a Lyndon word. Finally, R[bR(Tx)..] is an
S∗ inf-suffix because Tx ≺lex Tx[|Tx|] and hence Tx[1..] ≺lex Tx[|Tx|..], again with Lemma 3.1.

suffixes. Due to the Lyndon factorization, R[bR(Tx)..|R|] ≻lex R[bR(Tx+1)..|R|] for x ∈ [1..t− 1]. Hence,
the suffix R[eR(Tx)..|R|] starting at R[eR(Tx)] has to be lexicographically larger than the suffix
R[eR(Tx) + 1..|R|] = R[bR(Tx+1)..|R|], otherwise we could extend the Lyndon factor Tx.

Consequently, R[bR(Tx)..|R|] and R[bR(Tx)..] are an S∗ suffix and an S∗ inf-suffix, respectively, and
R[eR(Tx)..|R|] and R[eR(Tx)..] are an L suffix and an L inf-suffix.

The claim for all other positions (
⋃t−1

x=1[bR(Tx) + 1..eR(Tx)− 1]) follows by observing that Tx[1..] is
the ≺lex-smallest inf-suffix among all inf-suffixes starting in Tx and R[bR(Tx+1)..|R|] is ≺lex-smaller than
all suffixes starting in R[bR(Tx)..eR(Tx)] for x ∈ [1..t− 1].

We excluded the suffix R[bR(Tt) + 1..|R|] in the claim of the lemma since we require for SAIS that
the last character is always an S∗ suffix, which is usually enforced by adding an artificial character at the
end of the string that is lexicographically smaller than all other characters appearing in the text.

A corollary is that R[i..|R|] ≺lex R[i..] for i ∈ [bR(Tx)..eR(Tx)] and x ∈ [1..t− 1] since Tx+1 ≺lex Tx.6
Next, we define the equivalent to the LMS substrings for the inf-suffixes, which we call LMS inf-suffixes:
For 1 ≤ i < j ≤ |Tx|+ 1, the substring (TxTx)[i..j] is called an LMS inf-substring if and only if Tx[i..]
and Tx[j..] are S∗ inf-suffixes and there is no k ∈ [i+ 1..j − 1] such that Tx[k..] is an S∗ inf-suffix. This
definition differs from the original LMS substrings (omitting the last one R[|R|..|R|] being a border case)
only for the last LMS inf-substring of each Lyndon factor. Here, we append Tx[1] instead of Tx+1[1] to
the suffix starting with the last type S∗ position of Tx.

3.2.3 Example

The LMS inf-substrings of our running example T := cbbcacbbcadacbadacba with R = T are given in
Fig. 7. Their ≺LMS-ranking is given on the left side of Fig. 8, where we associate each LMS inf-substring,
except those consisting of a single character, with a non-terminal reflecting its rank. By replacing the
LMS inf-substrings by their ≺LMS-ranks in the text while discarding the single character Lyndon factors,
we obtain the string T (1) := EBDCACA, whose LMS inf-substrings are given on the right side of Fig. 7.
Among these LMS inf-substrings, we only continue with BDC and AC. Since all LMS-inf substrings are
distinct, their ≺LMS-ranks determine the ≺ω-order of the S∗ inf-suffixes as shown on the right side of
Fig. 8. It is left to induce the L and S suffixes, which is done exactly as in the SAIS algorithm. We
conduct these steps in Fig. 9, which finally lead us to SA◦.

3.2.4 Correctness and Time Complexity

Let us recall that our task is to compute the ≺ω-order of the conjugates conjix−1(Tx) for ix ∈ [1..|Tx|] of
all Lyndon factors T1, . . . , Tt of R. We will frequently use that conjix−1(Tx) ≺ω conjiy−1(Ty) is equivalent

6Consequently, for transforming SA into SA◦, one only needs to shift values in SA to the right, as this is done by one of
the implementations (https://github.com/NealB/Bijective-BWT) mentioned in the related work.
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LMS Inf-Substring Contents Non-Terminal

R[1]R[1] cc -
R[2..4]R[2] bbcb E
R[5..7] acb B
R[7..10] bbca D
R[10..11]R[5] ada C
R[12..15] acba A
R[15..16]R[12] ada C
R[17..19]R[17] acba A
R[20]R[20] aa -

S∗ Inf-Suffix Contents

R[20..] a . . .
R[17..] acb . . .
R[12..] acbad . . .
R[5..] acbbcad . . .
R[15..] adacb . . .
R[10..] adacbbc . . .
R[7..] bbcadac . . .
R[2..] bbc . . .
R[1..] c . . .

Figure 8: Ranking of the LMS inf-substrings and the S∗ suffixes of our running example T = R given in
Sect. 3.2.3 and Fig. 7. Left : LMS inf-substrings assigned with non-terminals reflecting their corresponding
rank in ≺LMS-order. They have the same color as the respective rectangular brackets on the left of
Fig. 7. The first and the last LMS substring do not receive a non-terminal since their lengths are one
(remember that we omit Lyndon factors of length 1 in the recursive call). Right : S∗ inf-suffixes of T
sorted in ≺lex-order, which corresponds to the ≺ω of the conjugate starting with this inf-suffix. Compared
with Fig. 3, the suffixes R[2..20] and R[7..20] in the ≺lex-order are order differently than their respective
inf-suffixes R[2..] and R[7..] in the ≺lex-order.
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Figure 9: Inducing L and S inf-suffixes from the ≺lex-order of the S∗ inf-suffixes given in Fig. 7. Rows 1
and 2 show the partitioning of SA◦ into buckets, first divided by the starting characters of the respective
inf-suffixes, and second by the types L and S. Row 4 is SA◦ after inserting the S∗ inf-suffixes according to
their ≺lex-order rank obtained from the right of Fig. 8. The S∗ (resp. L) inf-suffixes induce the L (resp. S)
inf-suffixes in Row 5 (resp. Row 6). Putting all together yields SA◦ in Row 7. In the penultimate row
SA◦ − 1, each text position stored in SA◦ is decremented by one, wrapping around a Lyndon factor if
necessary (for instance, (SA◦ − 1)[2] = 19 = eR(T5) since SA◦[2] = 17 = bR(T5)). The last row shows
R[(SA◦ − 1)[i]] in its i-th column, which is the BBWT of R as given in Fig. 1.
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to Tx[ix..] ≺lex Ty[iy..] for ix ∈ [1..|Tx|] and iy ∈ [1..|Ty|]. We start with showing that the ≺LMS-ranks of
the LMS inf-substrings determine the ≺lex-order of the S∗ inf-suffixes7, whenever the LMS inf-suffixes are
all distinct.

Lemma 3.3. Let Sx and Sy be two LMS inf-substrings that are prefixes of Tx[ix..] and Ty[iy..], respectively,
for ix ∈ [1..|Tx|] and iy ∈ [1..|Ty|]. If Sx ≺LMS Sy then Tx[ix..] ≺lex Ty[iy..].

Proof. Given Sx ≺LMS Sy, there is a position i such that (a) Sx[i] < Sy[i] or (b) Sx[i] is type L and Sy[i]
is type S; let i be the smallest such position. In the latter case (b), there is a position j > i such that
Tx[ix + j − 1] = Sx[j] < Sx[i] = Sy[i] < Sy[j] = Ty[iy + j − 1] and Tx[ix..ix + j − 2] = Ty[iy..iy + j − 2],
where we abused the notation that Tx[k] = (TxTx · · · )[k] for a k ∈ [1..2|Tx|]. In both cases (a) and (b),
Tx[ix..] ≺lex Tx[iy..].

Exactly as in the SAIS recursion step, we map each LMS inf-substring to its respective meta-character
via its ≺LMS-rank, obtaining a string R(1) whose characters are ≺LMS-ranks. The lexicographic order
≺lex induces a natural order on the strings whose characters are drawn from the ≺LMS-ranks. With that,
we can determine the Lyndon factorization on R(1), which is given by the following connection:

Lemma 3.4. There is a one-to-one correspondence between Lyndon factors of R and R(1), meaning that
each Lyndon factor of R(1) generates a Lyndon factor in R by expanding each of its ≺LMS-ranks to the
characters of the respective LMS inf-substring (while omitting the last character if it is the beginning of
another LMS inf-substring), and vice-versa by contracting the characters of R to non-terminals.

Proof. We first observe that each LMS inf-substring is contained in Tx[1..|Tx|]Tx[1] for an x ∈ [1..t]. Now,
let L be a Lyndon factor of R(1) with L = r1 · · · rℓ such that each ri is a ≺LMS-rank. Suppose that
there is a d ∈ [1..ℓ− 1] such that r1 · · · rd expands to a suffix Tx[s..|Tx|] of Tx (again omitting the last
character of each expanded LMS inf-substring) and rd+1 · · · rℓ expands to a prefix P of Tx+1. Since L is
a Lyndon word, r1 · · · rd ≺lex r1 · · · rℓ ≺lex rd+1 · · · rℓ. Hence, Tx[s..|Tx|] ≺LMS Tx[s..|Tx|]Tx[1] ≺LMS P ,
and with Lemma 3.3, Tx[1..] ≺lex Tx[s..] ≺lex Tx+1[1..], contradicting the Lyndon factorization of R with
Lemma 3.1.

Finally, suppose that a Lyndon factor L1 of R(1) expands to a proper prefix of a Lyndon factor Tx. Let
L2 be its subsequent Lyndon factor, which has to end inside Tx according to the above observation. Then
L2 ≺lex L1, which means that Tx contains an inf-suffix smaller than Tx due to Lemma 3.1, contradicting
that Tx is a Lyndon factor.

Thanks to Lemma 3.4, we do not have to compute the Lyndon factorization of R(1) needed in the
recursive step, but can infer it from the Lyndon factorization of R. Additionally, we have the property
that the order of the LMS inf-substrings in the recursive step only depends on the Lyndon factors they
are (originally) contained in. It remains to show how the ≺LMS-ranks of the LMS inf-substrings can be
computed:

Lemma 3.5. We can compute the ≺LMS-ranks of all LMS inf-substrings in linear time.

Proof. We follow the proof of [64, Theorem 3.12]. The idea is to know the ≺lex-order among some
smallest S∗ inf-suffixes with which we can induce the ≺LMS-ranks of all LMS inf-substrings. Here, we
use the one-to-one correlation between each LMS inf-substring R[i..j] and the respective S∗ inf-suffix
R[i..] by using the starting position i for identification. To compute the order of the (traditional) LMS
substrings, it sufficed to know the lexicographically smallest S∗ suffix (cf. Fig. 4), which can be determined
by appending an artificial character such as $ to R with the property that it is smaller than all other
characters appearing in R. Here, we need to know the order of at least one S∗ inf-suffix per Lyndon
factor. That is because an inf-suffix can only induce the order of another inf-suffix of the same Lyndon
word. However, this is not a problem since we know that the inf-suffix starting with a Lyndon factor Tx

is smaller in ≺ω-order than all other inf-suffixes of Tx, for each x ∈ [1..t]. In particular, we know that
Tx ≻lex Tx+1 is equivalent to Tx ≻ω Tx+1 due to [13, Thm. 8], and hence we know the ≺lex-ranks among
all inf-suffixes starting with the Lyndon factors.8 In what follows, we use the inf-suffixes starting with
the Lyndon factors to induce the ≺LMS-ranks of all LMS inf-substrings.

