Space-efficient Huffman codes revisited

Szymon Grabowski, Dominik Köppl

Abstract

A canonical Huffman code is an optimal prefix-free compression code whose codewords enumerated in the lexicographical order form a list of binary words in non-decreasing lengths. Gagie et al. (2015) gave a representation of this coding capable of encoding and decoding a symbol in constant worst-case time. It uses \(\sigma \log \ell_{\text{max}} + o(\sigma) + O(\ell_{\text{max}}) \) bits of space, where \(\sigma \) and \(\ell_{\text{max}} \) are the alphabet size and maximum codeword length, respectively. We refine their representation to reduce the space complexity to \(\sigma \log \ell_{\text{max}}(1 + o(1)) \) bits while preserving the constant encode and decode times. Our algorithmic idea can be applied to any canonical code.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Huffman coding [16,25], whose compressed output closely approaches the zeroth-order empirical entropy, is nowadays perceived as a standard textbook encoder, being the most prevalent option when it comes to statistical compression. Unlike arithmetic coding [31], its produced code is instantaneous, meaning that a character can be decoded as soon as the last bit of its codeword is read from a compressed input stream. Thanks to this property, instantaneous codes tend to be swiftly decodable. While most research efforts focus on the achievable decompression speeds, not much has been considered for actually representing the dictionary of codewords, which is usually done with a binary code tree, called the Huffman tree.

Given that the characters of our text are drawn from an alphabet \(\Sigma \) of size \(\sigma \), the Huffman tree is a full binary tree, where each leaf represents a character of \(\Sigma \). The tree stored in a plain pointer-based representation takes \(O(\log \sigma) \) bits of space. Here we assume that \(\sigma \leq n \) and \(\Sigma = \{1, 2, \ldots, \sigma\} \), where \(n \) is the number of characters of our text. A naive encoding algorithm for a character \(c \) traverses the Huffman tree top-down to the leaf representing \(c \) while writing the bits stored as labels on the traversed edges to the output. Similarly, a decoding algorithm traverses the tree top-down based on the read bits until reaching a leaf. Hence, the decoding and encoding need \(O(\ell_{\text{max}}) \) time, where \(\ell_{\text{max}} \) is the height of the tree.

If \(\sigma \) is constant, then this representation is optimal with respect to space and time (since \(\ell_{\text{max}} \) becomes constant). Therefore, the problem we study becomes interesting if \(\sigma = o(1) \), which is the setting of this article. If space is not of concern, we can create a lookup table, storing for each possible bit string \(B \) of length \(\ell_{\text{max}} \) the character associated with the codeword that is a prefix of \(B \). The table takes \(O(2^{\ell_{\text{max}}}) \) bits of space and allows decoding a symbol in constant time. If the table additionally stores the length of the codeword associated with the returned character, we know how many bits we can drop from the encoded input.

The alphabet size \(\sigma \) is often much smaller than \(n \). Yet in some cases the Huffman tree space becomes non-negligible: For instance, let us consider that \(\Sigma \) represents...
a set of distinct words of a language. Then its size can even exceed a million\footnote{Two such examples are the Polish Scrabble dictionary with over 3.0M words (https://mj.pl/slownik/growy/) and the Korean dictionary Woori Mal Saem with over 1.1M words (https://opendict.korean.go.kr/service/dicStat).} for covering an entire natural language. In another case, we maintain a collection of texts compressed with the same Huffman codewords under the setting that a single text needs to be shipped together with the codeword dictionary, for instance across a network infrastructure. A particular variation is canonical Huffman codes \cite{30}, where leaves of the same depth in the Huffman tree are lexicographically ordered with respect to the characters they represent. An advantage of canonical Huffman codes is that several techniques (see \cite{23,26} and the references therein) can compute the lengths of a codeword from the compressed stream by reading bit chunks instead of single bits, thus making it possible to decode a character faster than an approach linear in the bit-length of its codeword. Moffat and Turpin \cite{26}, Algorithm TABLE-LOOKUP were probably the first to notice that it is enough to (essentially) perform binary search over a collection of the lexicographically smallest codewords for each possible length, to decode the current symbol. The same idea is presented perhaps more lucidly in \cite[Section 2.6.3]{27}, with an explicit claim that this representation requires \(\sigma \lg \sigma + O(\lg^2 n) \) bits\footnote{By \(\lg \) we mean the logarithm to base two \((\log_2) \) throughout the paper. Occasional logarithms to another base \(b \) are denoted with \(\log_b \).} and achieves \(O(\lg \lg n) \) time per codeword. Given \(\ell_{\text{max}} \) is the maximum length of a codewords, an improvement, both in space and time, has been achieved by Gagie et al. \cite{13}, who gave a representation of the canonical Huffman tree within

\begin{itemize}
 \item \(\sigma \lg \ell_{\text{max}} + o(\sigma) + O(\ell_{\text{max}}^2) \) bits of space with \(w \in \Omega(\ell_{\text{max}}) \) \cite[Theorem 1]{13}, or
 \item \(\sigma \lg \lg(n/\sigma) + O(\sigma) + O(\ell_{\text{max}}^2) \) bits of space with \(w \in \Omega(\lg n) \) \cite[Corollary 1]{13}.
\end{itemize}

while supporting character encoding and decoding in \(O(1) \) time, where \(w \) is the machine word size. Their approach consists of a wavelet tree, a predecessor data structure \(P \), and an array \(\text{First} \) storing the lexicographically smallest codeword for each depth of the Huffman tree. The last two data structures are responsible for the last term of \(O(\ell_{\text{max}}^2) \) bits in each of the space complexities above.

