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1 INTRODUCTION

A text factorization, in the following just called factorization, is a partitioning of a given text into
substrings. Factorizations are the essential preprocessing step of many compression and text in-
dexing data structures. One of the most famous factorizations with focus on compression is the
Ziv-Lempel factorization of 1978 [73], known as lz78. Its variants, especially Lempel-Ziv-Welch

(lzw) [70], are used in compression software like unix compress, compression standards like
V.42bis, and image and document formats such as GIF, TIFF, PDF, and PostScript.

Compared to the stronger lz77 format [72], lz78 has a more regular structure, which has made
it the preferred choice for direct searching in compressed texts [2, 32, 33, 42, 44, 45, 57, 59], imple-
menting string dictionaries [7], compressed sequence representations supporting optimal-time ac-
cess [67], compressed text indexes for pattern matching [4, 27, 66], and document retrieval [25, 26].

Another important advantage of lz78 over lz77 is that lz78 allows for an easy construction
within compressed space and in near-linear time, which is (to date) impossible for lz77. Still, al-
though lz77 factorizations often lead to marginally better compression rates, the output of lz78
is usually small enough to be useful in practice as the basis of a compressor (especially the lzw
variant) and to be the preferred choice in the scenarios mentioned above (where the lz78 variant
is more popular to build compressed data structures).

Computing the lzw and lz78 factorizations both fast and space-economically allows us to com-
press larger files without splitting them into chunks. This not only yields better compression in
general, but it is the only attractive choice when building data structures based on a Lempel-Ziv
factorization. A simple and classical lz78 or lzw implementation factorizes a text of length n over
an alphabet [1..σ ] into z factors, where

√
n ≤ z = O (n/ logσ n), in O (n lgσ ) worst-case time (and

O (n) expected time) using O (z lgn) bits of main memory space, while reading the text from disk
by small buffers. This working space is O (n lgσ ) in the worst case, but more importantly, it is pro-
portional to the size of the input text. Comparable results for lz77, using O (n lgσ ) bits of working
space, were obtained only recently [31, 48, 55] and require much more sophisticated algorithms.
Another line of research (e.g., References [10, 60, 64]) computes the lz77 factorization in O (r lgn)
bits of space, where r is the number of runs in the Burrows-Wheeler transform [15]. The only
other lz77 construction we are aware of with working space bounded by a function of the com-
pressed file size poses a superlogarithmic penalty factor [61] on the time or only approximates the
factorization within a constant factor [30].

1.1 Our Contribution

We introduce and study various lz78 and lzw factorization algorithms that use lower memory
space than the classical one. Some of them may run within memory sizes unable to fit even the
compressed file. Most of our algorithms are streaming: On reading the text, they compute the
factorization online and output a compressed stream, which can be written to external memory or
to a network stream.

Our ideas are heavily based on hash-based trie representations, which represent nodes by iden-
tifiers of entries in a hash table. We present two such representations, where a node uses either (a)
O (lg(zσ )) bits or just (b) O (lgσ ) bits. The former (a) can be used directly in conjunction with the
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classic lz78 and lzw factorization algorithms running in O (n) expected time with O (z lg(zσ )) bits
of working space (cf. Theorem 4.1). The latter (b) uses an implicit representation of the identifiers
in the hash table that are immutable until rehashing. For (b), the main challenge is to design a
factorization algorithm that supports the rehashing of the hash table in such a way that

• the identifiers can be efficiently migrated during a rehashing, while
• the hash table is limited to have O (z) cells without knowing z in advance.

With the representation (b), we present a specialized family of algorithms that carry out the lz78
factorization within O (z lgσ ) bits of main memory, which is less than any other previous lz78
algorithm and asymptotically less than the size of the encoded output, z (lgz + lgσ ) bits.1 One of
our algorithms requires O (n) expected compression time (cf. Theorem 5.3), but may rewrite and
reread the output multiple times, whereas the other takes O (n lgσ ) expected time but writes the
output only once in a streaming fashion (cf. Theorem 5.4). Both algorithms produce a compressed
output that can be decompressed in O (n) time while using O (z lgσ ) bits of main memory, where
previous decompression algorithms need to fit the whole compressed text in main memory. This
compressed output consists of a serialized compact hash table of O (z lgσ ) bits and an array of z
integers where the xth integer is a pointer to the cell in the hash table representing the xth factor.
Consequently, our solution of (b) computes a special output format based on hash values.

Our results hold under some simplifying assumptions on randomness (cf. Section 3.5.3). Never-
theless, our experimental results demonstrate that these assumptions do not affect the practical
competitiveness of the new algorithms, which outperform current alternatives in space by a factor
from 2 to 5. We elaborate on these results by presenting, together with other trie representations,
the first thorough study of lz78 and lzw factorization algorithms. We highlight different algo-
rithm engineering techniques supporting fast computation of the lz78 and lzw factorization in
practice. Our compact trie implementations may have independent interest beyond Lempel-Ziv
factorization.

1.2 Article Outline

We first set our contribution in relation to previous achievements for computing the lz78 factoriza-
tion in Section 1.3. Subsequently, we review the lz78 and lzw factorizations as well as two coding
variants—the classic coding and the coding with the lz trie—in Section 2. In Section 3, we review
compact hash tables and propose a sparse layout for open-addressing compact hash tables. Next,
we propose in Section 4 and 5 factorization algorithms that are partially based on these hash tables.
While we use the classic coding in Section 4, a variant of the lz trie coding allows us in Section 5 to
slim down the working space, at the expense of using external memory, additional running time,
or worse compression ratio.

1.3 Related Work

Although our focus is set on practically space-efficient algorithms, in what follows, we give a the-
oretical overview of other algorithms that compute the lz78 factorization and draw a comparison
with ours.