7This is a counterpart to the property that the ≺LMS-ranks of the LMS substrings determine the ≺lex-order of the S∗

suffixes [64, Theorem 3.12].
8Since Tt is the smallest Lyndon word, we have the invariants that SA◦[1] = bR(Tt) and BBWT[1] = R[eR(Tt)] = R[|R|].
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Figure 10: Inducing LMS inf-substrings. Thanks to the Lyndon factorization, we know the ≺ω-order
of the inf-suffixes starting with the Lyndon factors, which is T [20..] ≺ω T [17..] ≺ω T [12..] ≺ω T [5..] ≺ω

T [2..] ≺ω T [1..]. We insert the starting positions of these inf-suffixes in this order into their respective
buckets, and fill the S∗ buckets with the rest of S∗ inf-suffixes by an arbitrary order (here we used the text
order). Like Fig. 4, the S∗ (resp. L) suffixes induce the L (resp. S) suffixes in Row 5 (resp. Row 6), but we
skip those belonging to Lyndon factors of length one, since each of them is always stored at the leftmost
position of its respective bucket. In the last row, we assign each LMS inf-substring a non-terminal based
on its ≺LMS-rank, but omitting those that correspond to factors of length one.

However, the inducing only works if we include all text positions: While an ordered suffix R[i..|R|]
induces the order of R[i − 1..|R|] in the traditional SAIS, here we want an inf-suffix R[i..] to induce
the order of R[i − 1..]. For that, we define a superset of the LMS inf-substrings, whose elements are
called LMS-prefixes [64, Sect. 3.4]: Let i ∈ [bR(Tx)..eR(Tx)] for an x ∈ [1..t] be a text position, and
let j > i be the next S∗ position in R. Then the LMS-prefix Pi starting at position i is Pi := R[i..j]
if j ≤ eR(Tx) or Pi := R[i..j − 1]bR(Tx) if j = bR(Tx+1). In particular, if i is the starting position of
an LMS inf-substring S, then Pi = S. The LMS-prefixes inherit the types (L or S) from their starting
positions. We show that we can compute the ≺LMS-ranks of all Pi’s by induced sorting:

Initialize the Suffix Array. We create SA◦ of size |R| to store the ≺LMS-ranks of all LMS-prefixes,
where the entries are initially empty. Like in SAIS, we divide SA◦ into buckets, and put the LMS-prefixes
corresponding to the LMS inf-substrings into the S buckets of the respective starting characters in
lexicographically sorted order. See also Fig. 10 for an example.

Inducing L LMS-prefixes. We scan the suffix array from left to right, and take action whenever we
access a non-empty value i stored in SA◦: Given i ∈ [bR(Tx)..eR(Tx)] and i− = i− 1 or i− = eR(Tx) for
i = bR(Tx), we insert i− into the L bucket of the character Tx[i

−] if R[i−..] is an L inf-suffix. By doing so,
we compute the ≺LMS -order of all L LMS-prefixes in ascending lexicographic order per L bucket. The
correctness follows by induction over the number k of inserted L LMS-prefixes. Since we know that all
LMS-prefixes PbR(Tx) for x ∈ [1..t] starting with the Lyndon factors are stored correctly in ≺LMS-order,
and each of them is preceded by an L LMS-prefix, we perform the insertion of the first L LMS-prefix
correctly, which is induced by the lexicographically smallest S∗ LMS-prefix PTt[1]. For the induction
step, assume that there is a k > 1 such that when we append the (k + 1)-th L LMS-prefix Pi into its
corresponding bucket, we have stored an L LMS-prefix Pj with larger ≺LMS-rank in the same bucket. In
this case, we have that R[i] = R[j], Pj+1 ≻LMS Pi+1 and Pj+1 is stored to the left of Pi+1. This implies
that when we scanned SA◦ from left to right, before appending Pi to its bucket, we already made a
mistake.

The inducing step for the S LMS-prefixes works exactly in the same way by symmetry. Finally, we
scan the computed SA◦, and for each pair of subsequent positions i and j with i < j corresponding to the
starting positions of two LMS inf-suffixes, we perform a character-wise comparison whether the LMS
inf-substring starting at i is ≺LMS-smaller than the one starting at j. By doing so, we can compute the
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≺LMS-ranks of all LMS inf-substrings in linear time because the number of character comparisons is
bounded by the number of characters covered by all LMS inf-substrings, which is O(|R|).

With Lemma 3.5, we can determine the ≺ω -order of the S∗ inf-suffixes R. It is left to perform the
induction step to induce first the order of the L inf-suffixes, and subsequently the S inf-suffixes, which
we do in the same manner as SAIS, but access (TxTx · · · )[i−] instead of R[i− 1] when accessing a suffix
array entry with value i, where x chosen such that i ∈ [bR(Tx)..eR(Tx)] and i− = i− 1 or i− = eR(Tx)
if i = bR(Tx). The correctness follows by construction: Instead of partitioning the suffixes into LMS
substrings (maybe omitting a prefix of R with L suffixes), we refine the Lyndon factors into a partitioning
of LMS inf-substrings.

Lyndon Factors of Length One. It is left to reintroduce the Lyndon factors of lengths one to obtain
the complete SA◦ of R. Remember that we omitted these factors at the recursive call. After the recursive
call, we reinsert each of them at the smallest position in the S bucket of its respective starting character.
By doing so, we correctly sort them due to the following observation: Suppose that there is a Lyndon
factor consisting of a single character b (the following holds if b ∈ Σ or if b is a rank of an LMS substring
considered in the recursive call). All LMS inf-substrings larger than one starting with b are larger than bb
in the ≺ω-order because such an LMS inf-substring starting with R[i] having type S∗ is lexicographically
smaller than R[i+ 1..]. Consequently, bb · · · ≺lex R[i..] = bR[i+ 1..] since b · · · ≺lex R[i+ 1..]. Thus, the
Lyndon factor consisting of the single character b does not have to be tracked further in the recursive call
since we know that its rank precedes the ranks of all other LMS inf-substrings starting with b.

Time Complexity. By omitting Lyndon factors in the recursive calls, reducing R to a string R′ where
no two subsequent inf-suffixes R[i..] and R[i+ 1..] are S∗, we can bound the maximum number of all S∗
inf-suffixes by n/2 for the recursive call. After the recursion, we can insert all omitted LMS inf-substrings
into the order returned by the recursive call by placing them at the beginnings of the respective S buckets.
Hence, we obtain that T (n) = T (n/2) +O(n) = O(n), where T (n) is the time complexity for computing
a circular suffix array of length n. Note that the omission of the single character Lyndon factors is crucial
for obtaining this time complexity. Without, there may be more than n/2 many S∗ inf-suffixes, and
because we keep the same Lyndon factorization in all recursive levels, we could have Θ(n) LMS inf-suffixes
at each recursion level. The final step of computing the BBWT of T from the circular suffix array SA◦
of R can be done in linear time with a linear scan of SA◦ as described in Sect. 3.2.1.

3.2.5 Space Complexity

Given that f =
∑t

x=1 τx is the number of all non-composed Lyndon factors F1 · · ·Ff , the algorithm of
Lemma 2.2 computing the Lyndon factorization online only needs to maintain three integer variables of
O(lg n) bits to find F1 · · ·Ff . We can represent the non-composed Lyndon factorization by a bit vector B
of length n marking the ending position of each factor Fx (x ∈ [1..f ]) with a one. We additionally create
a bit vector B2 of length f , and mark the first occurrence of each non-composed Lyndon factor Fx in
B2 for x ∈ [1..f ] such that B2 stores t ones. Then the x-th ‘1’ in B2 corresponds to the x-th composed
Lyndon factor Tx, and the number of ‘0’s between the x-th and (x+ 1)-th ‘1’ in B2 is τx − 1. It is now
possible to replace T by R and store the Lyndon factorization of R in B (and resizing B to length |R|)
since we can restore T later with B2. (Alternatively, we can simulate R having T and B2.) This saves at
least (f − t) lg σ ≥ f − t bits, such that our working space is at most n + t + n lg σ bits including the
text space, before starting the actual algorithm computing SA◦. Building a rank-support data structure
on B helps us to identify the Lyndon factor covering a text position of R in constant time [46]. Since a
recursive call of SAIS works on a text instance of at most |R|/2 characters, we can rebuild B from scratch
by running the algorithm of Lemma 2.2 at the start of each recursive call. In total, we can maintain
the Lyndon factorization in n+ o(n) bits with O(n) total time throughout all recursive calls. When a
recursive call ends, we need to insert the omitted Lyndon factors of length one into the list of sorted
S∗ inf-suffixes. But this can be done with a linear scan of the sorted S∗ inf-suffixes and their initial
characters, since we know that the omitted Lyndon factors have to be inserted at the first position among
all inf-suffixes sharing the same initial character. Additionally, we can achieve this within the space used
for storing the circular suffix array SA◦, since all S∗ inf-suffixes use up at most half of the positions of the
inf-suffix array. Overall, we have an algorithm running with n+ t+ o(n) bits on top of our modified SAIS,
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which uses O(σ lg n) bits of working space additionally to SA◦. If σ is not constant, one may consider
an option to get rid of this additional space requirement. Luckily, we can do so with the in-place suffix
array construction algorithm of Goto [40] (or similarly with [54]), which is a variation of SAIS, storing
an implicit representation of these O(σ lg n) bits within the space of SA◦. Since B2 is only needed for
the final step computing the BBWT of T , we can compute SA◦ with n+ o(n) additional bits of working
space, and BBWT with |SA◦|+n+ t+ o(n) additional bits of working space, where |SA◦| = n lg n denotes
the size of SA◦ in bits.
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Figure 11: Constructing BBWT and restoring the original input. The Lyndon factors are highlighted ( ).
Middle: Restoring the Lyndon factor ab with the backward search, where the array F is defined by
F [i] := c if C[c− 1] + 1 ≤ i ≤ C[c]. Right: Lyndon factors of T restored by visiting all cycles of BBWT.

Theorem 3.6. We can construct the bijective BWT of a string of length n in linear time.