\textbf{Our contribution} Our contribution is a joint representation of the predecessor data structure \(P \) with the array \(\text{First} \) to improve their required space of \(O(\ell_{\text{max}}^2) \) bits down to \(o(\ell_{\text{max}} \lg \sigma + \sigma) \) bits, and this space is in \(o(\sigma \lg \ell_{\text{max}}) \) bits since \(\ell_{\text{max}} \leq \sigma - 1 \). In other words, we obtain the following theorem.

\textbf{Theorem 1.1.} There is a data structure using \(\sigma \lg \ell_{\text{max}}(1 + o(1)) \) bits of space, which can encode a character to a canonical Huffman codeword or restore a character from a binary input stream of codewords, both in constant time per character.

We remark that when the alphabet consists of natural language words, like in the examples shown in the beginning, we often initially map words to IDs in an arbitrary manner. For our use case, it would be convenient to assign the IDs based on their frequencies. By doing so, the needed space of canonical Huffman representation is greatly reduced as the alphabet permutation can be considered as already given. In such a case, we only consider the extra space needed for the Huffman coding, where our improvement in space from \(O(\ell_{\text{max}}^2) \) down to \(o(\ell_{\text{max}} \lg \sigma) \) is more pronounced (in detail, we can omit the wavelet tree of Gagie et al.’s achieved space complexities).

This article is organized as follows. After presenting related work in the next paragraphs, we review some preliminaries (Section 2), in particular the work of Gagie et al. \cite{13} in Section 2.2. Subsequently (Section 3), we start with a small theoretical improvement of a practical solution based on a predecessor search in a list of codewords, before proposing our solution in Section 4 leading to Theorem 1.1.

\textbf{Related work} A lot of research effort has been spent on the practicality of decoding Huffman-encoded texts (e.g., \cite{15,1,26,14,24}) where often a lookup table is employed for figuring out the lengths of the currently read codeword. For instance, Nekrich \cite{28} added a lookup table for byte chunks of a codeword to figure out the length of a codeword by reading it byte-wise instead of bit-wise. Regarding different representations of the Huffman tree, Chowdhury et al. \cite{7} came up with a solution using \(3\sigma/2 \) words of space, which can decode a codeword in \(O(\log \sigma) \) time.

Our theoretical results are built on the foundation laid out by Gagie et al. \cite{13}, which is heavily cited in this work, and is discussed in detail in Section 2.2. An approach with related techniques to that of Gagie et al. is due to Fariña et al. \cite{10} (see also an extended version \cite{11}), who showed how to represent a particular optimal prefix-free code used for compressing wavelet matrices \cite{8} in \(O(\sigma \lg \ell_{\text{max}} + 2\ell_{\text{max}}^2) \) bits, allowing \(O(1/\varepsilon) \)-time encoding and decoding, for a selectable constant \(\varepsilon > 0 \). Like Gagie et al. \cite{13}, they also use a wavelet tree of \(O(\sigma \lg \ell_{\text{max}}) \) bits to map each character to the length of its respective codeword. The tree topology is represented by counting level-wise the number of nodes and leaves, resulting in \(O(\ell_{\text{max}} \lg \sigma) \subseteq O(\sigma \lg \ell_{\text{max}}) \) bits. With these two ingredients, this structure is already operational with \(O(\ell_{\text{max}}) \) time per encoding or decoding operation. To obtain the aforementioned time bounds, they sample certain depths of the code tree with lookup tables to speed up top-down traversals.

Another line of research is on so-called skeleton trees \cite{19–21}. The idea is to replace disjoint perfect subtree\footnote{A binary tree is perfect if every internal node has exactly two children and all the leaves are at the same depth.} in the canonical Huffman tree with leaf nodes. A leaf node representing a pruned perfect subtree only needs to store the height of this tree and the characters represented by its leaves to be able to reconstruct it. Note that all leaves

\[\text{TABLE-LOOKUP} \]
in a perfect binary tree are on the same level, and hence
due to the restriction on the order of the leaves of the
canonical Huffman tree, we can restore the pruned sub-
tree by knowing its height and the set of characters. Thus,
a skeleton tree may use less space. Decompression can be
accelerated whenever we hit a leaf λ during a top-down
traversal, where we know that the next h bits from the
input are equal to the suffix of the currently parsed code-
word if the leaf λ is the representative of a perfect subtree
of height h. Unfortunately, the gain depends on the shape
of the Huffman tree, and all that is known about the skele-
ton tree size is that it has $O(lg^2 n)$ nodes for a Huffman
tree of height $O(lg n)$ [20], or, more generally, at most
$2h lg n$ for the Huffman tree height of h [21, comment fol-
lowing Lemma 2].

Related to our problem of keeping the space for main-
taining codewords up to the length ℓ_{max} small is the prob-
lem of computing the smallest code under the restriction
that ℓ_{max} is user-given [22].