Unlike the preceding lz77 factorization, lz78 was designed [73] so it could be parsed easily
using a trie called the lz trie, within space proportional to the output of the factorization (i.e.,
to the size of the compressed text). A classic pointer-based implementation of the lz trie with
balanced binary trees to handle the children of each node carries out the lz78 factorization in

1Our output is a rather naive representation of the factorization, i.e., we do not consider to further compress the represen-
tation of our factors; see Section 2.1.
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O (n lgσ ) time and O (z lgn) bits of space, where z is the size of the factorization. The same can
be obtained for Welch’s variant, lzw [70]. Using hashing to store the children of each node, the
expected factorization time becomes O (n). Despite some spare results we describe next, we are
not aware of any practical systematic study of lz78/lzw factorization algorithms.

With the trie representation of Fischer and Gawrychowski [28], we can accelerate the time of

the classic implementation to O (n+z
lg2 lg σ

lg lg lg σ
). Spending O (n(lgσ + lg logσ n)/ logσ n) bits of space,

Jansson et al. [40] can compute the factorization in O (n lgσ (lg lgn)2/(lgn lg lg lgn)) time. Their
algorithm needs two sequential passes over the text, which involves I/Os if the text is stored in
external memory.

Nakashima et al. [56] obtained the first O (n) worst-case time factorization algorithm for lz78,
though it uses O (n lgn) bits of space. This space was recently improved by Fischer et al. [31], who
need only min(O (n lgσ ), (1+ϵ )n lgn+n lgσ +O (n)) bits of working space, where ϵ with 0 < ϵ ≤ 1
is a selectable constant tradeoff parameter, and n lgσ bits are used for the input text stored in a
read-only memory with constant-time random access.

Considering that the computed lz78 factorization can be stored in two arrays with z lgσ and
z lg z bits to represent the last character and the referred index, respectively, of each factor, the
z lg(σz) bits of the factorization can be smaller than a working space of O (z lgn) bits, even if
asymptotically similar for σ = nO (1) . Closest to the exact output space is the approach of Arroyuelo
and Navarro [3, Lem. 8], taking z (2 lgn+ lgσ +O (1)) bits and O (n(lgσ + lg lgn)) time for the lz78
factorization. Having external memory, they manage to perform a single pass over the text, in
exchange for 2z lg z additional bits of I/O (on external memory), and a total time of O (n(lgσ +
lg lgn)), where the peak memory usage is z (lgn + lgσ +O (1)) bits. Measuring bits of I/Os instead
of blocks differs from common approaches working in the external memory model. Here, each bit
of I/O is read or written by a random access on disk.

They use the compact lz trie representation described in Section 2.1.4, where z lg z bits are used
for an array L storing preorder numbers of the lz trie. An obstacle to further reduce the space is that
they need to build the whole lz trie before they can build the array L, because preorder numbers
vary as new leaves are inserted. Later improvements on dynamic tries introduced by Arroyuelo
et al. [5, Theorem 2] reduce the time to O (n logσ · 1

lg lg σ
), while consuming z (lgn + lgσ + O (1))

bits of space (in this theorem, we set b := lgn for the number of bits used by a satellite data
entry). Their time result can be improved to O (n lgσ · 1

lg lg n
) by changing the arity of the used

trie representation from Θ(lgσ ) to (lgn)/2. This introduces an extra term of o(
√
n) bits of space,

which is bounded by o(z) according to Lemma 2.1. The time is now O (n) for small alphabet sizes
σ = O (polylog(n)). However, the peak space usage remains the same.

For comparison, we list the aforementioned results in Table 1 and 2 and put our contribution in
this context.

2 PRELIMINARIES

With logx , we denote the logarithm to base x , and with lg the logarithm log2 to base two. Our
computational model is the word RAM model with machine word size w := Ω(lgn) for the input
size n. Accessing a word costs O (1) time.

LetT be a text of lengthn over an integer alphabet Σ = [1..σ ] with σ = nO (1) . GivenX ,Y ,Z ∈ Σ∗

withT = XYZ , then X , Y , and Z are called a prefix, substring, and suffix ofT , respectively. We call
T [i ..] the ith suffix of T and denote a substring T [i] . . .T [j] with T [i ..j].

Given a binary string T ∈ {0, 1}∗, a bit c ∈ {0, 1}, and an integer j, the rank query T . rankc (j )
counts the occurrences of c inT [1..j], and the select queryT . selectc (j ) gives the position of the jth
c inT . We stipulate that rankc (0) = selectc (0) = 0. There are data structures [19, 39] that use o( |T |)
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Table 1. Previous and New lz78 Compression Algorithms

Reference Time Working Space in Bits

Ziv and Lempel [73] O (n lgσ ) O (z lgn)
O (n)∗ O (z lgn)

Nakashima et al. [56] O (n) O (n lgn)
Fischer et al. [31] O (n/ϵ2) (1 + ϵ )n lgn + n lgσ + O (n)
Fischer et al. [31] O (n) O (n lgσ )
Köppl and Sadakane [48] O (n lg lgσ ) O (n lgσ )

Fischer and Gawrychowski [28] O
(
n + z

(lg lg σ )2

lg lg lg σ

)
O (z lgn)

Jansson et al. [40] O
(
n lgσ · (lg lg n)2

lg n lg lg lg n

)
O (z lgn)

Arroyuelo and Navarro [3, Lem. 8] O (n lgσ + n lg lgn) z (2 lgn + lgσ + O (1))

Arroyuelo et al. [5, Thm. 2] O
(
n lgσ · 1

lg lg n

)
z (lgn + lgσ + 2) + o(z lgσ )

Theorem 4.1 O (n/α2)
∗ z

1−α
(3 lg(zσ ) + 11)

Theorem 5.4 O (n lgσ )∗ O (z lgσ )

Expected times are annotated with a star (∗). ϵ ∈ (0, 1] and α ∈ (0, 1) are user-defined constants. We first list
the classic approaches, then all deterministic ones, from most to least space-consuming (and, generally, from
fastest to slowest). At the end, we present our randomized approaches. The methods that are asymptotically
dominated by another in space and time are grayed.