Proof. Given a string T of length n, we compute its Lyndon factorization in O(n) time with Lemma 2.2.
Subsequently, we build a representation R of T where duplicate Lyndon factors are removed. Our modified
SAIS algorithm computes the circular suffix array SA◦ of R in linear time. With a linear scan over the SA◦
(and random access to both R and T ) we can compute the BBWT of T as explained in Sect. 3.2.1.

4 Indexing
Our task in this section is to build an index on our constructed BBWT. For the sake of explanatory
purposes we switch to the different running example T = acababdababcababbab, for which we illustrate
the construction and the inversion of its BBWT in Fig. 11.

To find patterns, our index applies the same backward search as the FM-index [28], which we briefly
review. Prior to that, we define some necessary concepts and data structures:

Additional Definitions. The longest common prefix (LCP) of two strings S and T is the longest
string that is a prefix of both S and T . The length of the LCP of two strings S and T is given by the
function lcp(S, T ) returning an integer ℓ such that T [1..ℓ] = S[1..ℓ] and either (a) T [ℓ+ 1] ̸= S[ℓ+ 1] or
(b) ℓ = min(|T |, |S|) holds.
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Support Data Structures. Given a string T ∈ Σ∗, a character c ∈ Σ, and an integer j, the rank
query T.rankc(j) counts the occurrences of c in T [1..j], and the select query T.selectc(j) gives the position
of the j-th c in T . We stipulate that rankc(0) = selectc(0) = 0. An occurrence of a substring S in T is
treated as a sub-interval of [1..|T |] such that S = T [bT (S)..eT (S)].

FM-Index. The FM-index uses BWT with the following auxiliary data structures:

• an array C with σ lg n bits, where C[c] is the number of occurrences of those characters in T that
are smaller than c (for each character c with 1 ≤ c ≤ σ), and

• a data structure that supports rank queries on BWT.

The FM-index allows to query the rank of T [i − 1..] when having the rank of T [i..] at hand, which is
called LF-mapping, and formally defined as LF[i] = C[BWT[i]] + BWT.rankBWT[i](i).

Given a pattern P whose characters are drawn from Σ, the occurrences of P in T are represented by
range(P ) storing an interval of SA such that SA[i] is a starting position of an occurrence of P for each
i ∈ range(P ). More formally, range(P ) denotes the range in BWT such that

T [SA[j]..SA[j] + |P | − 1] = P if and only if j ∈ range(P ). (1)

We obtain Ii = range(P [i..]) from Ii+1 = range(P [i+ 1..]) with a backward search step

bT (Ii) = C[P [i]] + BWT.rankP [i](bT (Ii+1)− 1) + 1 and eT (Ii) = C[P [i]] + BWT.rankP [i](eT (Ii+1)). (2)

Here, bT (Ii) and eT (Ii) denote the beginning and the end of Ii, i.e., Ii = [bT (Ii)..eT (Ii)]. We stipulate
that the range of the empty string is [1..n]. Starting with the range of the empty string range(P [|P |+1..])
and applying Eq. (2) iteratively, we can find all occurrences of the pattern P in T with |P | rank operations.

In particular, let pb be the position of the first occurrences of P [i] in BWT succeeding bT (Ii) and pe the
position of the first occurrences of P [i] in BWT preceding eT (Ii) (such that P [i] = BWT[pb] = BWT[pe]).
Then bT (Ii+1) = LF[pb] and eT (Ii+1) = LF[pe] if pb ≤ pe.

The LF-mapping with the extended BWT and the inversion of the extended BWT has already been
studied by Mantaci et al. [59, Section 3]. In particular, subsequent positions in the eBWT within the same
character run are mapped contiguously and in the same order by the backward search step. However, the
extended BWT reports the cyclic occurrences of the pattern appearing in each of the cyclic primitive
strings in the input multiset. When building an index on the BBWT for classic pattern matching on
the original string, reporting these cyclic occurrences is not desired. Accidentally finding these cyclic
occurrences happens when rewinding from the first position of a factor to its last position. In the rest of
the paper, let LF denote the LF mapping with the BBWT of T . Suppose that we matched an occurrence
of P [i+ 1..] starting at position j + 1 in T .

• If both text positions j and j+1 are contained in a Lyndon factor Fx for an integer x with 1 ≤ x ≤ t,
the LF mapping

LF[ISA◦[j + 1]] = C[P [i]] + BBWT.rankP [i](ISA◦[j + 1]) (3)
yields the occurrence of P [i..] starting at position j in T . Here ISA◦ denotes the inverse circular
suffix array of T , which is defined as the inverse of SA◦, i.e., ISA◦[SA◦[i]] = i for every i ∈ [1..n].

• Otherwise, j and j + 1 are contained in two different Lyndon factors. Let Fx be the Lyndon factor
with bT (Fx) = j + 1 (and hence the text position j is contained in Fx−1). Then the LF mapping
gives ISA◦[eT (Fx)], i.e., the starting position of the last conjugate of Fx (in SA-order, cf. the cycle
representing the Lyndon factor ab in Figure 11).

We call the second case rewinding, as LF counts down from the i-th conjugate to the (i− 1)-th conjugate,
but rewinds from the zeroth-conjugate (i.e., Fx itself) to the last conjugate. Whenever we expect that no
rewinding will happen, we can find a pattern with the backward search of the FM-index:

Lemma 4.1. Given a text T and a pattern P such that each occurrence of P in T is contained in a
Lyndon factor of T , we can compute these occurrences with the backward search of the FM-index on the
BBWT with 2|P | rank operations or |P | backward search steps.

Proof. Since all occurrences of P are contained in Lyndon factors of T , the backward search finds no
occurrence of P [i..] starting at the beginning bT (Fx) of a Lyndon factor Fx in T , for 2 ≤ i ≤ |P | and
1 ≤ x ≤ t.
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Figure 12: Setting of the proof of
Lemma 4.3.

4.1 Lyndon Patterns
We first focus on the special case that the pattern itself is a Lyndon word. Subsequently, we show
the general case (Sect. 4.2) by applying the Lyndon factorization to the pattern P and introduce an
enhancement to the backward search for obtaining range(P [i..]) from range(P [i+ 1..]) in the case that the
suffix P [i+ 1..] starts with a Lyndon factor of T . For all this we need a little helper lemma:

Lemma 4.2 ([27, Prop. 1.10]). The longest prefix of T that is a Lyndon word is the first Lyndon factor F1

of T . Given LynF(T ) = {F1, . . . , Ff}, LynF(T ) = {F1} ∪ LynF(F2 · · ·Ff ).

Lemma 4.3. Let T be a string with LynF(T ) = {F1, . . . , Ff}, and let P be a pattern. If P is a Lyndon
word, then there is no occurrence of P in T that crosses the border of two Lyndon factors, i.e., each
occurrence of P in T is contained in a Lyndon factor Fx (1 ≤ x ≤ t).

Proof. Assume to the contrary that P = UV , where U ∈ Σ+ is a suffix of Fx and V ∈ Σ+ is a prefix of
Fx+1 · · ·Ff for an integer x with 1 ≤ x < t. This setting is illustrated in Fig. 12.

Since Fx is the longest Lyndon prefix of Fx · · ·Ff (see Lemma 4.2), it is not possible that U = Fx

(otherwise we could extend Fx to UV to form a longer Lyndon word). We conclude that U is a proper
suffix of Fx. Since Fx is a Lyndon word, we have Fx ≺ U ′ for every proper suffix U ′ of Fx (including U).
This implies that FxV ≺ U ′V , and in particular FxV ≺ UV . Since the pattern P is a Lyndon word, we
have V ′ ≻ P = UV ≻ FxV for every suffix V ′ of V (including V itself).

Putting everything together, we have that FxV is lexicographically smaller than its proper suffixes,
and FxV thus is a Lyndon word. However, this again contradicts the setting that Fx is the longest
Lyndon prefix of Fx · · ·Ff .

Combining this result with Lemma 4.1 yields:

Corollary 4.4. Given a pattern P that is a Lyndon word, we can find all its occurrences with |P | rank
operations of the FM-index built on BBWT.

4.2 General Case
To find arbitrary patterns, we need to understand what happens during the rewinding. For that we show
that they have to happen at consecutive Lyndon factors with the following lemma.

Lemma 4.5. If a pattern P is a prefix of Fx and Ff , then P is a prefix of Fy for each integer y with
x ≤ y ≤ f .

Proof. Suppose that we matched P [i..] in T with the backward search. Further, suppose that an occurrence
of P [i..] starts at position bT (Fy) in T . Then we claim that Fy belongs to a consecutive set of Lyndon
factors Fx, . . . , Ff with x ≤ y ≤ f such that there is an occurrence of P [i..] starting at position bT (Fy′)
in T for each Lyndon factor Fy′ with x ≤ y′ ≤ f . Figure 13 visualizes this setting. Assume that our claim
is not true. Then there is an index y′ with x ≤ y′ ≤ f for which there is no occurrence of P [i..] starting
at position bT (Fy′) in T . This contradicts Fx ⪰ Fy′ ⪰ Ff .

F1 · · · Fx · · · Fy · · · Fz · · · Ft

P [i..] P [i..] P [i..] P [i..] P [i..] P [i..]

Figure 13: Suffix P [i..] of pattern P matches the beginnings of some Lyndon factors of T . These Lyndon
factors Fx, . . . , Ff are all consecutive.
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Suppose that we matched P [i..] and that there are occurrences of P [i..] starting with Lyndon factors of
T . These Lyndon factors are consecutive according to Lemma 4.5. Let these Lyndon factors be Fx, . . . , Ff .
Moreover, P [i..] starts with a Lyndon factor of P according to Lemma 4.3, i.e., P [i..] = lfsP (w) for an
integer w with 1 ≤ w ≤ p. A further backward search step causes a rewinding for all occurrences of P [i..]
starting at bT (Fx), . . . , bT (Ff ), where the following cases can occur:

• If T [eT (Ff )] = P [i − 1], but T [bT (Ff+1)..] does not have lfsP (w) as a prefix, then the backward
search carries on a false occurrence.

• If T [bT (Fx)− 1] = P [i− 1], we would expect that the backward search reports that an occurrence
of P [i− 1..] starts at T [bT (Fx)− 1] (we assume that T [eT (Fx)] = P [i− 1]). However, this is not
the case because of the rewinding, either reporting the text position eT (Fx) or dismissing this
occurrence if T [eT (Fx)] ̸= P [i − 1]. In either case, we say that there is a missed occurrence of
P [i− 1..] starting at bT (Fx)− 1.

• If T [eT (Fy)] = P [i − 1] but T [eT (Fy+1)] ̸= P [i − 1] for an integer y with x ≤ y ≤ f − 1, then
the rewinding discards the occurrence of P [i..] starting at T [bT (Fy+1)] although T [bT (Fy+1) −
1] = T [eT (Fy)] = P [i − 1]. This looks like that the occurrence of P [i..] starting at T [bT (Fy+1)]
becomes a missed occurrence. However, since T [bT (Fy)] and T [bT (Fy+1)] are the starting positions
of occurrences of P [i..], the occurrence of P [i..] starting at T [bT (Fy)] takes over the job from
the occurrence starting at T [bT (Fy+1)] after the rewinding, i.e., we obtain the starting position
T [eT (Fy)] = T [bT (Fy+1)− 1] of the occurrence of P [i− 1..] after rewinding it.