2. Preliminaries

Our computational model is the standard word RAM
with machine word size $w = \Omega(lg n)$ bits, where n de-
notes the length of a given input string $T[1..n]$ (called
the text) whose characters are drawn from an integer al-
phabet $\Sigma = \{1, 2, \ldots, \sigma\}$ with size σ being bounded
by $\sigma \leq n$ and $\sigma = o(w^2).$ We call the elements of Σ characters.
Given a string $S \in \Sigma^*$, we define the queries $S.rank_c(i)$ and $S.select_c(j)$ returning the number of c's in $S[1..i]$ and
the position of the j-th c in S, respectively. There are data
structures that replace S and use $|S|lg \sigma + o(|S|)$ bits, and
can answer each query in $O(1 + log_w \sigma)$ time [3, Theo-
rem 4.1]. We further stipulate that $S.select_c(0) := 0$ for
any $c \in \Sigma$. In what follows, we assume that we have at
least $\Theta(w)$ bits of working space available for storing a
constant number of pointers, and omit this space in the
space analysis of this article.

2.1. Code tree

A binary tree is full if each node has either none or two
children. In this article, a code tree is defined to be a full
binary tree\footnote{We assume $\sigma \geq 2$. Note that there exist codes whose code trees are
not full, which are, however, not in scope of this paper.} whose leaves represent the characters of Σ. A
left or a right child of a node v is connected to v via an
edge with label 0 or 1, respectively. We say that the string
label of a node v is the concatenation of edge labels on
the path from the root to v. Then the string label of a leaf λ is
the codeword of the character represented by λ. The length
of the string label of a node is equal to its depth in the
tree. Let C denote the set of the string labels of all leaves.
The bit strings of C are called codewords. A crucial proper-
ity of a code tree is that C is prefix-free, meaning that no
codeword in C is prefix of another. A consequence is that,
when reading from a binary stream of concatenated code-
words, we only have to match the longest prefix of this stream
with C to decode the next codeword. Hence, prefix-
free codes are instantaneous, where an instantaneous code,
as described in the introduction, is a code with the prop-
erty that a character can be decoded as soon as the last
bit of its codeword is read from the compressed input. In-
stantaneous codes are also prefix-free. That is because, if
a code is not prefix-free, then there can be two different
codewords C_1 and C_2 with C_2 being a prefix of C_1 such
that when reading C_2 we need to read the next $|C_1| - |C_2|$ bits to judge whether the read bits represent C_1 or C_2.

A code tree is called canonical [30] if its induced code-
words read from left to right are lexicographically strictly
increasing,\footnote{This is obviously the case if we sort the children of all internal nodes
to form a trie.} while their lengths are non-decreasing. Con-
sequently, a codeword of a leaf λ is lexicographically smaller
than the codeword of any leaf deeper than λ. We further
assume that all leaves on the same depth are sorted ac-
cording to the order of their respective characters.

Let ℓ_{max} denote the maximum length of the codewords
in C. In the following we fix an instance of a code tree
for which $\ell_{max} \leq \min(\sigma - 1, log_n d)$ holds, where $\phi = (1 + \sqrt{5})/2 \approx 1.618$ is the golden ratio. It has been shown by
Buro [6, comment after Theorem 2.1] that the canonical
Huffman coding exhibits this property.

Our claims in Sections 3 and 4, expressed in terms of
the canonical Huffman codes and trees, are applicable
to arbitrary canonical codes (resp. trees) if they obey the
above bound on ℓ_{max}. Our focus on Huffman codes is mo-
tivated by the importance of this coding.

2.2. Former approach

We briefly review the approach of Gagie et al. [13],
which consists of three data structures:

1. a multi-ary wavelet tree storing, for each character, the
 length of its corresponding codeword,
2. an array $First$ storing the codeword of the leftmost leaf
 on each depth, and
3. a predecessor data structure P for finding the length
 of a codeword that is the prefix of a read bit string.

The first data structure represents an array $L[1..\sigma]$ with
$L[i]$ being the codeword length of the i-th character, i.e.,
L is a string of length σ whose characters are drawn from
the alphabet $\{1, 2, \ldots, \ell_{max}\}$. The wavelet tree built upon L
can access L, and answer $L.rank$ and $L.select$ in $O(1 +
log_w \ell_{max})$ time [3, Theorem 4.1]. While a plain represen-
tation costs $\sigma \lg \ell_{max} + o(\sigma)$ bits, Gagie et al. [13] showed
that they can use an empirical entropy-aware topology of
the wavelet tree to get the space down to $\sigma \lg \lg(n/\sigma)$
bits, still accessing L, and answering $rank$ and $select$ in
$O(1 + log_w \ell_{max})$ time by using the entropy-compressed
wavelet tree of Belazzougui and Navarro [3, Theorem 5.1].
Since $\ell_{max} \in O(log n)$, $O(log_w \ell_{max}) \subset O(1)$, and hence the
time complexity is constant.

The second data structure called $First$ is a plain array
of length ℓ_{max}. Each of its entries has ℓ_{max} bits, therefore
it takes $O(\ell_{max}^2)$ bits in total. It additionally stores ℓ_{max} in
O(\lg \ell_{\text{max}}) \) bits (for instance, in a prefix-free code such as Elias-γ [9]).