Table 2. Semi-external Approaches Computing the lz78 Factorization

Reference Time Working Space in Bits I/Os in Bits

Arroyuelo and Navarro [3] O (n(lgσ + lg lgn)) z (lgn + lgσ + O (1)) 2z lg z
Theorem 5.3 O (n)∗ O (z lgσ ) z lg2 z

Expected times are annotated with a star (∗).

extra bits of space, and can compute rank and select in constant time, respectively. Each of those
data structures can be constructed in time linear in |T |. We say that a bit vector has a rank-support

and a select-support if it is endowed by data structures providing constant time access to rank and
select, respectively.

Finally, a factorization of T of size z partitions T into z substrings F1 . . . Fz = T . Each such
substring Fx is called a factor. In this article, we are interested in the lz78 and lzw factorizations.

2.1 Factorization and Coding

Stipulating that F0 is the empty string, a factorization F1 . . . Fz = T is called the lz78 factoriza-

tion [73] of T iff, for all x ∈ [1..z], the factor Fx is the longest prefix of T [|F1 . . . Fx−1 | + 1..] such
that Fx = Fyc for some y ∈ [0..x − 1] and c ∈ Σ, that is, Fx is the longest possible previous
factor Fy appending by the following character in the text. Formally, y = argmax{|Fy′ | : Fy′ =

T [|F1..Fx−1 | + 1..|F1..Fx−1 | + |Fy′ |]}. We say that y is the referred index of the factor Fx . Figure 1
gives an example. All factors Fx are distinct except maybe the last factor Fz , which needs to be
treated as a border case. In what follows, we omit this border case analysis for the sake of simplic-
ity (in lz78 as well as in lzw). If T terminates with a character appearing nowhere else in T , then
the last factor is also distinct from the others.

A factorization F1 . . . Fz = T is called the lzw factorization [70] of T iff, for all x ∈ [1..z], it
holds that the factor Fx is the longest prefix of T [|F1 . . . Fx−1 | + 1..] such that (a) Fx = FyFy+1[1]
for some y ∈ [0..x − 1], or (b) Fx = c ∈ Σ if no such y exists. Formally, if Fx = FyFy+1[1], then
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Fig. 1. The lz78 factorization and its lz trie for the textT = aaababaaaba. The xth factor is the concatenation
of the edge labels of the path from the root to the node labeled with x .

Fig. 2. The lzw factorization and its lz trie for the textT = aaababaaaba. The xth factor is the concatenation
of the edge labels of the path from the root to the parent of the node labeled with x .

y = argmax{|Fy′ | : Fy′Fy′+1[1] = T [|F1..Fx−1 | + 1..|F1..Fx−1 | + |Fy′ | + 1]}, and we call y the referred

index of the factor Fx . Otherwise (Fx = c ∈ Σ), we have that Fx = F−c for a c ∈ Σ, and say that
the referred index of Fx is −c < 0. The difference with lz78 is that we do not include the symbol c
that follows Fy when outputting the code of Fx , yet we take it as part of Fx when we reference it.
The advantage of lzw is that, although it may produce more factors, encoding them requires just
to output the referred indices, whereas lz78 requires also to output the final characters. Figure 2
gives an example.

2.1.1 LZ Trie. As shown in Figure 1 and 2, the factors can be represented in a trie, the so-called
lz trie. The root node corresponds to F0. In lzw, the root has additionally σ children, where the cth
child has the label−c (representing F−c ) and is connected to the root with an edge with label c ∈ Σ.2

In both lz78 and lzw, the node of Fx = Fy ·T [j] is the child of the node of the factor Fy with the
edge labeled by T [j]. Consequently, the lz trie stores z + 1 indices that can be referred for lz78,
and z +σ + 1 for lzw.3 The node corresponding to the xth factor is labeled with the factor index x .
The set of factors is prefix-closed for both lz78 and lzw.

2A different way is to represent the trie for lzw by a forest of σ trees, where the ith root has label −i ∈ [−σ .. − 1]. This
saves one node, since an lzw factor never refers to the factor F0.
3The number of factors z differs for lz78 and lzw in general.
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The following bounds on the number of lz trie nodes will be useful:

Lemma 2.1. The numberm of nodes in the lz trie of lz78 and lzw satisfies
√

2n + 1/4+1/2 ≤ m ≤
cn/ logσ n, for a fixed positive constant c . The upper bound can be refined to (m − 1) (logσ m − 3) < n
if we do not count the root of the lzw trie.

Proof. For lz78, the number of nodes is exactly the size of the factorization plus 1 (for the
root, F0). A lower bound of

√
2n + 1/4 − 1/2 for the number of lz78 factors was proved by

Bannai et al. [9, Lem. 1], using the only property that the length of each new factor is at most
one plus the length of some previous factor. This fact holds for lzw, too, if we count the σ values
−c ∈ [−σ .. − 1] as factors. Since those nodes are included in the lz trie of lzw, the same bound
holds.

The upper bound holds for lz78 because, for any factorization into z distinct factors (which is
the case for all lz78 factors except possibly the last one), we have that z < n

logσ n−2 logσ (1+logσ n)−2

[51, Thm. 2], which is z ≤ cn/ logσ n for some suitable constant c . In the case of lzw, we have that
the strings FyFy+1[1] are all distinct, therefore, we can form a text of length n+z by concatenating
those unique substrings. A crude upper bound n + z ≤ 2n yields z ≤ 2cn/ logσ n.

To obtain the precise upper bound, we build a worst-case text with all the shortest possible
factors, as follows4: For lz78, consider a text concatenating all distinct strings of length 1, then
all distinct strings of length 2, and so on up to length k . The text is of length nk =

∑k
d=1 dσ

d =
σ k+1

σ−1

(
k − 1

σ−1

)
+ σ

(σ−1)2 . Each distinct string produces a new factor, so the text has zk =
∑k

d=1 σ
d =

σ k+1−σ
σ−1 < σ k+1

σ−1 − 1 factors. Therefore, nk >
σ k+1

σ−1 (k − 1) > (zk + 1) (k − 1).