• Similarly, the setting T [eT (Fy)] ̸= P [i − 1] but T [eT (Fy+1)] = P [i − 1] for an integer y with
x ≤ y ≤ f − 1 seems to cause a false occurrence after rewinding the occurrence of P [i..] starting at
bT (Fy), but actually this occurrence takes over the job from the occurrence starting at T [bT (Fy+1)].

• In all other cases, for x + 1 ≤ y ≤ f , T [eT (Fy−1)]lfsP (w) = T [eT (Fy)]lfsP (w), i.e., the rewound
positions are beginning positions of occurrences of P [i− 1..], where the occurrence of P [i..] starting
at bT (Fy−1) takes the job from the occurrence starting at bT (Fy) after the rewinding.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

a c a b a b d a b a b c a b a b b a b

a b a b a b a b a b a b

P2 P3 P2 P3P2 P3 P2 P3

F1 F2 F3 F4 F5

rewind rewind rewind

T =

Figure 14: Backward search of a pattern P with LynF(P ) = {P1, P2 = ab, P3 = ab} in our running
example T = acababdababcababbab after |P2P3| steps. The sub-pattern P2P3 has occurrences starting
at the starting positions of the Lyndon factors F2, F3, and F4 of the text. The effects of the rewinding
depend on P1. If P1 ends with c, then we derive a missed occurrence from lfsP (2) and F2. If P1 ends
with b, then we derive a false occurrence from lfsP (2) and F4.

In what follows, we study ways to limit the number of false and missed occurrences. We say that a
false (resp. missed) occurrence of P is derived from Pw and Ff (resp. Fx) if it emerges on the rewinding
at T [bT (Ff )] (resp. T [bT (Fx)]). See Fig. 14 for an example. According to Lemma 4.3 there are at most
p rewindings, and hence at most p false and missed occurrences. (We lower this upper bound in the
subsequent section). The false occurrences can be easily maintained in a separate list, in which each
element corresponds to a false occurrence (more precisely, applying SA to such an element yields its
corresponding starting position in the text). Each element of the list is subject to the backward search
(Eq. (3)) like the range itself (Eq. (2)). Whenever a backward search step of an element of the list yields
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not an occurrence (e.g., we obtain the element ISA◦[j] by a backward search step from P [i+ 1..] to P [i..],
but find out that T [j] ̸= P [i]), then the false occurrence will also vanish from the range such that we no
longer need to manage that element. Similarly, we keep track of the missed occurrences. For that, we take
advantage of the fact that the entries of BBWT corresponding to Lyndon factors are lexicographically
sorted (see the dark yellow marked entries in Fig. 11). To move from the beginning of a Lyndon factor
to the end of its preceding Lyndon factor, it suffices to locate the previously larger Lyndon factor and
apply a backward search step on it (to intentionally cause a rewinding). For that, we add a bit vector BL
marking the entries in BBWT corresponding to a Lyndon factor (and not to one of its conjugates) with
‘1’. Then BL.select1(t− x+ 1) corresponds to Fx and the position ISA◦[bT (Fx)− 1] = ISA◦[eT (Fx−1)] is
found by applying a backward search step to BL.select1(t− x). Again, we keep the missed occurrences in
a list whose elements are (each individually) subject to the backward search. Finally, when we want to
report all occurrences of the complete pattern, we take the computed range range(P ), add all elements of
the list of missed occurrences, and remove all elements of the list of the false occurrences. By doing so,
we can restore the property of Eq. (1). With the lists for the missed and false occurrences and the bit
vector BL, we can state the following theorem generalizing the backward search for arbitrary patterns.

Example 4.6. In what follows, we present a step-by-step example for pattern matching. For the purpose
of explanation, let F andM denote the set of false occurrences and missed occurrences, respectively. We
denote with b(I) and e(I) the starting and ending positions of an interval I, i.e., I = [b(I)..e(I)].

We reuse our running example T = acababdababcababbab already appeared in Figs. 11 and 14 for
the BBWT construction and the matching of b · ab · ab, respectively. Let us recall that the Lyndon
factorization of T is given by T = F1 ·F2 ·F3 ·F4 ·F5, where F1 = ac, F2 = ababd, F3 = ababc, F4 = ababb
and F5 = ab. For our example, C and BBWT.rankX(i) with X ∈ Σ, i ∈ [1..n] evaluates as follows, where
SA◦ is given in Fig. 11, and the inverse SA−1

◦ of SA◦ is obtained by SA−1
◦ [SA◦[i]] = i.

X C[X]

a 0
b 8
c 16
d 18

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
T [j] a c a b a b d a b a b c a b a b b a b
SA−1

◦ [j] 8 18 4 13 7 16 19 3 12 6 15 17 2 11 5 14 10 1 9
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
SA◦[i] 18 13 8 3 15 10 5 1 19 17 14 9 4 16 11 6 12 2 7
BBWT[i] b b c d b b b c a b a a a a a a b a b

BBWT.rankX(i)
HHHHX

i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

a 0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 7 7 8 8
b 1 2 2 2 3 4 5 5 5 6 6 6 6 6 6 6 7 7 8
c 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
d 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We now consider matching two different types of patterns.

Example (a). Consider the pattern P = acab.
P has a single occurrence in T starting at the position 1 represented by SA◦[8] = 1. Its Lyndon
factorization is given as P = P1 · P2, where P1 = ac and P2 = ab. We search for the occurrences of P by
iteratively processing all suffixes of P and consecutively applying Eq. (2).

Ii Suffix b(Ii) e(Ii) M Remarks
I5 ε 1 19
I4 b 9 16
I3 ab 1 7

I2 cab 17 17 {18}
- occurrences of cab in T cross Lyndon factor boundaries
- have missed occurrence of cab between F1F2 with T [SA◦[18]] = T [2] = c
- (the ending position of F1 in SA◦ is stored at index 18)

I1 acab 8 7 {8} - resulting interval is empty
- perform the backward search for each missed occurrence in M

Comments. For I3, we matched P [3..] with the beginning of Fx for all x ∈ [2..5] (we have also other
matches inside factors, which are, however, not of importance here). A backward search step can cause a
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missed occurrence at the end of F1 and a false occurrence at the end of F5. We check that as follows: For
the backward search for P [2] = c leading us to I2, we observe that we have one missed occurrence at F1

because F1’s last character is c. However, we have no false occurrence at F5 because F5’s last character
is not c. The BBWT position 17 is not a false occurrence because it maps to the last position of F3

(SA◦[17] = 12), and we previously matched P [3..] with a prefix of F4.
Result. Our algorithm reports the empty interval and the set of missed occurrences M = {8}. We
conclude that there exists exactly one occurrence of the pattern (i.e., the missed occurrences) starting at
SA◦[8] = 1 in the text.
Variation. If the pattern is cab, then we can stop after the computation of the interval I2 with
b(I2) = 17 and e(I2) = 17 and the set of missed occurrences M = {18}. Hence, there are two oc-
currences of the pattern cab starting at SA◦[17] = 12 and SA◦[18] = 2. The former occurrence is not
a false occurrence since F3 is not the last Lyndon factor in the range when we matched the pattern suffix ab.

Example (b). Consider the pattern P = babab, a specialization of Fig. 14.
Its Lyndon factorization is given as P = P1 · P2 · P3, where P1 = b, P2 = ab and P3 = ab. P has no
occurrence in T , and thus we expect that searching leads to an empty interval in SA◦(T ). As we will see,
this is not the case — rather the subtraction of the false occurrences from the returned interval gives an
empty interval. To start with, we search for the occurrences of P by iteratively processing all suffixes of
P and consecutively applying Eq. (2).

Ii Suffix b(Ii) e(Ii) F Remarks
I6 ε 1 19
I5 b 9 16
I4 ab 1 7

I3 bab 9 13 {9}
- occurrences of bab in T cross the boundaries between factors P1 and P2

of P and the factors F2, F3, F4 and F5 of T
- derive a false occurrence from P2 and F5

I2 abab 1 4 {1} - perform the backward search for each false occurrence in F

I1 babab 9 10 {9, 10}
- perform the backward search for each false occurrence in F
- derive another false occurrence by rewinding F4 because T [e(F4)] = b
but F5 does not start with babab

Comments. The range I4 is the same as I3 in the previous example (a). We check missed/false
occurrences as follows: For the backward search for P [3] = b leading us to I3, we observe that we have
no missed occurrence at F1 because F1’s last character not b. However, we have a false occurrence at F5

because F5’s last character is b. The BBWT position 10 is not a false occurrence because it maps to the
last position of F4 (SA◦[10] = 17), and we previously matched P [4..] with a prefix of F5.
Result. Our algorithm reports the interval [9..10] and the set of false occurrences F = {9, 10}. To obtain
the final result we return for the query, we need to merge both information, i.e., we need to subtract F
from the reported interval. Thus, we obtain an empty set of matches, which we return as our result. This
coincides with the backward search on the classic BWT, where the final interval is empty for this pattern.
Variation. For an alternative and final example, let us consider searching the pattern suffix abab. Then
we can stop the search after computing the interval I2 with b(I2) = 1 and e(I2) = 4. The set of false
occurrences F = {1}. Thus, the three occurrences of abab in T are starting at SA◦[2] = 13,SA◦[3] = 8,
and SA◦[4] = 3.

Theorem 4.7. Given a text T and a pattern P , we can compute all occurrences of P in T with the
FM-index built on BBWT with O(|P |p) rank operations, where p is the number of Lyndon factors of P .

In the following, we improve the O(|P |p) bound on the number of rank operations. There is a problem
with matching a pattern whose Lyndon factorization consists of the same Lyndon factor that is equal
to some Lyndon factors of the text. An example for such a case is given by T = P = an. Here, P has
n Lyndon factors, and therefore our current upper bound on the number of rank operations stated in
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Thm. 4.7 is only O(n2). Multiple occurrences of the same Lyndon factors (a) in the text as well as (b) in
the pattern make the matching difficult. However, as we will see, we can cope with both individually.