The last data structure \(P \) is represented by a fusion tree [12] storing for each depth the lexicographically smallest codeword padded to \(\ell_{\text{max}} \) bits at its right end, where we assume the least significant bit is stored. For instance, \(110 \) denotes the integer 6 in binary, and its padding with \(\ell_{\text{max}} = 7 \) is 1100000. A fusion tree storing \(m \) elements of a set \(S \), each represented in \(m \) bits, needs \(O(m^2) \) bits of space and can answer the query \(\text{pred}(X) \) returning the predecessor of \(X \) in \(S \), i.e., \(\max\{Y \in S : Y \leq X\} \) in \(O(\log_w m) \) time. For our application, the fusion tree \(P \) built on codewords computes \(\text{pred} \) in \(O(\log_w \ell_{\text{max}}) = O(1) \) time, and needs \(O(\ell_{\text{max}}^2) \) bits. Here, our query to \(P \) is a bit string having a codeword \(C \) as a prefix (since our codes-words are prefix-free, there can be at most one codeword that is a prefix of an arbitrary but fixed bit string). Instead of returning \(C \), it is sufficient for us to let \(P \) just return the length \(\ell \) of \(C \); we then can retrieve \(C \) with \(\text{First}[\ell] \). Unfortunately, it is not explicitly mentioned by Gagie et al. [13] how to obtain this length, i.e., the depth of the leaf corresponding to \(C \), in particular when some depths may have no leaves. We address this problem with the following subsection and explain after that how the actual computation is done (Section 2.2.2).

2.2.1. Missing leaves

To extract the depth from a predecessor query on \(P \), we replace each right-padded codeword \(C_i \) by the pair \((C_i, \ell_i)\) as the keys stored in \(P \), where \(\ell_i \) is the length of \(C_i \). Such a pair of codeword and length is represented by the concatenation of the binary representations of its two components such that we can interpret this pair as a bit string of length \(\ell_{\text{max}} + \lg \ell_{\text{max}} \). By slightly abusing the notation, we can now query \(\text{pred}(B, \ell) \) to obtain \((B, \ell)\), i.e., the argument for \(\text{pred}() \) is a pair rather than a single value and similarly the returned value is a pair, but physically the bit string \(B\ell \) is a predecessor of \(B\ell \). Then \(\text{pred}(X, 1^{\ell_{\text{max}}}) = (C_i, \ell_i) \) for a bit string \(X \in [0, 1]^\ell_{\text{max}} \) gives us not only the predecessor \(C_i \) of \(X \), but also \(\ell_i \). Storing such long bit strings poses no problem as the time complexity of \(\text{pred}(X) \) for bit string \(X \) does not change in a fusion tree when the length of \(X \) is, e.g., doubled. Appendix A outlines a different strategy augmenting the fusion tree with additional methods instead of storing the codeword lengths.

2.2.2. Encoding and decoding

Finally, we explain how the operational functionality is implemented, i.e., the steps to encode a character, and to decode a character from a binary stream. We can encode a character \(c \in \Sigma \) by first finding the depth of the leaf \(\lambda \) representing \(c \) with \(\ell = L[c] \), which is also the length of the codeword to compute. Given the string label of the leftmost leaf \(\lambda' \) on depth \(\ell \) is \(\text{First}[\ell] \), then all we have to do is increment the value of this codeword by the number of leaves between \(\lambda \) and \(\lambda' \) on the same depth. For that we compute \(L.\text{rank}_{c}(c) \) that gives us the number of leaves to the left of \(\lambda \) on the same depth \(\ell \). Hence, \(\text{First}[\ell] + L.\text{rank}_{c}(c) - 1 \) is the codeword of \(c \). For decoding a character, we assume to have a binary stream of concatenated codewords as an input. We first use the predecessor data structure to figure out the length of the first codeword in the stream. To this end, we peek the next \(\ell_{\text{max}} \) bits in the binary stream, i.e., we read \(\ell_{\text{max}} \) bits into a variable \(X \) from the stream without removing them. Given \((C', \ell) = \text{P.pred}((X, 1^{\ell_{\text{max}}}) \), we know that \(\text{First}[\ell] = C' \) and that the next codeword has length \(\ell \). Hence, we can read \(\ell \) bits from the stream into a bit string \(C \), which must be the codeword of the next character. The leaf having \(C \) as its string label is on depth \(\ell \), and has the rank \(r = C - \text{First}[\ell] + 1 \) among all other leaves on the same depth. This rank helps us to retrieve the character having the codeword \(C \), which we can find by \(L.\text{select}_{r}(r) \).

3. A warm-up

We start with a simple idea unrelated to the main contribution presented in the subsequent section. The point is that it might have a (mild) practical impact. Also, we admit this idea is not new. Farhia et al. [11, Section 2.4] attribute it to Moffat and Turpin [26], although, in our opinion, it is presented rather in disguise. Additionally, Karpinski and Nekrich [17, Section 7] presented similar ideas for decoding Shannon codes. However, we hope that the analysis given below is original and of some value.

Navarro, in Section 2.6.3 of his textbook [27], describes a simple solution (based on an earlier work of Moffat and Turpin [26]) which gives \(O(\lg \|\text{lg}\|n) \) worst-case time for symbol decoding. With the modification presented below, this worst-case time remains, but the average time bound becomes \(O(\lg \|\text{lg}\|\sigma) \). It also means we can decode the whole text in \(O(n \|\text{lg}\|\sigma) \) rather than \(O(n \|\text{lg}\|\lg n) \) time.