To reach any arbitrary length nk ≤ n < nk+1, we complete the text with Δ < σk+1 distinct
factors of length k + 1, plus a final possibly shorter one, each of which becomes a new lz78 factor.
Therefore, the total number of factors is z = zk + Δ + 1 < nk

k−1 − 1 + n−nk

k+1 + 1 < n
k−1 . Since

z ≤ zk+1 <
σ k+2

σ−1 − 1, it follows that k + 2 > logσ (σ − 1) + logσ (z + 1) ≥ logσ (z + 1), thus
k − 1 > logσ (z + 1) − 3. We then conclude that z < n

logσ (z+1)−3 and thus z (logσ (z + 1) − 3) < n.

Since the trie of lz78 hasm = z + 1 nodes, we obtain (m − 1) (logσ (m) − 3) < n.
Forming a worst-case text for lzw is slightly more complicated. Let Σ = {a1, . . . ,aσ }. As-

sume we have already formed all the trie nodes of depth d . Let S1, . . . , Sσ d−1 be all the distinct
strings of length d − 1. Consider the complete directed graph with σ nodes and σ 2 edges (ai ,aj )
for all i, j. This graph is Eulerian because all indegrees and outdegrees are σ ; let e1, . . . , eσ 2 =

(b1,b2) (b2,b3) . . . (bσ 2 ,b1) be an Eulerian circuit, where each bk for k ∈ [1..σ 2] is some a ∈ Σ.
For each Si , if we append b1Sib2Sib3Si . . .bσ 2Sib1, the lzw factorization will find each factor bjSi

(for j ∈ [1..σ 2]) in the trie and output it, inserting the new node corresponding to bjSibj+1 mod σ 2 .
See Figure 3 for an example. Because of the Eulerian circuit, all the strings aSia

′ for all a,a′ ∈ Σ
are then formed. The last symbol we append, b1, is then reused as the first character of a new
string b1Si′b2Si′b3Si′ . . . . . .bσ 2Si′b1 for another string Si′ � Si . After repeating this for all the
strings S of length d − 1, we have created all the trie nodes of depth d + 1. We have appended
1+σd−1σ 2d = 1+dσd+1 symbols and have created σd−1σ 2 = σd+1 factors. The last b1 emitted can
always be used as the first symbol of the next level.

Since the trie of lzw starts with the first level completed, we do this process for depths d =

1, . . . ,k−1, forming a text of lengthnk = 1+
∑k−1

d=1 dσ
d+1 = σ k+1

σ−1

(
k − σ

σ−1

)
+ σ 2

(σ−1)2 +1 that is parsed

into zk =
∑k−1

d=1 σ
d+1 = σ k+1−σ 2

σ−1 < σ k+1

σ−1 − σ factors. Therefore, nk >
σ k+1

σ−1 (k − 1) > (zk + σ ) (k − 1).

4Generalized from https://ocw.mit.edu/courses/mathematics/18-310-principles-of-discrete-applied-mathematics-fall-
2013/lecture-notes/MIT18_310F13_Ch20.pdf.
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Fig. 3. Example for the graph described in the proof of Lemma 2.1 in the lzw part with Σ = {a, b, c}.

Analogously as for lz78, we complete the text of length nk ≤ n < nk+1 with Δ distinct strings of
length k , plus a final possibly shorter one, each of which becomes a new lzw factor (and creates a
new trie node). The total number of factors is then z = zk +Δ+1 < nk

k−1 −σ +
n−nk

k
+1 < n

k−1 −σ +1.

Since z ≤ zk+1 <
σ k+2

σ−1 −σ , it follows that k+2 > logσ (σ−1)+logσ (z+σ ) ≥ logσ (z+σ ), thus k−1 >
logσ (z+σ )−3. We then conclude that z < n

logσ (z+σ )−3−σ+1 and thus (z+σ−1) (logσ (z+σ )−3) < n.

Since the trie of lzw without the root hasm = z+σ nodes, we obtain (m−1) (logσ (m)−3) < n. �

The lower and the upper bounds of Lemma 2.1 yield lg z = Θ(lgn).

2.1.2 Factorization Algorithm. To describe the classic factorization algorithm, we implement
the lz trie as a dynamic trie supporting two operations:

• insert(x , c ) inserts a leaf � connected to a node v with an edge labeled with
c ∈ Σ, where v represents the xth factor. If the lz trie contains y nodes (not
counting those corresponding to Fd for d ≤ 0) before inserting �, then the
label of � is the factor index y + 1.

• lookup(x , c ) returns the index of the factor Fy = Fx c whose corresponding
node is connected to its parentv with an edge labeled with c , where the node
v represents the xth factor. If v does not have such a child, then it returns an
invalid index ⊥.

The classic lz78 factorization algorithm scans the text T [1..n] from left to right. Suppose we
have already factorized T [1..i − 1] into x − 1 factors F1F2 . . . Fx−1. To compute Fx , we find the
longest prefixT [i ..i + �− 2] (with i + �− 1 ≤ n) that is equal to some Fy , with y ∈ [0..x − 1] with F0

being the empty string. Then, we define Fx := Fy ·T [i + � − 1], and we continue the parsing from
T [i + �].

We can use the lz trie for the lz78 factorization in the following way: To process Fx = T [i ..i +
� − 1], we traverse the lz trie from the root downwards following the charactersT [i],T [i + 1], . . .,
traversing the nodes y0 := 0 and yk+1 := lookup(yk ,T [i + k]), until i + � − 1 = n or we fall out of
the tree at lookup(y�−1,T [i + � − 1]) = ⊥. By doing so, we know that the referred index of Fx is
y�−1. Finally, we create a new node for Fx with insert(y�−1,T [i + � − 1]) = x .