First, we start with (a) the text; (b) is treated in Sect. 4.3. Our solution is to build the bijective BWT
on all distinct Lyndon factors of T (along with their conjugates), remembering the number of occurrences
of a Lyndon factor, such that the Lyndon factorization T = F1 · · ·Ff becomes T = T τ1

1 · · ·T τt
t , where

T1, · · ·Tt are distinct Lyndon words with Tx ≺ Tx+1 for 1 ≤ x ≤ t− 1 ≤ f − 1, and for every 1 ≤ x ≤ t
it holds that (a) τj ≥ 1 and (b) there is an integer y with y ≥ x such that Tx = Fy. Remembering the
definition in Sect. 3.2.1, the set {T τ1

1 , . . . , T τt
t } is called the composed Lyndon factorization of T . Given

Tx = Fy, we stipulate that bT (Tx) is the starting position of the leftmost Lyndon factor Fy−τx+1 with
Fy−τx+1 = Tx. For instance, the composed Lyndon factorization of T = bbabababa is T = T 2

1 T 3
2 T3 with

T1 = b, T2 = ab, and T3 = a. The starting position bT (T2) is 3.
Now suppose that the Lyndon factor Pw occurs kw times in LynF(P ), and suppose that Pw is the

rightmost occurrence of them, i.e., Pw−kw
̸= Pw−kw+1 = . . . = Pw−1 = Pw ̸= Pw+1. Whenever we

match lfsP (w) with the beginning of the rightmost Lyndon factor Fy equal to Tx with |Tx| ≤ |lfsP (w)|
occurring τx times in T , we can directly match P kw−1

w lfsP (w) if τx ≥ kw, skipping the backward search for
P [bP (Pw−kw+1)..bP (Pw)] such that we directly match P [bP (Pw−kw+1)..] for one occurrence O starting
at T [bT (Tx)]. For that, we assumed that Tx = Pw−j for every integer j with 0 ≤ j ≤ kw − 1. This is true
due to the following lemma:

Lemma 4.8. Given an occurrence of Pw that starts at position bT (Fx) in T , lfsP (w) is not a proper
prefix of Fx if and only if Pw = Fx.

Proof. Assume that lfsP (w) is not a proper prefix of Fx. By switching the roles of P and T in Lemma 4.3,
we obtain the result that Fx cannot cross the border between Pw and Pw+1. Since |lfsP (w)| ≥ |Fx|, it
holds that Pw = Fx (otherwise we could extend Fx to a longer Lyndon factor).

The further matching of the occurrence O is conducted separately to the backward search with the
range of occurrences range(P [bP (Pw)..]). If τx < kw, then we cannot extend the currently matched
occurrence, and thus can ignore to follow this occurrence. We call this technique of skipping consecutive
Lyndon factors a composed jump.

The composed jump allows us to proceed as follows: We only count missed occurrences O that were
not derived from a missed occurrence (i.e., an occurrence belonging to the range and not part of the list of
missed occurrences), which we call in the following freshly missed occurrences. We do not count a missed
occurrence O′ that is derived from a missed occurrence O. Instead, we only update the position of O
to O′ in the list of missed occurrences. This is justified as we cannot create a freshly missed occurrence
during a later backward search step:

missed occurrence

Pw lfsP (w + 1)
Tx−1 Tx Tx+1

Pw lfsP (w + 1)
Pw′ · · · Pw−1 Pw lfsP (w + 1)

deriving again a missed occurrence

Figure 15: Setting of the proof of Lemma 4.9 where a false occurrence from lfsP (w′) and Tx is derived
after a false occurrence was derived from lfsP (w) and Tx with w′ < w. However, this is not possible since
then Tx−1 = Tx.

Lemma 4.9. Let an occurrence of lfsP (w) start at position bT (Tx) in T and let |Tx| < |lfsP (w)|. If there
is a missed occurrence derived from lfsP (w) and Tx, there is no w′ < w such that lfsP (w′) and Tx derive
a freshly missed occurrence.

Proof. By Lemma 4.8, Pw = Tx. Assume that there is a freshly missed occurrence derived from lfsP (w′)
and Tx for the largest such w′ with w′ < w. Then Pw′ · · ·Pw−1 = Pw and lfsP (w′) = PwlfsP (w) =
PwPwlfsP (w + 1). Hence, Pw = Tx is a suffix of Tx−1 (cf. Fig. 15). Since Tx−1 is a Lyndon word with
Tx ⪰ Tx−1, Tx−1 = Tx = Pw = Pw−1 must hold. However, this contradicts the distinctness of Tx in the
composed Lyndon factorization.
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4.3 Improving the Number of Ranks
In this section, we study the case of multiple occurrences of the same Lyndon factor in the pattern to
improve the bound to O(|P |p′) rank operations, where p′ is the number of different Lyndon factors of P .
For that we show two lemmas:

Tx−1 Tx Tx+1

Pw Pw+1 Pw−1

lfsP (w)

Tx−1 Tx Tx+1

Pw Pw+1

lfsP (w)

Figure 16: Setting of the proof of Lemma 4.10 that seems to derive a false occurrence. A necessary
condition to derive a false occurrence from lfsP (w) and Tx is that Tx is the last Lyndon factor having
lfsP (w) as a prefix (left). Since Tx must be border-free, Tx = Pw holds (right).

Lemma 4.10. If Pw−1 = Pw = Pw+1, then a false occurrence derived from lfsP (w) disappears after
matching |Pw| characters.

Proof. Assume that there is a false occurrence derived from lfsP (w) and Tx. Then (a) an occurrence of
lfsP (w) starts at position bT (Tx) in T and (b) Pw−1 is a suffix of Tx. See also Fig. 16. Since a Lyndon
word is border-free, Tx = Pw. However, we derived a false occurrence from lfsP (w) and Tx such that
Tx+1 cannot start with Pw+1. This is a contradiction, since we found an occurrence of lfsP (w) starting at
position bT (Tx) in T , Tx = Pw, and therefore Tx+1 must start with Pw+1.

Tx−1 Tx Tx+1

Pw−1 Pw Pw−1

lfsP (w)

Figure 17: Setting of the proof of
Lemma 4.11 that seems to derive a missed
occurrence.

Lemma 4.11. Given an occurrence of Pw starts at position bT (Tx) in T , a missed occurrence derived
from lfsP (w) and Tx disappears after matching |Pw| characters if |lfsP (w)| ≤ |Tx| and Pw−1 = Pw.

Proof. Suppose that there is a missed occurrence derived from lfsP (w) and Tx. We have the following
setting, which is sketched in Fig. 17:

• Tx is the leftmost Lyndon factor of the composed Lyndon factorization of T that starts with lfsP (w),
and

• Pw−1 is a suffix of Tx−1.

Then Pw ⪯ lfsP (w) ⪯ Tx (Pw is a prefix of lfsP (w) and lfsP (w) is a prefix of Tx)

≺ Tx−1 (Definition of the composed Lyndon factorization)
⪯ Pw−1, (Tx−1 is a Lyndon word and Pw−1 one of its suffixes)

contradicting the assumption Pw−1 = Pw.

A conclusion is that all longest consecutive appearances of the same Lyndon factors Pw = . . . = Pw+j

for integers 1 ≤ w ≤ p and j ≥ 0 can cause at most one newly missed and one false occurrence in total
(which we need to keep track of). In other words, we know that we only have to care about p′ freshly
missed and false occurrences. Thus, we can improve the number of rank operations to O(|P |p′).

4.4 Longest Pre-Lyndon Word
To obtain O(|P | lg |P |) rank operations, we need the notion of the longest pre-Lyndon suffix λP , which is
the smallest integer such that lfsP (w+1) is a prefix of Pw for every λP ≤ w ≤ p. In our running example
(cf. Fig. 11), λT = 4 since F5 is a prefix of F4, but F4 is not a prefix of F3.

Lemma 4.12. The string lfsP (w) is a pre-Lyndon word for every λP ≤ w ≤ p.
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lfsP (w)c|X|+1 = Pw lfsP (w + 1) c|X|+1

lfsP (w + 1) X

Figure 18: Setting of the proofs of Lemmas 4.12 and 4.16, where lfsP (w + 1)c|X|+1 is a Lyndon word
because lfsP (w + 1) is a prefix of Pw and c|X|+1 ≻ X.

Proof. Since lfsP (w+ 1) is a prefix of Pw, there is a suffix X of Pw with Pw = lfsP (w+ 1)X (cf. Fig. 18).
Given a c ∈ Σ with c|X|+1 ≻ X, lfsP (w)c|X|+1 = lfsP (w + 1)XlfsP (w + 1)c|X|+1 is a Lyndon word.

We borrow the following facts from literature:

Lemma 4.13 ([44, Lemma 11]). Pw is not a proper prefix of lfsP (w + 1) for every integer w with
1 ≤ w ≤ λP − 1.

P [j..]X = lfsP (w) X
Pw lfsP (w + 1)

Y b Y a

ℓ ℓ

Figure 19: Setting of the proofs of Cor. 4.14
and Lemma 4.17, where a and b are char-
acters with a ≺ b, and Y = Pw[1..ℓ] =
lfsP (w + 1)[1..ℓ]. There is no such string
X that P [j..]X is a Lyndon word.

Corollary 4.14. lfsP (λP ) is the longest pre-Lyndon suffix of P .

Proof. Assume that there is a longer pre-Lyndon suffix P [j..]. This suffix has to start with a Lyndon factor
Pw for an integer w with 1 ≤ w ≤ p, otherwise lfsP (w) ≺ P [j..] with w such that bT (Pw) < j ≤ eT (Pw)
(since every proper suffix of Pw is lexicographically larger than Pw), and therefore lfsP (w) would be a
longer pre-Lyndon suffix.

According to Lemma 4.13, there is an ℓ := lcp(Pw, lfsP (w+1)) with ℓ < min(|Pw|, |lfsP (w+1)|). Then
Pw[ℓ+ 1] > lfsP (w + 1)[ℓ+ 1] and therefore conj|Pw|(lfsP (w)X) = lfsP (w + 1)XPw ≺ PwlfsP (w + 1)X =
lfsP (w)X, regardless of the choice of the string X (cf. Fig. 19).

Lemma 4.15 ([44, Lemma 12]). p′ − λP = O(lg |P |) where p′ is the number of distinct Lyndon factors
of P .

The next lemmas show the usefulness of λP :

Lemma 4.16. Given an integer w with 1 ≤ w ≤ λP − 1, lfsP (w + 1) is not a prefix of Pw.

Proof. Assume to the contrary that lfsP (w + 1) is a prefix of Pw, and Pw = lfsP (w + 1)X for a string
X ∈ Σ+. Given a character c ∈ Σ with c|X|+1 ≻ X, lfsP (w)c|X|+1 = lfsP (w + 1)XlfsP (w + 1)c|X|+1 is a
Lyndon word, contradicting the fact that lfsP (λP ) is the longest pre-Lyndon word of P (cf. Cor. 4.14 and
Fig. 18).

Lemma 4.17. Given an occurrence of lfsP (w) with w < λP that starts at position bT (Tx) in T for an
integer x with 1 ≤ x ≤ t, we have Tx = Pw.