The referenced solution is based on a binary search over \(\text{First} \) represented by a list (with constant time random access) storing the lexicographically smallest codeword for each possible length; this list is ordered ascendingly by the codeword length. We replace the binary search with the exponential search [5], which finds the predecessor of an item \(\text{key} \) in \(\text{First} \) in \(O(\|\text{lg}\|\text{pos}_1(\text{key})) \) time, where \(\text{pos}_1(\text{key}) \) is the position of \(\text{key} \) in \(\text{First} \). Exponential search is not faster than binary search in general, but may help if \(\text{key} \) occurs close to the beginning of \(\text{First} \).

The changed search strategy has an advantage whenever short codewords occur much more often than longer ones. Fortunately, we have such a distribution, which is expressed formally in the following lemma:

Lemma 3.1. The number of occurrences of all characters in the text whose associated Huffman codewords have lengths exceeding \(2\log_\sigma \sigma \) is \(O(n/\sigma) \).

Proof. For each character \(c \in \Sigma \), let \(f_c \) denote the number of occurrences of \(c \) in the text and \(d_c \) denote the depth of its associated leaf in the Huffman tree, which is also the length of its associated codeword. Here we are interested in those characters \(c \) for which \(d_c > 2\log_\sigma \sigma = \log_\sigma(\sigma^2) \). Since \(d_c = O(\log_\sigma(n/f_c)) \) [18, Thm. 1] and \(\log_\sigma g \) is a strictly increasing function, we have \(n/f_c = \Omega(\sigma^2) \), or, equivalently, \(f_c = O(n/\sigma^2) \). The number of characters we deal with is upper-bounded by \(\sigma \); therefore the total number of their occurrences is \(O(n/\sigma) \), which ends the proof. \(\square \)
For the $O(n/\sigma)$ characters specified in Lemma 3.1 the exponential search works in $O(\min(\lg \sigma, \lg |n|))$ time. However, for the remaining $\Theta(n)$ characters of the text the exponential search works in only $O(\lg(2\log_\sigma n))$ time. Overall, the average time is $O(\lg \sigma)$, which is also the total average character decoding time, as finding the lexicographically smallest codeword with the appropriate length is, in general, more costly than all other required operations, which work in constant time.

In practice, one would rather resort to a linear scan over First, as the Huffman codewords are rather short. This is in particular interesting if we consider modern computer architectures, leveraging bit-parallelism.

4. Multiple fusion trees

In what follows, we present our space efficient representation of P and First for achieving the result claimed in Theorem 1.1. In Section 4.1, we start with the key observation that long codewords in First have a necessarily long prefix of ones. This observation lets us group together codewords of roughly the same lengths, storing only the suffixes that distinguish them from each other. Hence, we proceed with partitioning the set of codewords into codewords of different lengths, and orthogonal to that, of different distinguishing suffix lengths.

4.1. Distinguishing suffixes

Let us notice at the beginning that a long codeword has a necessarily long prefix of ones.

Lemma 4.1. Let $C = \{C_1, \ldots, C_n\}$ be a canonical code. Each codeword $C_i \in C$ can be represented as either a bit string of ones $C_i = 1^{|C_i|}$ or as a bit string $C_i = 1^p 0^s$ with $s \in \{0, 1\}^*$ and $0 \leq |s| < \lg \sigma$ for some $p \geq 0$.

Proof. Given a codeword C_i represented as $C_i = 1^p 0^s$ for a bit string $S \in \{0, 1\}^*$ (the second case in the claim), we have to show that the length of S is less than $\lg \sigma$. Without loss of generality, let σ be a power of two, i.e., $\lg \sigma$ is an integer. Let us assume there is a codeword $C_i = 1^p b_{p+1} b_{p+2} \ldots b_{|C_i|}$ with $b_{p+1} = 0$. The length of the suffix $b_{p+2} \ldots b_{|C_i|}$ of C_i is $s := |S| = |C_i| - p - 1 \geq 0$. The prefix $1^p b_{p+1}$ of C_i is the string label of a node v_1 in the canonical tree of C. The height of v_1 is at least s since it has a leaf whose string label is C_i. Since a canonical tree is a full binary tree, v_1 has a right sibling, which we call v_2. Since the depths of the leaves iterated in the left-to-right order in a canonical tree are non-decreasing, all leaves of the tree rooted at v_2 must be at depth at least s. This implies that the number of leaves in the tree rooted in v_1 is at least 2^s. See Fig. 1 (left) for a sketch. The subtree rooted at v_1 has at least one leaf (it has exactly one leaf if v_1 is a leaf itself). Moreover, the two trees rooted in v_1 and v_2, respectively, are disjoint. Consequently, there are at least $2^s + 1$ leaves in the tree representing C. For $s > \lg \sigma$, we obtain a contradiction since the code tree has exactly σ leaves. Hence, $|C_i| - p - 1 = s < \lg \sigma$. □

The lemma states that given a codeword perceived as a concatenation of a maximal run of set ‘1’ bits and a suffix that follows it, the length of this suffix is less than $\lg \sigma$. According to that, we can group the codewords of similar lengths together and store only their distinguishing $\Theta(\log \sigma)$-bit suffixes. Roughly speaking, this would already give a space bound of $O(\ell_{\max} \log \sigma)$ bits for maintaining all codewords with multiple P and First instances. Considering only the lexicographically smallest codewords per length, we achieve a better bound with the following lemma.