Given that z is the number of lz78 factors, the algorithm performs z searches for a text substring.
It inserts z times a new leaf in the lz trie. Since the total length of all factors is n, it traverses n
times an edge from a node to one of its children. In total, it calls insert z times and lookup n times.

The case of lzw is very similar. We start with the lz trie having the σ children y−c of the root
representing the single characters c ∈ [1..σ ]. We traverse the trie withT [i],T [i +1], . . . via lookup
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until finding the node y�−1, where we perform insert exactly as before (now the limit is i + � ≤ n).
The difference is that we continue the factorization fromT [i + � − 1], not fromT [i + �]. Therefore,
for lzw, we call insert z times and lookup n + z times.

A straightforward representation of the lz trie storing z nodes consists of

• an array storing the labels within z lgσ bits,
• an array of the referred indices with z lg z bits, and
• a data structure of O (z lgn) bits for navigating from a node v to a child connected to v by

an edge with a given label.

In total, this representation requires O (z (lgn + lgσ )) ⊆ O (n lgσ ) bits for the factorization, which
can be performed in O (n lgσ ) deterministic time by implementing the child navigation data struc-
ture with balanced search trees, or in O (n) randomized time by implementing this data structure
with hash tables whose sizes double when needed.

2.1.3 Classic Coding. Having computed the factorization, we can achieve compression by en-
coding the factors. For that, we transform the list of factors into a list of integer values. In detail,
we linearly process each factor Fx for x ∈ [1..z], as follows:

lz78: Given Fx = Fy c for a c ∈ Σ and y ∈ [0..x − 1], we output the pair (y, c ).
lzw: If Fx = FyFy+1[1], then we output y. Otherwise, Fx = c ∈ Σ and we output −c .

Both factorizations also differ in how their output is encoded and decoded:

LZ78 Coding. The usual way to represent the lz78 tuples in the compressed output consists
of two (separate or interlaced) arrays S[1..z] and R[1..z] such that R[x] = y ∈ [0..x − 1] and
S[x] = c ∈ Σ for Fx = Fy c . We can naively store S[1..z] in z�lgσ � bits, and R[1..z] in z�lg z�
bits. However, the referred index y (with y > 0) of a factor Fx can actually be stored in �lgx� bits,
because a factor Fx can have a referred index y only with y < x . We can restore the referred index
encoded in �lgx� bits on decompression, since we know the index of the xth factor and hence the
number of bits �lgx� used to store its referred index.5 This yields

z∑
i=1

�lg i� = z�lg z� − (lg e )z + O (lgz) bits (1)

for storing the referred indices, where we used Stirling’s approximation [35, Problem 3.34]. In total,
we can represent S and R in z (�lg z� + �lgσ � − lg e ) + O (lgz) bits.

LZ78 Decoding. Having S and R, we can decode each factor Fx in turn: Fx is equal to S[x] in case
R[x] = 0, or otherwise it is the concatenation of the R[x]th factor (which we decode recursively)
with S[x], Fx = FR[x ] · S[x]. If we have random access to R[y] and S[y] for y ∈ [1..x], then we can
decode the xth factor in O ( |Fx |) time and then decode the complete text in O (n) time.

LZW Coding. For lzw, we cope with the negative integer values by adding σ to all out-
put values, so its output consists of non-negative integers. With the same coding for the re-
ferred indices as in lz78, the xth factor requires �lg(x + σ )� bits. By splitting up the sum∑z

i=1�lg(i +σ )� = ∑z+σ
i=1 �lg i� −

∑σ
i=1�lg i�, we get the total number of bits of the lzw output using

Equation 1, z (�lg(z + σ )� − lg e ) + σ �lg z+σ
σ
� + O (lg(z + σ )). Assuming that both factorizations

have the same number of factors, the coding of lzw uses less bits than lz78 if σ  z. However,
the number of factors of the lz78 and the lzw factorization for the same text differ in general, so
a comparison is not immediate.

5This is a folklore idea, see for example http://www.cplusplus.com/articles/iL18T05o.
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LZW Decoding. A factor Fx with negative referred index, R[x] = −c , is decoded directly (we
output c ∈ Σ). Any other factor is of the form Fx = FyFy+1[1]. We extract Fy as for lz78 and repeat
the process for Fy+1, just to obtain its first symbol. To recover the linear-time complexity, we can
make a first pass over the z factors to obtain the first character of each: F−c is associated with c
and Fx = FyFy+1[1] inherits the first character of Fy . Once this is done, requiring z lgσ extra bits
of memory, we can obtain any Fy+1[1] in constant time and decompress in total time O (n).

2.1.4 LZ Trie Coding. An alternative way [4] to represent the lz78 (or lzw) factorization uses
a succinct encoding of the lz trie, with:

• 2z + o(z) bits to represent the trie topology in a way that constant-time node navigation
operations are supported, such as balanced parentheses [58] or depth-first unary degree
sequence [12],
• z lgσ bits for the edge labels in preorder, and
• z lg z bits for an array L[1..z] whose entry L[x] stores the preorder number of the lz trie

node corresponding to the factor Fx .

All three data structures combined allow us to answer lookup in constant time. To extract an lz78
factor Fx , we start from the node with preorder L[x] in the lz trie and use the trie topology to climb
the trie upwards to the root. While climbing up, we read the edge labels of the visited path, which
constitute Fx . In total, we need O ( |Fx |) time for decompressing Fx . To extract an lzw factor Fx ,
we proceed similarly, but start reading the characters at the parent of the node with preorder L[x].

The lz78 coding based on the lz trie is more complex than that with the two arrays R and S . It
also uses slightly more space than the former, namely, the 2z+o(z) bits for the tree topology. Yet, it
is sometimes preferred because it enables operations other than just decompressingT . For instance,
Sadakane and Grossi [67] showed how to obtain any substring of length � of T in optimal time
O ((� lgσ )/w ). In Section 5, a different representation of the lz trie with a similar coding allows us
to carry out the factorization within just O (z lgσ ) bits of main memory.