Proof. Since lfsP (λP ) is the longest pre-Lyndon suffix of P (see Cor. 4.14), lfsP (w) is not a pre-Lyndon
suffix of P . According to Lemma 4.16, lfsP (w + 1) is not a prefix of Pw. Let ℓ := lcp(Pw, lfsP (w + 1)) <
min(|Pw|, |lfsP (w + 1)|). Then Pw[ℓ+ 1] > lfsP (w + 1)[ℓ+ 1] according to the Lyndon factorization of P ,
and therefore Pw is the longest Lyndon word of T having an occurrence that starts at position bT (Tx) in T ,
i.e., Tx = Pw. That is because a longer Lyndon factor Tx would contain PwlfsP (w + 1)[1..ℓ+ 1], which is
lexicographically larger than conj|Pw|(PwlfsP (w + 1)[1..ℓ+ 1]) = lfsP (w + 1)[1..ℓ+ 1]Pw (cf. Fig. 19).

The above lemmas allow us to derive the following consequence:

Corollary 4.18. There is no freshly missed occurrence derived from lfsP (w) for every integer w with
w < λP . If one of those lfsP (w) derives a false occurrence, then this false occurrence disappears until the
range range(P ) is matched.
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Proof. Suppose there is an occurrence of lfsP (w) starting at position bT (Tx) in T , for a composed Lyndon
factor Tx with 1 ≤ x ≤ t. According to Lemma 4.17, Pw = Tx. Since w < λP ≤ p, we have that
|Tx| = |Pw| < |lfsP (w)|. Then with Lemma 4.9 we obtain that lfsP (w) and Tx cannot derive a freshly
missed occurrence. By Lemma 4.13, Pw−1 is not a proper prefix of lfsw(P ), such that after matching
lcp(Pw−1, lfsw(P )) characters, a possibly derived false occurrence will disappear, and thus does not need
to be tracked.

With Lemma 4.15 we obtain:

Theorem 4.19. Given a text T and a pattern P , we can compute all occurrences of P in T with the
FM-index built on the bijective BWT of the composed Lyndon factors of T with O(|P | lg |P |) rank
operations.

Finally, we explain how to detect whether an occurrence of a suffix of the pattern starts at the
beginning of a Lyndon factor of the text. For that, after each backward search step, we use the bit
vector BL introduced in Sect. 4.2 marking now the entries corresponding to the composed Lyndon
factors in BBWT. If range(P [i..]) = [b..e] and BL.rank1(e) − BL.rank1(b − 1) is positive, then there is
an occurrence of P [i..] starting at position bT (Tx) in T (after applying a composed jump) for every x
with t−BL.rank1(e) + 1 ≤ x ≤ t−BL.rank1(b− 1). In this case, P [i..] = lfsP (w) for an integer w with
1 ≤ w ≤ p due to Lemma 4.3.

The bit vector BL can be stored in space linear to the number of runs of the BBWT. That is because
[18, Corollary 2] have shown that the number of distinct primitive input strings to the eBWT is at most
the number of runs in the eBWT, which directly translates to the fact that the number of distinct Lyndon
factors is at most the number of runs in the BBWT. Hence, our bit vector BL of length n contains at most r
bits, and therefore a compressed representation [67, 69] using H0(BL)n bits can be represented in O(r lg n)
bits if r = o(n) since then H0(BL) = r/n lg(n/r) + (n− r)/n · lg(n/(n− r)) = r/n · (lg(n/r) +O(1)).

Similarly, we can store the multiplicities τ1, . . . , τt′ of the distinct Lyndon factors in an integer array
of length at most r.

4.5 Time and Space Complexities for Indexing
Having the backward search technique of Thm. 4.19, we can augment the bijective BWT with rank/select
support data structures to gain the ability for pattern matching.

Theorem 4.20. Given a text T of length n whose characters are drawn from an alphabet of size σ, we
can build a text index on the bijective BWT of T in O(n) time. The index uses rBBWT(H0(BBWTR) +
1 + H0(BL)) + o(rBBWT(H0(BBWTR) + 1)) + O(σ lg n) bits, where BBWTR is the bijective BWT of
R = T1 · · ·Tt and rBBWT := |BBWTR|. The text index can count all occurrences of a pattern P in
O(|P | lg |P | lg σ) time. For that, the index returns a range and a list of positions in SA corresponding to
starting positions of suffixes having P as a prefix.

Proof. After building the BBWT in linear time with Thm. 3.6, we index the BBWT with a data structure
that supports rank and select queries in O(lg σ) time necessary for the backward search. For that, we
use the Huffman-shaped wavelet tree of Grossi et al. [41], which can be constructed in O(rBBWT) time.
Further, we compute the bit vector BL and compress it to rBBWTH0(BL)+o(rBBWT) bits of space with the
RRR bit vector representation [69], which supports rank and select operations in constant time. Finally,
the array C is stored in a plain form using σ lg n bits.

If we are allowed to spend more time for the construction, then there exist different data structures
that can use less space and answer rank/select queries quicker [9].

To actually locate the matched positions in the text, we can use the r-index of Gagie et al. [32] who
apply run-length compression on the traditional BWT and store a suffix array entry for each run in the
BWT, thus achieving O(r lg n) bits additional cost for this suffix array sampling, where r is the number
of runs in the BWT. It is straight-forward to adapt this technique for the bijective BWT: For that, we
keep BL, but run-length compress BBWT. The time bounds remain the same if σ = O(lgO(1) n) [57].

Following the steps of Boucher et al. [18] who provide an adaptation of the r-index to the eBWT that
uses space linear in the number of runs of the eBWT, we can so do similar for obtaining an indexing data
structure whose space is linear to the number of runs of the BBWT. Given that r is the number of runs
in the BBWT, the main ingredients for an r-index are
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1. a data structure supporting backward search steps on the run-length compressed BBWT,

2. the samples of the circular suffix array at the run borders of the BBWT, and

3. a predecessor data structure on these samples for supporting the Φ array, defined by

Φ[i] = SA◦[ISA◦[i]− 1] for ISA◦[i] > 1 and Φ[i] = SA◦[n] otherwise, where ISA◦ denotes the inverse of SA◦.
By using Thm. 4.20 for 1, and the predecessor data structure of Belazzougui and Navarro [9] for

representing 1 as well as 3, we obtain

Theorem 4.21. Given a text T of length n whose characters are drawn from an alphabet of size σ, we
can build a text index on BBWTR using O(r) words, where r is the number of character of the BBWT of
R = T1 · · ·Tt, denoted by BBWTR. Given a pattern P , the text index can count all occurrences of P in
O(|P | lg |P | lg logw(σ+n/r)) time, and locate all occP occurrences of P with additionalO(occP lg logw n/r)
time.

It seems possible to improve the time bounds by a novel data structure of Nishimoto and Tabei [63]
to O(|P | lg |P | lg logw σ) for counting and O(|P | lg |P | lg logw σ + occP ) for locating.

4.6 Inversion
Finally, we show how to convert the BBWT back to the original text having the BBWT represented by
a wavelet tree [41]. For that we follow the steps of Mantaci et al. [59][Proposition 15] for the eBWT.
Having just the BBWT, Köppl et al. [49] presented an in-place conversion algorithm taking O(n2) time.
We can perform the inversion faster in time linear to the output length, multiplied by the query time of
the wavelet tree. The idea is to process the positions marked by BL from left to right. For each such
marked position i, we apply recursively the backward search on this position and note down the visited
characters in reverse order, until revisiting BBWT[i]. Subsequently, we move to the next position marked
by BL. By doing so, we retrieve Tt for the first marked position in BL, then Tt−1 for the second, and so
on. Having the multiplicities τ1, . . . , τt at hand, we can output T in reverse order T [n] · T [n− 1] · · ·T [1]
in a streaming fashion.

If we do not have BL, we create a bit vector BV for marking already visited characters in the BBWT,
and start at an arbitrary position BBWT[i] with the backward search as above. This time we stop when
revisiting a position already marked in BV. We subsequently continue with any position that has not yet
been marked by BV. By doing so, we obtain t primitive strings. However, there is a one-to-one correlation
with the distinct Lyndon factors of T in that the Lyndon conjugate of each such primitive string is
one of the distinct Lyndon factors. What is left to do is to find these Lyndon conjugates, sort them in
descending order, multiply them by their multiplicities, and concatenate them to obtain T . To this end,
in linear-time with constant working space, we can find the Lyndon conjugate of each returned string [72].
Finally, we use a string sorting algorithm that sorts these obtain Lyndon conjugates descendingly in
lexicographic order, in time linear to the number of characters, which is n.

5 Experimental results
Moving from theory to practice, we here study the construction in Sect. 3 from a practical point of view.
We omit results for the index (Sect. 4) since, as we will later observe in the evaluation (cf. Table 6), nearly
all datasets we evaluated have very few Lyndon factors. That means that the number of false and missed
occurrences, if there are any, is quite low for random patterns. In particular, the pattern has to be of a
peculiar shape to obtain a value p′ − λP within ω(1) (cf. Lemma 4.15). Additionally, the difference on
the number of runs between the BWT and the BBWT is marginal, at least for the datasets we evaluated
(cf. Table 6), except for Fib41 and rs.13, where the number of runs of the BBWT is considerably larger.
We thus expect that the final sizes of indexing data structures leveraging character runs in the BWT
keep roughly the same when switching to the BBWT. Therefore, we postpone any practical study of the
proposed index data structure.
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5.1 Implementation
We have implemented our BBWT construction algorithm in C++. The implementation is publicly
available at GitHub9. We parameterized (a) the input and the output data type as well as (b) the type
used to represent numbers with C++ templates. The former (a) allows us to process data based not only
on ASCII characters but also utf-32 and other alphabet formats with fixed bit widths. The latter (b) has
a major impact on the memory consumption.

Our BBWT construction relies on the circular suffix array computation. Therefore, we need to be able
to correctly represent all indices of SA◦ and store them all in memory. Depending on the input data size
one can decide whether to use 16, 32 or 64-bit data types to address input lengths up to 216, 232, and 264

characters, respectively. Thanks to that, the amount of the memory consumed by the representation of
SA◦ can be significantly reduced if the maximal considered input length is known at compile time.

5.2 Evaluation
We compared the running time and memory consumption with the three alternative BBWT implementa-
tions, namely OpenBWT 2.0.0 by Yuta Mori10 lFGSACA by Jannik Olbrich11 and mk_bwts by Neal
Burns12. The results are presented in Table 4, where we named our solution BBWT.

For the experiments we used a machine with two Intel(R) Xeon(R) Platinum 8260 CPU 2.40GHz
processors and 1TB RAM running Debian Linux 12.0 bookworm (kernel 5.18.5-1). All programs were
compiled using gcc compiler version 11.3.0 with the flag -Ofast and the flags originally used by the
authors.