Lemma 4.2. Given two non-negative lengths p and s, the number of codewords C_i corresponding to the leftmost leaves on each depth of a code tree given by $C_i = 1^p 0^s$ with $S \in \{0, 1\}^*$ and $|S| \geq s$ is bounded by $O(\sigma/2^s)$.

Proof. Let S be the longest string such that $1^p 0^s$ is the string label of a leaf λ, with the property that λ is the leftmost leaf on its depth. By the shape of the code tree, one of the deepest leaves whose string labels have $1^p 0$ as a prefix is a leftmost leaf, and this leaf is λ. By the proof of Lemma 4.1, there is a node with string label $1^p 0^s$ having at least $2^{|S|}$ nodes in its subtree; in particular, there are at least $2^{|S|}$ nodes on depth $p + x$ for $x \leq |S| - 1$. We charge the $2^{|S| - 1}$ nodes on the depth of λ for λ, and more generally, we charge $2^{|S| - 1}$ nodes on the depth of λ for each
leftmost leaf l' with a string label of the form $1^p 0 S'$ with $|S'| \leq |S|$. By doing so, none of the nodes is charged twice. Since the number of nodes in the Huffman (or any other full binary) tree is $2\sigma - 1$, the overall number of such leftmost leaves on a depth of at least $p + 1 + s$ can be at most $(2\sigma - 1)/2^{s+1}$. A visualization is given in Fig. 1 (right).

In what follows, we want to derive a partition of the codewords stored in P. Let us recall that P stores not all codewords, but the codeword of the leftmost leaf on each depth (and omits depth d if there is no leaf with depth d). Given a set of such codewords $C_1, \ldots, C_{\ell_{\text{max}}}$ with $\ell_{\text{max}} \leq \ell_{\text{max}}$, let s_l denote the length of the shortest suffix of the representation $C_l = 1^p S$ with $S \in \{0, 1\}^h$. In what follows, we call a codeword C_l long-tailed if $s_l \geq 2 \log \log \sigma = |\log^2 \sigma|$, and otherwise short-tailed. A consequence of Lemma 4.2 is that $O(\sigma/\log^2 \sigma)$ codewords can be long-tailed. In what follows, we manage long-tailed and short-tailed codewords separately.

4.2. Long-tailed codewords

We partition the long-tailed codewords into sets C_1, \ldots, C_m with C_k being the set of codewords of lengths within the range $[1 + (k - 1) \log \sigma, k \log \sigma]$, for each $k \in [1..m]$. By Lemma 4.1, we know that codewords in C_k have the shape PS with $P \in \{1\}^*, |P| \geq (k - 2) \log \sigma + 1$ and $0 \leq |S| \leq \log \sigma$. We are therefore sure that the $(k - 2) \log \sigma + 1$-length prefix of the codewords in C_k is a run of 1s (the case that $(k - 2) \log \sigma + 1 \leq 0$ is treated below separately). Consequently, we can cut off this prefix of each codeword, and obtain trimmed codewords of length less than $2 \log \sigma$ bits. (We can restore the original codeword by prepending the cut-off $(k - 2) \log \sigma + 1$ 1s to the respective trimmed codeword.) To induce the original lexicographical order of the original codewords onto their trimmed counterparts, we pad these trimmed codewords at their left ends with zeros such that each trimmed codeword has $2 \log \sigma$ bits. To now restore the original codeword from this padded version, we additionally store its local depth, which is the length of the trimmed codeword before padding.

Instead of representing P with a single fusion tree storing the lexicographically smallest codeword of C for each depth, we maintain for each such set C_k a dedicated fusion tree F_k. To know which fusion tree to consult during a query with a bit string B read from a binary stream, we compute the longest prefix $P \in \{1\}^*$ of B (that is, a maximal run of ones). We can do that by asking for the position $h \in [1..|B|]$ of the most significant set bit of B bit-wise negated, which can be computed in constant time $[12]$. Then we know that $|P| = h - 1 \geq 0$. Since C_k captures codewords having runs of ones of lengths in $[k - 2] \log \sigma + 1. \log \sigma$ as a prefix, we find our codeword in either $F_{1+[P]/\log \sigma}$ or $F_{1+[P]/\log \sigma} + 1$.

This works fine unless we encounter the following two border cases. Firstly, P is empty if and only if $h = 1$. In that case, our codeword starts with 0...0. By Lemma 4.1, its length is at most $\log \sigma$. Hence, we can maintain all these long-tailed codewords starting with 0 in an extra fusion tree F_0 without modification (like the aforementioned trimming).

The second border case arises when the predecessor is not stored in the queried fusion tree, but in one built on shorter codewords. To treat that case, for $k \in [1..m]$, we store the dummy codeword 0 in F_k and cache the largest value (i.e., the longest codeword length) of F_0, \ldots, F_{k-1} in F_k such that F_k returns this cached value instead of 0 in the case that 0 is the returned predecessor. Finally, we treat the border case for F_0, in which we store the smallest codeword $C_1 = \text{First}[1] = \sigma |C_1|$ regardless of whether C_1 is long-tailed or not — in that way we are sure that a predecessor always exists.