2.2 Experimental Setup

We describe the common setting of our experiments throughout this article. We performed the ex-
periments on an Intel Xeon CPU X5670 at 2.93 GHz with 49 GB of RAM running a 64-bit version
of Arch Linux 2020 with Linux kernel 5.4.23-1-lts. We used a single execution thread for the exper-
iments. We wrote our code in C++17 and compiled it with gcc version 9.2.1 via the compile flags
-O3 -march=native -DNDEBUG. We measured the number of allocated bytes with tudostats,6 which
overrides the standard memory allocation (new and malloc) to additionally monitor the maximum
allocated memory during execution.

The texts considered in this article are:

xml : a highly compressible XML text;
english : an English text;
proteins : a not very compressible proteins file;
dna : a DNA file consisting of a prefix of a human genome7;
commoncrawl : ASCII webpages from commoncrawl;
fibonacci : the 46th Fibonacci word;
gutenberg : an excerpt of the Gutenberg project; and
wikipedia : Wikipedia’s most vital articles.

6https://github.com/tudocomp/tudostats.
7http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz.
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Table 3. Text Files Used in the Experiments

text n [M] σ zlz78 [M] clz78 [MB] zlzw [M] clzw [MB]

commoncrawl 10,739.46 127 679.55 3093.66 740.40 2642.29
dna 3336.57 51 227.42 989.84 247.50 832.71
english 1073.74 237 96.99 407.54 105.30 338.62
fibonacci 1836.31 2 1.52 5.26 1.52 3.74
gutenberg 1000.00 95 63.43 261.17 68.37 213.96
proteins 1184.05 27 147.48 630.11 169.40 559.33
wikipedia 244.73 204 24.21 95.68 26.47 78.53
xml 296.14 97 16.21 62.72 18.05 52.21

Columns marked with “[M]” are divided by 10−6; zlz78 and zlzw are the number of factors of the lz78
and lzw factorization, respectively; clz78 and clzw are the size of the encoding of the lz78 and the lzw
factors, as described in Section 2.1.3 (with σ = 28).

The texts english, protein, and xml are from the Pizza&Chili Corpus.8 The other texts (ex-
cept dna) are from the tudocomp project.9 Table 3 lists the texts with their main characteristics.
Throughout all evaluations, we assume that the input sequence is drawn from a byte alphabet (i.e.,
σ = 28). It can be seen that, in all cases, zlz78 < zlzw but clzw < clz78, that is, lz78 produces fewer
factors but lzw outperforms it by encoding them better.

3 COMPACT HASH TABLES

We start with an analysis of space-efficient dictionaries, as we will use dictionaries for representing
the lz trie. In particular, we focus on compact hash tables and propose a new variant of them using
a so-called sparse layout. To understand what compact hash tables are used for, we start with some
abstract dictionary data types and then draw a connection between them and compact hash table
instances.

A set data structure is a dynamic data structure storing keys from a universe K . It provides the
following methods:

• insert(K ): inserts the key K ∈ K .
• lookup(K ): returns whether the key K ∈ K has been inserted.

The information-theoretic lower bound for storing n keys in a dynamic set is B ( |K |,n) bits of

space, where B ( |K |,n) := lg
( |K |

n

)
. A set data structure can be augmented with satellite data,

making it a dictionary. The satellite data can then be retrieved with lookup.
For our purposes, it is desirable to assign each key stored in a set data structure a unique identi-

fier. For instance, when using a dynamic arrayA as the underlying data structure for the dictionary,
A can give each key K the index ι of its stored entry A[ι] = K as its identifier. An ID dictionary is a
set data structure that assigns each inserted key an identifier from a range [1..ρ] for a variable ρ
dependent on the number of stored elements n. These identifiers are unique and immutable up to
at least Ω(n) update operations. The methods of the ID dictionary are:

• insert(K ): inserts the key K ∈ K and returns its identifier.
• lookup(K ): returns the identifier of the key K ∈ K if K has been inserted.
• key(ι): returns the key K ∈ K of the identifier ι ∈ [1..ρ] if such a key has been inserted.

8http://pizzachili.dcc.uchile.cl/texts.
9https://github.com/tudocomp/datasets.
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Table 4. Overview of Known Bonsai Tables

Ref. Space [bits] ρ Rebuilding tBonsai

cleary [21] (1 + ϵ )B Θ
(

n lg n

lg lg n

)
whp Θ(ϵn) O ( 1

ϵ 2 )

elias [65] (1 + ϵ )B Θ(n) Θ(ϵn) O ( 1
ϵ

)

layered3 [65] (1 + ϵ )B + O (n lg(5) |K |) Θ(n) Θ(ϵn) O ( 1
ϵ

)

layered2 (Sec-
tion 3.2.3)

(1 + ϵ )B + O (n lg(3) |K |) Θ(n) Θ(ϵn) O ( 1
ϵ

)

bucket [49] B + O (n lg(2) |K |) Θ(n) Θ(n) O (lg |K |)
ϵ > 0 is a user-specified constant. tBonsai is the expected time for an insert or lookup operation. The column
Rebuilding shows the asymptotic number of insertion operations after which the hash table must be rebuilt.

We abbreviate B ( |K |, n) to B and write lg(k ) = lg(k−1) lg with lg(1) = lg for k ≥ 2.

A dictionary can be converted into an ID dictionary by using as identifier the address where each
key is stored internally, provided this is sufficiently immutable.

A compact hash tableH [20] is a set data structure geared towards representing the keys memory-
efficiently. It is associated with a hash function h with h(K ) ∈ [1..|H |] for every key K ∈ K , where
|H | is the number of cells of H .10 There is a restriction on the choice of the hash function h, as we
request h to be accompanied by a quotient function q such that (h,q) is a bijective transformation,
that is, we can restore K from the values h(K ) and q(K ) for all keys K . The idea is that we infer
h(K ) from the position in H where K is stored, and thus only need to store q(K ) for retrieving K .
This saves space if the number of bits needed to store q(K ), |q | := maxK ∈K �lgq(K )�, is less than
that to store K , maxK ∈K �lgK� [24, 47].