We ran all implementations on the datasets of the Pizza&Chili Corpus13. Each program ran five times
for each dataset; we here report the average running time among those. The running time and the total
memory usage have been measured using the GNU Time tool14.

Since some implementations are based on 32-bit signed integer types, we limited the input text length
up to 231 characters, rather than to engage in any deeper source code modifications to avoid the possible
degrading of the original performance.

From Table 4, we can observe that our implementation is not as performant as existing software
with respect the running time. This is because we consider our code as a reference implementation for
BBWT construction with focus on clarity and readability of the source code. In that sense, we believe
that some effort put into algorithm engineering will improve both the algorithm running time and its
memory consumption. Comparing with the other solutions, the best memory bounds can be achieved with
OpenBWT. Among the selected datasets for evaluation, we observed that lFGSACA is the fastest solution
for most of the datasets; on the downside, its memory consumption is the largest. While mk_bwts is the
second fastest solution in most cases, it is the slowest on the 41-st Fibonacci word Fib41. This algorithm
leverages the fact that entries in the suffix array and the circular suffix array are mostly the same or have
small distances. Since it moves mismatching entries in a bubble-sort fashion, quadratic running time
in the worst-case seems possible. However, it is an open question whether we can find such an input
sequence, on which this algorithm exhibits a quadratic running time.

To evaluate the performance of our implementation in more detail we measured the running time
(using C++ std::chrono library) separately for three phases of the BBWT construction algorithm:

• Phase1 – Lyndon factorization of the input data,

• Phase2 – computation of SA◦,

• Phase3 – retrieval of BBWT from SA◦.

Moreover, we counted the number of recursive calls for the SA◦ computation and the maximal number of
distinct characters needed to encode LMS-substrings for each of those recursive calls. The results are
presented in Table 5. Notable is that the Lyndon factorization thanks to Duval’s algorithm takes only a

9https://github.com/mmpiatkowski/bbwt
10https://encode.su/attachment.php?attachmentid=1405
11https://gitlab.com/qwerzuiop/lfgsaca
12https://github.com/NealB/Bijective-BWT
13http://pizzachili.dcc.uchile.cl/
14https://www.gnu.org/software/time/
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Table 4: Time and memory consumption for different BBWT construction implementations. n is the text
length, T the running time (seconds), M the amount of memory consumed (kilobytes).

Pizza & Chili Corpus

BBWT lFGSACA OpenBWT mk_bwts

file n T M T M T M T M

dblp.xml 296 135 874 54.91 2 256 040 26.38 5 496 876 49.65 1 742 196 30.59 2 604 052
dna 403 927 746 90.52 3 103 732 38.95 7 905 588 89.17 2 373 844 61.21 3 551 440
english.1G 1 073 741 824 280.95 8 490 844 110.00 19 924 996 305.59 6 300 692 163.32 9 438 488
pitches 55 832 855 6.88 451 096 4.90 1 038 028 6.21 334 248 4.22 492 004
proteins 1 184 051 855 328.38 9 440 584 125.48 21 972 132 356.44 6 953 004 194.87 10 408 088
sources 210 866 607 36.82 1 627 748 20.21 3 915 088 33.23 1 244 716 20.01 1 854 776

Pizza & Chili Repetitive Corpus

BBWT lFGSACA OpenBWT mk_bwts

file n T M T M T M T M

Escherichia_Coli 112 689 515 19.83 829 012 10.45 2 093 388 18.11 665 336 13.37 991 748
cere 461 286 644 92.73 3 255 312 42.37 8 997 800 92.75 2 713 972 60.00 4 055 812
coreutils 205 281 778 35.52 1 503 224 18.76 3 811 436 30.94 1 205 956 20.87 1 805 568
dblp.xml.00001.1 104 857 600 15.80 768 344 11.66 1 948 044 14.24 619 344 11.26 922 780
dblp.xml.00001.2 104 857 600 15.94 768 352 11.62 1 948 040 15.61 627 564 10.93 922 892
dblp.xml.0001.1 104 857 600 15.73 768 960 11.69 1 948 040 14.48 621 392 11.04 923 004
dblp.xml.0001.2 104 857 600 15.98 769 144 11.66 1 948 040 15.30 623 424 10.95 922 860
dna.001.1 104 857 600 17.27 752 696 12.46 2 052 784 16.12 621 464 12.48 923 040
einstein.de.txt 92 758 441 15.32 680 392 8.15 1 723 316 14.44 550 744 8.44 816 796
einstein.en.txt 467 626 544 102.51 3 427 596 43.16 8 678 512 106.08 2 755 432 49.44 4 111 292
english.001.2 104 857 600 18.43 782 608 12.87 1 948 044 17.18 621 388 11.37 922 900
fib41 267 914 296 39.12 2 149 612 18.42 5 373 296 39.51 1 578 968 102.69 2 356 144
influenza 154 808 555 27.46 1 119 068 13.33 2 874 912 23.88 914 100 16.89 1 361 976
kernel 257 961 616 47.59 1 867 988 24.15 4 788 584 43.38 1 520 708 28.70 2 268 832
para 429 265 758 88.79 3 062 384 40.18 8 386 328 86.85 2 524 388 103.75 3 774 380
proteins.001.1 104 857 600 19.92 785 232 12.77 1 947 652 17.39 625 468 12.45 922 908
rs.13 216 747 218 30.94 1 697 988 15.57 4 447 540 30.08 1 278 944 54.51 1 906 484
sources.001.2 104 857 600 16.83 771 752 12.26 1 947 656 14.96 623 388 9.84 922 940
tm29 268 435 456 41.74 2 045 692 26.70 5 423 596 41.81 1 588 216 61.88 2 360 840
world_leaders 46 968 181 4.56 305 764 3.63 880 880 4.10 278 420 2.40 414 112
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Table 5: Detailed evaluation of the BBWT construction algorithm. n is the text length, σ is the input
alphabet size, Phase1, Phase2 and Phase3 are the running times (seconds) of the subsequent phases
of SA◦ algorithm construction, Rec is the number of recursion levels in SA◦ construction, maxσ is the
maximal size of the alphabet used for encoding distinct LMS substrings in SA◦ construction.

Pizza & Chili Corpus

file n σ Phase1 Phase2 Phase3 Rec maxσ

dblp.xml 296 135 874 97 0.31 49.61 5.10 7 3 763 047
dna 403 927 746 16 0.35 81.54 7.54 14 13 120 265
english 2 210 395 553 239 0.92 258.45 22.37 13 29 617 376
pitches 55 832 855 133 0.50 6.51 0.31 9 2 736 240
proteins 1 184 051 855 27 1.46 305.36 24.17 12 46 516 571
sources 210 866 607 230 0.21 34.94 2.88 11 5 201 041

Pizza & Chili Repetitive Corpus

file n σ Phase1 Phase2 Phase3 Rec maxσ

Escherichia_Coli 112 689 515 15 0.30 17.63 1.64 12 1 162 864
cere 461 286 644 5 1.37 82.14 8.41 12 909 922
coreutils 205 281 778 236 0.18 31.89 2.95 13 590 967
dblp.xml.00001.1 104 857 600 89 0.11 14.20 1.35 12 23 903
dblp.xml.00001.2 104 857 600 89 0.11 14.29 1.36 12 23 903
dblp.xml.0001.1 104 857 600 89 0.11 14.15 1.37 11 33 051
dblp.xml.0001.2 104 857 600 89 0.11 14.27 1.34 11 33 195
dna.001.1 104 857 600 5 0.28 15.64 1.35 9 176 533
einstein.de.txt 92 758 441 117 0.83 13.36 1.24 12 14 207
einstein.en.txt 467 626 544 139 0.41 92.61 8.90 12 37 814
english.001.2 104 857 600 106 0.91 16.74 1.37 9 180 085
fib41 267 914 296 2 0.31 33.82 4.67 20 2
influenza 154 808 555 15 0.42 24.94 2.39 9 308 990
kernel 257 961 616 160 0.27 42.94 3.96 13 387 045
para 429 265 758 5 1.29 79.22 7.98 11 1 238 537
proteins.001.1 104 857 600 21 0.14 17.12 1.36 9 186 458
rs.13 216 747 218 2 0.26 26.15 3.59 14 5
sources.001.2 104 857 600 98 0.11 15.24 1.26 9 167 767
tm29 268 435 456 2 0.37 36.38 4.63 17 5
world_leaders 46 968 181 89 0.42 4.52 0.38 10 71 259

tiny fraction of the total computation time. From that we expect that our algorithm, adapted to the
eBWT computation, also practically competes with other algorithms that directly compute the eBWT
from a multiset of primitive strings. That is because our precomputation step of Phase1 has marginally
impact on the running time, and the modification to find the Lyndon conjugate of each input string
(instead of computing the Lyndon factorization) is lightweight.

6 Conclusion
In the first part of this article, we proposed an algorithm computing the bijective Burrows–Wheeler
transform (BBWT) in linear time. Consequently, we can also compute the extended Burrows–Wheeler
transform (eBWT) within the same time bounds by a linear-time reduction of the problem to compute
the eBWT to computing the BBWT.

Our trick was to first reduce our input text T to a text R by removing all duplicate Lyndon factors.
Second, we slightly modified the suffix array – induced sorting (SAIS) algorithm to compute the ≺ω-order
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of the conjugates of all Lyndon factors of R instead of the ≺lex-order of all suffixes of R. For that, we
introduced the notion of inf-suffixes and inf-substrings, and adapted the typing system of L, S, and S∗

types from SAIS. By some properties of the Lyndon factors, we could show that there are only some
border cases, where a text position receives a different type in our modification. Thanks to that, we could
directly translate the induced-sorting techniques of SAIS, and obtain the correctness of our result.

In the second part, we studied the problem of indexing the BBWT. While this is easier for the
extended BWT, we additionally had to take care of omitting circular occurrences and tracking occurrences
that cross the boundary of Lyndon factors. Thanks to the properties of the Lyndon factorization, we
could bound the number of these occurrences by O(lg |P |). Our index is therefore by a multiplicative
factor of O(lg |P |) slower than the FM-index on the traditional BWT.

7 Open Problems
The BBWT is bijective in the sense that it transforms a string of Σn into another string of Σn while
preserving distinctness. Consequently, given a string of length n, there is an integer k ≥ 1 with
BBWTk(T ) = BBWTk−1(BBWT(T )) = T . With our presented algorithm we can compute the smallest
such number k in O(nk) time. However, we wonder whether we can compute this number faster, possible
by scanning only the text in O(n) time independent of k.