Since the lengths of the codewords (before truncation) in the sets C_1, \ldots, C_m are pairwise disjoint, the number of elements stored in the fusion trees F_1, \ldots, F_m is the number of long-tailed codewords, which is bounded by $O(\sigma/\log^2 \sigma)$. A key in a fusion tree represents a long-tailed codeword C by a pair consisting of C's suffix of length $\log \sigma$ (thus using $\log \sigma$ bits) and C's length packed in $\log_{\max} \leq \log \sigma$ bits. Our total space for the long-tailed codewords is $O(\sigma/\log \sigma)$ bits, which are stored in $O(\ell_{\max}/\log \sigma)$ fusion trees. (The additional cost for storing the dummy codeword 0 in all fusion trees is covered by the total space of the fusion trees, which we study later in Section 4.4.)

4.3. Short-tailed codewords

Similar to our strategy for long-tailed codewords, we partition the short-tailed codewords by their total lengths. By doing so, we obtain similarly a set of codewords C'_1, \ldots, C'_m with C'_k being the set of codewords of lengths within the range $[1 + (k - 1) \log \sigma^2 \sigma, k \log \sigma^2 \sigma]$. Like in Section 4.2, we build a fusion tree on each of the codeword sets C'_k with the same logic.

This time, however, we know that each short-tailed codeword C_j has the shape $1^{S_j} S_j$ for $S_j \in \{0, 1\}^h$ and $|S_j| = s_j < 2 \log \log \sigma = \log^2 \sigma$. We trim, similarly to the long-tailed codewords, the 1 $(k - 2) \log \sigma$ long prefix of 1s from each codeword to obtain a trimmed codeword of length at most $4 \log \log \sigma$. Additionally, we represent the length of the codeword C_j in the set C'_k by its local depth within C'_k as a $O(\log \log \sigma)$-bit integer. Hence, the key of a fusion tree is composed by the $(4 \log \log \sigma)$-bit long suffix and the local depth with $O(\log \log \sigma)$ bits. Therefore, the total space for the short-tailed codewords is $O(\ell_{\max}/\log \log \sigma)$ bits, which are stored in $O(\ell_{\max}/\log \log \sigma)$ fusion trees.

4.4. Complexities

Summing up the space for the short- and long-tailed codewords, we obtain $O(\ell_{\max}/\log \log \sigma + \sigma/\log \sigma)$ bits, which are stored in $O(\ell_{\max}/\log \log \sigma)$ fusion trees. To maintain these fusion trees in small space, we assume that we have access to a separately allocated RAM of above stated size to fit in all the data. While we have a global pointer of $O(|w|)$ bits to point into this space, pointers inside this space take $O(\log \sigma)$ bits. Hence, we can maintain all fusion trees inside this allocated RAM with an extra space of $O(\ell_{\max}/\log \log \sigma)$ bits. In total, the space for P is $O(\ell_{\max}/\log \log \sigma + \sigma/\log \sigma) = (\ell_{\max}/\log \log \sigma + \sigma)$ bits.

To answer $P. \text{pred}(B)$, we find the predecessor of B among the short- and long-tailed codewords, and take the
maximum one. In detail, this is done as follows. Remembering the decoding process outlined in Section 2.2.2, B is a bit string of length ℓ_{max}, which we delegate to the fusion trees F_k and F_{k+1} (cf. the second paragraph of Section 4.2) corresponding to either C_k, C_{k+1}, C_k', or C_{k+1}' (we try all four possibilities) if the longest unary prefix of ‘1’s in B is in $[1 + (k - 1)\lg \sigma, k\lg \sigma]$ (long-tailed) or $[1 + (k - 1)\lg^2 \sigma, k\lg^2 \sigma]$ (short-tailed). By delegation we mean that we remove this unary prefix, take the $2\lg \sigma$ most significant bits (long-tailed) or the $2\lg^2 \sigma$ most significant bits (short-tailed) from B, and store these bits in a variable B' used as the argument for the query $F_k.\text{pred}(B')$.

Finally, it remains to treat First for encoding a character (cf. Section 2.2.2). One way would be to partition First analogously like P. Here, we present a solution based on the already analyzed bounds for P. We create a duplicate of P, named P', whose difference to P is that the components of the stored pairs are swapped, such that a predecessor query is of the form $P'.\text{pred}(\ell, B)$ for a length ℓ and a bit string B of length ℓ_{max}. Then $P'.\text{pred}(\ell, \ell_{\text{max}}) = (\ell', B')$, and the ℓ first/leftmost bits of B' are equal to First(\ell) if $\ell = \ell'$ (otherwise, if $\ell \neq \ell'$, then there is no leaf at depth ℓ).

5. Conclusion and open problems

Canonical codes (e.g., Huffman codes) are an interesting subclass of general prefix-free compression codes, allowing for compact representation without sacrificing character encoding and decoding times. In this work, we refined the solution presented by Gagie et al. [13] and showed how to represent a canonical code, for an alphabet of size σ and the maximum codeword length of ℓ_{max}, in $\sigma \lg \ell_{\text{max}}(1 + o(1))$ bits, capable to encode or decode a symbol in constant worst case time. Our main idea was to store codewords not in their plain form, but partition them by their lengths and by the length of the shortest suffix covering all ‘0’ bits of a codeword such that we can discard unary prefixes of ‘1’s from all codewords.