Interestingly, the works of Darragh et al. [21] and Poyias et al. [65] implicitly introduce com-
pact hash tables that are implementations of ID dictionaries, which we call Bonsai tables in the
following. We give an overview of these, together with a practically engineered hash table [49],
in Table 4. The major design difference is that Darragh et al. [21] and Poyias et al. [65] apply
open addressing, while Köppl et al. [49] apply closed addressing. In what follows, we briefly re-
view the open-addressing approaches and present a variation of their table layout that uses less
space in practice. The following scheme summarizes the various combinations to implement an
open-addressing Bonsai table:

Collisions in the open-addressing Bonsai hash tables are resolved by open addressing with
linear probing,11 that is, a call to insert(K ) looks for the first vacant space in H [h(K ) + i
mod |H |] iteratively, for increasing integers i ≥ 0, and inserts the quotient q(K ) at that place,
that is,

H [h(K ) +min{i ≥ 0 : H [h(K ) + i mod |H |] is empty}]← q(K ).

10The number of cells is not smaller than the number of stored entries n, and it is at least n/α for open-addressing hash
tables with a maximum load factor of α ∈ (0, 1].
11Actually, Darragh et al. [21] used bidirectional probing, but we stick to linear probing to simplify the explanation (all
results explained here also work with bidirectional probing).
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Fig. 4. Sparse hash table layout. The bit vector BS of length |H | is the concatenation of the bit vectors
B1 . . . B |H |/b with |Bj | = b for all j ∈ [1..|H |/b], where b = 4 in this example. BS stores at position i
whether H [i] stores an entry. The actual values of H are stored in dynamic arrays Aj . The value of H [i] can
be retrieved by following the respective dashed arrow from BS[i].

In this article, we stipulate thatx mod n := x ifx ≤ n andx−n mod n otherwise, for an integerx ≥
1. Hence, n mod n = n, but n + 1 mod n = 1.

3.1 Sparse Table Layout

In its plain layout, a hash table H with open addressing uses |H | lg|q | bits for storing its entries,
regardless of the number of entries. On the one hand, this is wasteful for low load factors. On the
other hand, open-addressing hash tables become exponentially slower at high load factors (cf. Sec-
tion 3.5.2). As a remedy, we propose the sparse table layout, which does not allocate memory pages
for all entries at once, but uses an array of pointers to small tables that are allocated dynami-
cally when needed. It is inspired by Google’s sparse hash table12 and consists of a bit vector BS of
length |H | and dynamic arrays. The entries of the hash table are mapped to entries of the arrays
with BS. Figure 4 sketches this layout.

In detail, we partition the hash table into |H |/b sections, where b is a (small) constant that is
a power of two. We assume that |H | is divisible by b, so all sections have the same length b. For
instance, this is the case when |H | and b are powers of two (with b < |H |). Given that we want
to access the kth cell of the hash table for k ∈ [1..|H |], there are integers i � k mod b ∈ [1..b]
and j � �k/b� ∈ [1..|H |/b] such that k = i + (j − 1)b. Then H [k] is mapped to the ith entry of the
jth section. By interpreting BS as the concatenation B1 . . . B |H |/b of bit vectors of length b, the jth
section is represented by the bit vector Bj and a dynamic array Aj . We maintain Bj and Aj such
that the ith entry of the jth section is stored at position Bj . rank1 (i ) in Aj . For a sufficiently small
b, the rank query can be answered with a constant number of CPU instructions (on a modern CPU
architecture) on the bit vector Bj without the need of a (dynamic) rank support. Finally, we store
pointers to the dynamic arrays Aj of the sections in an array of length |H |/b.

We can insert an entry in the jth section by setting the appropriate bit in Bj and rearranging
the elements in Aj . We can rearrange Aj efficiently if the elements of Aj (which are at most b) fit
into the CPU cache. Whenever we want to insert an element into a full array Aj with |Aj | < b, we
double Aj ’s size. Initially, all arrays Aj for j ∈ [1..|H |/b] are empty. In total, we need |H | bits and
( |H |/b) (w + lgb) bits for the bit vector BS and the arrays Aj (each consisting of a pointer with w
bits and a counter with lgb bits maintaining its size), respectively, in addition to the actual entries
in Aj , which use n lg |q | bits.

Compared to the plain layout using |H | lg |q | bits, the sparse layout is more space-economical
for low load factors and large values of q. Specifically, for b = w , the sparse layout is more

12https://github.com/sparsehash/sparsehash.
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space-economical if

2|H | + ( |H | lgw )/w + n lg |q | < |H | lg |q | ⇔ 2 + (lgw )/w ≤ |H | − n|H | lg |q |.

If we use a maximum load factor α ∈ (0, 1], double the size of H when reaching α |H | ele-
ments, and neglect deletions (as we do throughout this article), then |H | ∈ [n/α ..2n/α]. Hence,
|H |−n
|H | ∈ [1 − α , 1 − α/2]. A consequence is that the sparse layout pays off at least when the bit

widths of the quotients is larger than (2 + (lgw )/w )/(1 − α ).
On the downside, the sparse layout is slower in practice due to the indirect access to BS needed

to determine the corresponding position in a dynamic array Aj . Additionally, an insert operation
may cause the reallocation of a dynamic array.

The sparse table layout resembles a hash table of size |H |/b with closed addressing using buck-
eting (cf. Section 3.4). The difference arises when one of the dynamic arrays Aj becomes full. In
such a case (|Aj | = b), when trying to add a new element in Aj , the sparse table layout probes the
next array Aj+1 (due to the linear probing) instead of enlarging Aj or rehashing the entire hash
table (cf. Reference [49, Section 2.3]).