7.1 BBWT Based on Different Factorizations
We also wonder whether we can define the BBWT for the generalized Lyndon factorization [26]. Contrary
to the Lyndon factorization, the generalized Lyndon factorization uses a different order, called the
generalized lexicographic order ≺gen. In this order, two strings S, T ∈ Σ∗ are compared character-wise
like in the lexicographic order. However, the generalized lexicographic order ≺gen can use different
orders <1, <2, . . . for each text position, i.e., S ≺gen T if and only if S is a proper prefix of T or there is
an integer ℓ with 1 ≤ ℓ ≤ min(|S|, |T |) such that S[1..ℓ− 1] = T [1..ℓ− 1] and S[ℓ] <ℓ T [ℓ].

Other factorization that maybe capable for defining a bijective BWT similar structure are the Galois
factorization [26, 70], inverse Lyndon factorization [12], and the Nyldon factorization [22]. The Galois
and Nyldon factorization define a unique bijection from a string to a multiset of primitive, cyclic words,
and therefore can be used to define a BBWT variant with the observation made in our introduction.
Unfortunately, inverse Lyndon words are not necessarily primitive, and hence the inverse Lyndon
factorization may produce non-primitive words, which need to be considered with additional caution.

It would be interesting to prove or disprove whether the computed set of factors of any former
mentioned factorization can form a type of BBWT that can be inverted, used for pattern matching, or
can be used for text compression.

7.2 Compressibility
Table 6 shows the run lengths of the BBWT in juxtaposition with the BWT for the files from Calgary
Corpus15, Canterbury Corpus16, Pizza&Chili Corpus17, and Silesia Corpus18. Here, we counted the
number of runs in BWT without the terminal symbol (dollar sign). We observe that for these datasets,
the number of runs of both transforms are roughly equal, and we expect that to hold for other kinds of
datasets as long as the Lyndon factors are few in numbers.

Although the number of runs in the BBWT or BWT are always smaller than the input text length for
the files in Table 6, Mantaci et al. [61, Theorem 8] could construct, for a given rational number γ ∈ (0, 2],
a binary Lyndon word for which the ratio between the number of character runs in the BWT and the
number of character runs in the original text is γ, and have shown that this ratio is tight (i.e., the number
of runs can at most double after a BWT application). This result directly translates to the BBWT, since
the BBWT and the BWT are identical when the input text is a Lyndon word. Related is question about
the ratio between the number of runs in the BBWT and the BBWT applied on the reverse input text.

15http://www.data-compression.info/Corpora/CalgaryCorpus/
16http://www.data-compression.info/Corpora/CanterburyCorpus/
17http://pizzachili.dcc.uchile.cl/
18http://www.data-compression.info/Corpora/SilesiaCorpus/index.html
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Giuliani et al. [39] modified the Fibonacci words with an additionally appended character to show that
there exists a family of binary strings for which this ratio for the BWT is Θ(lg n). A similar approach
leads to the same ratio for the BBWT [11].

Finally, a theoretical analysis between the runs of the classic BWT and the bijective BWT would be
more than welcomed. From Table 6, we can empirically observe that the number of Lyndon words tend
to be few in real-world datasets. Even when changing the alphabet order, the Lyndon words tend to be
few in numbers [3] such that we are not confident to expect large changes between the number of runs in
the BWT and BBWT on practical datasets.

Regarding compressibility with respect to the empirical entropy, Ferragina et al. [30] have shown that
the BWT of an input string T can be compressed up to the k-th order empirical entropy of T for any
k > 0. A similar result for the BBWT is still unknown.
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Table 6: Number of runs of the BBWT compared to the BWT for various data sets. n is the text
length, σ the alphabet size, f the number of Lyndon factors, t the number of distinct Lyndon factors.
The last two columns rBBWT and rBWT show the number of character runs in the BBWT and BWT,
respectively.

Calgary Corpus

file n σ f t rBBWT rBWT n/rBBWT n/rBWT

bib 111 261 81 6 6 36 971 36 964 3.009 3.010
book1 768 771 82 12 12 386 264 386 263 1.990 1.990
book2 610 856 96 27 27 239 378 239 367 2.552 2.552
geo 102 400 256 20 8 65 781 65 778 1.557 1.557
news 377 109 98 24 24 158 607 158 592 2.378 2.378
obj1 21 504 256 991 6 10 616 10 616 2.026 2.026
obj2 246 814 256 10 10 78 814 78 814 3.132 3.132
paper1 53 161 95 9 9 22 146 22 140 2.400 2.401
paper2 82 199 91 16 16 36 689 36 687 2.240 2.241
paper3 46 526 84 14 14 22 569 22 566 2.062 2.062
paper4 13 286 80 6 6 6904 6903 1.924 1.925
paper5 11 954 91 6 6 5938 5935 2.013 2.014
paper6 38 105 93 15 15 16 048 16 046 2.374 2.375
pic 513 216 159 36 319 4 64 691 64 690 7.933 7.933
progc 39 611 92 12 12 15 709 15 707 2.522 2.522
progl 71 646 87 77 7 19 446 19 442 3.684 3.685
progp 49 379 89 12 12 12 825 12 823 3.850 3.851
trans 93 695 99 228 13 19 456 19 453 4.816 4.816

Canterbury Corpus

file n σ f t rBBWT rBWT n/rBBWT n/rBWT

alice29.txt 152 089 74 3 3 66 903 66 902 2.273 2.273
asyoulik.txt 125 179 68 2 2 62 366 62 364 2.007 2.007
cp.html 24 603 86 8 8 9201 9198 2.674 2.675
fields.c 11 150 90 13 13 3417 3409 3.263 3.271
grammar.lsp 3721 76 8 6 1340 1344 2.777 2.769
kennedy.xls 1 029 744 256 9 9 234 842 234 838 4.385 4.385
lcet10.txt 426 754 84 6 6 165 712 165 709 2.575 2.575
plrabn12.txt 481 861 81 6 6 243 558 243 557 1.978 1.978
ptt5 513 216 159 36 319 4 64 691 64 690 7.933 7.933
sum 38 240 255 13 10 13 262 13 262 2.883 2.883
xargs.1 4227 74 9 9 2009 2008 2.104 2.105

Silesia Corpus

file n σ f t rBBWT rBWT n/rBBWT n/rBWT

dickens 10 192 446 100 17 17 4 374 629 4 374 598 2.330 2.330
mozilla 51 220 480 256 8322 16 19 498 071 19 498 064 2.627 2.627
mr 9 970 564 256 179 23 3 444 892 3 444 884 2.894 2.894
nci 33 553 445 62 6 6 2 195 819 2 195 816 15.281 15.281
ooffice 6 152 192 256 15 201 8 3 215 176 3 215 179 1.913 1.913
osdb 10 085 684 256 15 15 3 224 389 3 224 386 3.128 3.128
reymont 6 627 202 256 26 26 1 935 978 1 935 966 3.423 3.423
samba 21 606 400 256 10 304 17 5 220 562 5 220 551 4.139 4.139
sao 7 251 944 256 6 6 5 524 741 5 524 740 1.313 1.313
x-ray 8 474 240 256 7 7 4 796 213 4 796 213 1.767 1.767
xml 5 345 280 104 5955 8 581 963 581 955 9.185 9.185
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Pizza & Chili Repetitive Corpus

file n σ f t rBBWT rBWT n/rBBWT n/rBWT

fib41 267 914 296 2 21 21 41 2 6 534 495.024 89 304 765.333
rs.13 216 747 218 2 27 27 123 75 1 762 172.504 2 889 962.907
tm29 268 435 456 2 41 41 81 81 3 314 017.975 3 314 017.975
dblp.xml.00001.1 104 857 600 89 7 7 172 500 172 487 607.870 607.916
dblp.xml.00001.2 104 857 600 89 23 23 175 626 175 616 597.051 597.085
dblp.xml.0001.1 104 857 600 89 9 9 240 550 240 533 435.908 435.939
dblp.xml.0001.2 104 857 600 89 21 21 270 213 270 203 388.055 388.070
dna.001.1 104 857 600 5 18 18 1 716 857 1 716 806 61.075 61.077
english.001.2 104 857 600 106 29 29 1 449 562 1 449 517 72.337 72.340
proteins.001.1 104 857 600 21 19 19 1 278 237 1 278 199 82.033 82.035
sources.001.2 104 857 600 98 50 50 1 213 519 1 213 426 86.408 86.414
Escherichia_Coli 112 689 515 15 13 13 15 044 536 15 044 485 7.490 7.490
cere 461 286 644 5 21 21 11 574 705 11 574 639 39.853 39.853
coreutils 205 281 778 236 17 17 4 684 513 4 684 458 43.821 43.822
einstein.de.txt 92 758 441 117 21 21 101 391 101 369 914.859 915.057
einstein.en.txt 467 626 544 139 59 59 290 279 290 237 1610.955 1611.189
influenza 154 808 555 15 10 10 3 022 821 3 022 820 51.213 51.213
kernel 257 961 616 160 32 32 2 791 456 2 791 366 92.411 92.414
para 429 265 758 5 1238 22 15 636 838 15 636 738 27.452 27.452
world_leaders 46 968 181 89 13 12 573 506 573 485 81.897 81.900

Pizza & Chili Corpus

file n σ f t rBBWT rBWT n/rBBWT n/rBWT

dblp.xml 296 135 874 97 15 15 41 037 558 41 037 553 7.216 7.216
dna 403 927 746 16 18 18 243 492 872 243 492 866 1.659 1.659
english 2 210 395 553 239 18 18 658 301 004 658 301 008 3.358 3.358
pitches 55 832 855 133 39 39 23 430 040 23 429 976 2.383 2.383
proteins 1 184 051 855 27 30 30 441 858 493 441 858 468 2.680 2.680
sources 210 866 607 230 31 31 47 896 880 47 896 806 4.403 4.403

7.3 Alphabet Reordering
Recently, Gibney and Thankachan [37] showed that finding an order of the alphabet such that the number
of Lyndon factors of a given string is minimized or maximized is NP-complete. This is an important
but negative result for finding an advantage of the BBWT over the BWT, since the hope is to find a
way to increase the number of Lyndon factors and therefore the chances of having multiple equal factors
that are contracted to a single composed factor in our proposed BBWT index. However, it is left open,
whether we can find an efficient algorithm that approximates the alphabet order maximizing the number
of Lyndon factors.

Interestingly, the context adaptive transformation minimizing the number of runs in the BWT based
on local orderings-based transformations, can be found in time linear in the input text length [36, Theorem
23].

Another direction would be to find a string family for which we SA◦ and SA differ, for instance, with
a relatively high Hamming distance.

7.4 SA◦ in constant space
Finally, we pose as an open problem whether we can construct SA◦ in-place. The problem boils down
to finding an in-place Lyndon factorization algorithm that can compute the Lyndon factors online from
the text end to its beginning, because that is the same direction in which we can determine all L and S
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inf-suffixes as well as the in linear time. A linear-time algorithm for the computation in this direction is
presented in [4]; however this algorithm needs O(n) words of working space.
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