This research spans the following open problems: First, we wonder whether the proposed data structure works in the AC^0 model. As far as we are aware of, the fusion tree can be modeled in the AC^0 model [2], and our enhancements do not involve complicated operations except finding the most significant bit, which can be also computed in AC^0 [4]. The missing part is the wavelet tree, for which we used the implementation of Belazzougui and Navarro [3, Thm. 4.1]. We think that most bit operations used by this implementation are portable, and the used multiplications are not of general type, but a broadband broadcast operation, i.e., storing $|w/b|$ copies of a bit string of length b in a machine word of w bits. However, they rely on a monotone minimum perfect hash function, for which we do not know whether there is an existing alternative solution (even allowing a slight increase in the space complexity but still within $\sigma \lg \ell_{\text{max}}(1 + o(1))$ bits) in AC^0.

Another open question concerns the possibility of applying the presented technique in an adaptive (sometimes also called dynamic) Huffman coding scheme. There exist efficient dynamic fusion tree and multi-ary wavelet tree implementations, but it is unclear to us whether we can meet those costs (at least in the amortized sense) involved in maintaining the code tree dynamically. Also, we are curious whether, for a small enough alphabet, a canonical code can encode and decode k ($k > 1$) symbols at a time (ideally, $k = \Theta(w/\ell_{\text{max}})$ or $k = \Theta(\log n/\ell_{\text{max}})$, where the denominator could be changed to $\log \sigma$, if focusing on the average case) without a major increase in the required space.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is funded by the JSPS KAKENHI Grant Numbers JP21K17701 and JP21H05847 (DK) and by the Faculty of EECOE, Lodz University of Technology, as a statutory activity (SC). We thank the anonymous reviewers for detailed and constructive comments, in particular for finding a flaw in the proof of Lemma 4.2.

Appendix A. Fusion tree augmentation

Here, we provide an alternative solution to Section 2.2.1 without the need to let P store pairs of codewords with their respective lengths. Instead, the idea is to augment P with additional information to allow queries needed for simulating First. For that, we follow Pătraşcu and Thorup [29, Section IV.], who presented a solution for a dynamic fusion tree that can answer the following queries, where S is the set of keys defined in Section 2.2.

- $\text{rank}(X)$ returns $|[Y \in S : Y \leq X]|$
- $\text{select}(i)$ returns $Y \in S$ with $\text{rank}(Y) = i$.

Since P is a static data structure, adding these operations to P is rather simple: The idea is to augment each fusion tree node with an integer array storing the prefix-sums of subtree sizes. Specifically, let v be a fusion tree node having w^c children, for a fixed (but initially selectable) positive constant $c < 1$. Then we augment v with an integer array P_v of length w^c such that $P_v[i]$ is the sum of the sizes of the subtrees rooted at the preceding siblings of v’s i-th child. With P_v we can answer $\text{rank}(x)$ via $P_v.\text{pred}(x)$, which is solved by traversing the fusion tree in a top-down manner. Starting with a counter c of the rank initially set to zero, on visiting the i-th child of a node v, we increment c by $P_v[i]$. On finding $\text{pred}(x)$ we return $c + 1$ (+1 because the predecessor itself needs to be counted).

To answer a select query, we store the content of each P_v in a (separate) fusion tree F_v to support a rank query on the prefix-sum values stored in P_v. Consequently, a node of P stores not only P_v but also a fusion tree built

S. Grabowski and D. Köppl

Information Processing Letters 179 (2023) 106274
upon P_v. The algorithm works again in a top-down manner, but uses F_v for navigation: For answering $\text{select}(i)$, suppose we are at a node v, and suppose that $F_v.\text{rank}(i)$ gives us j. Then we exchange i with $j - P_v[j]$. Now if i has been decremented to zero, we are done since the answer is the j-th child of v. Otherwise, we descend to the j-th child of v and recur.

The fusion trees T_v as well as the prefix-sums P_v take asymptotically the same space as its respective fusion tree node v.\footnote{Since our tree P has a branching factor of w^4, there are $O(m/w^4)$ leaves and $O(m/w^2)$ internal nodes. Since an internal node takes w^{1+c} bits, we need m/w^4 bits for all internal nodes. Also, a leaf λ does not need to store F_v and P_v, since $P_v[i]=i$.} Regarding the time, T_v and P_v answer a rank and an access query in $O(\log w) = O(1)$ time, and therefore, we can answer rank and select in the same time bounds as pred.

It is left to deal with depths having no leaves. For that, we add a bit vector B_ℓ of length ℓ_{max} with $B_\ell[\ell]=1$ if and only if depth ℓ has at least one leaf. For the latter solution, P only needs to take care of all depths in which leaves are present, i.e., P will return a depth ℓ' during a predecessor query, which we map to the correct depth with $B_\ell.\text{select}(\ell')$, given that we endowed B_ℓ with a select-support data structure in a precomputation step. In total, B_ℓ with its select-support data structure takes $\ell_{\text{max}} + O(\ell_{\text{max}})$ bits of space, and answers a select query in constant time. We no longer need to store First since First[$\ell]=P.\text{select}(\ell)$, given there is a leaf of the Huffman tree with depth ℓ. Consequently, our approach shown in Section 4 works with this augmented fusion tree analogously.

References