3.2 Displacement

Given that the quotient q(K ) of a key K is stored in the h(K )th cell of the hash table, it is easy to
retrieve K , since we have q(K ) and h(K ) at hand. In case a key K cannot be stored in the cell h(K )
due to a collision, we need to resolve this collision and store q(K ) in a different cell. For restoring
the value h(K ) of a stored entry H [i] = q(K ), we need additional information about the difference
i − h(K ). This difference is called a displacement. It can be represented as an array or with bit
vectors, as we describe in the following:

3.2.1 Array Displacement. The array displacement maintains an integer arrayD of size |H |, and
hence needs |H | lg |H | additional bits of space. Given a key K whose quotient is stored in H [i], its
entry D[i] is i − h(K ) mod |H | ∈ [1..|H |], except that D[i] = 0 means that K is stored directly in
H [h(K )]. HavingD at hand,h(K ) = i−D[i] mod |H | is the hash value of a keyK withH [i] = q(K ).
Further, we stipulate the invariant that D[i] = −1 signals that the ith cell is empty.

An insertion works as follows: Suppose that we want to insert a key K into the cell H [p] with
p = h(K ). If H [p] is free, then we are done and set D[p] = 0. Otherwise, we probe consecutive
positions H [p] with p = h(K ) + j mod |H |, for j = 1, 2, . . ., where one of the following cases is
met:

(1) H [p] is free. In this case, we terminate with H [p] ← q(K ) and D[p] ← j, so D[p] indicates
the number of probes between h(K ) and the final position p where K is finally written.

(2) H [p] is not free, H [p] = q(K ), and (p − D[p]) mod |H | = h(K ). This means that the key K
is already stored in H , thus there is no need to insert it.

(3) H [p] is not free, but H [p] � q(K ) or (p − D[p]) mod |H | � h(K ). Thus, the cell is occupied
by another key and we continue probing.

Operation lookup(K ) works in the same way, except that Case 1 implies that K is not stored in
the set and Case 2 implies that we have found K .

3.2.2 Displacement Elias. The displacement elias divides the array D of the array displacement
into blocks of a fixed size b. Each block stores its associated displacement values in a bit string
encoded with Elias-γ [23]. For b = (lg|H |)3/2, the displacement information uses O ( |H |) bits of
additional space in expectation [65, Lemma 6].
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3.2.3 Displacement Layered. The displacement layered3 (called recursive in Reference
[65, Section 3.3]) is parameterized with two integer constants b0,b1 with 0 ≤ b0 ≤ b1 ≤ |H |.
It uses a three-layer approach (hence the 3 in the subscript) to store the values of D, consisting
of

(a) an array D ′ with D ′[i] = D[i] if D[i] can be represented within b0 bits or D ′[i] = ⊥, for an
escape symbol ⊥, otherwise,

(b) a compact hash table storing all remaining displacement values that can be represented
within b1 bits, and finally

(c) a dictionary (e.g., a plain hash table) for all displacement values that cannot be represented
within b1 bits.

In addition to layered3, we introduce the simplification layered2, which uses two layers by
omitting b1 and the compact hash table. We prove next that our simplification has an over-
head of O (lg(3) n) bits per entry, while layered3 has an overhead of only O (lg(5) n) bits per
entry.

Lemma 3.1. Assuming full randomness, the Bonsai table layered2 takes constant expected time for

lookup and insert with an overhead of O (lg(3) n) bits per entry.

Proof. Our idea is to choose a sufficiently large b0 for the bit width of the array D ′ in the first
layer such that the probability of a larger displacement becomes O (1/ lgn). Thus, the dictionary
of the second layer only needs to store O (n/ lgn) elements in expectation. We can implement this
dictionary with a classical dynamic search structure like an AVL tree, which takes O (lgn) time
per operation and needs O (n) bits in expectation. Assuming randomness for queries, we use this
dictionary expectedly once per O (lgn) operations, and hence an operation on the hash table costs
O (1) expected time. We show that these space and time bounds are guaranteed with b0 ≥ lg(3) n:
Poyias et al. [65, Theorem 7] show that the probability of storing a number larger than k in D ′

is O (ck ) for some 0 < c < 1; therefore, the probability of an overflow in D ′ is O (c2b0 ). Choosing
b0 ≥ lg(3) n − lg lg(1/c ), this probability is O (1/ lgn). �

3.2.4 Cleary Displacement. A different approach [20] that does not store the displacement val-
ues explicitly is cleary, which uses two bit vectors BV and BC to represent the displacement.13 The
bit vectors BV and BC are of length |H | and are defined as follows:

• BV[i] = 1 if and only if there is a key K stored in the hash table with h(K ) = i .
• BC[i] = 1 if and only if

— the cells H [i] = q(K ) and H [i − 1] = q(K ′) have different hash values h(K ) � h(K ′), or
— the cell H [i] is empty.

Suppose that BC[i] = 1 and H [i] is non-empty, then all cells H [k] for k ∈ [i,BC. select1

(BC. rank1 (i ) + 1)) have the same hash value. We say that these cells belong to the same group.
To determine their hash valuev , we search the largest position s smaller than i that is empty. This
position s has the property that BC[s] = BC[s + 1] = BV[s + 1] = 1. With s , we can compute the
hash value v with v = BV. select1 (BV. rank1 (s + 1) + BC. rank1 (i ) − BC. rank1 (s + 1)). This formula
is correct, because we maintain the key order across contiguous groups, as we show soon in the
insertion process.

The rank/select operations are computed by linearly scanning the two bit vectors. This is not a
time bottleneck, since i − s is small in expectation for low load factors. Figure 5 gives an example.

13“V” for virgin and “C” for change [20].
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Fig. 5. Hash table H of quotients with cleary displacement storing the bit vectors BC and BV. The hash
value v of the entry stored in cell H [i] = 11 is equal to that of the entries H [i − 1] = 7 and H [i + 1] = 2,
because they are in the same group (marked by the rectangle in BC). The number of ones from s + 1 up to
this group is 2, so the hash value of the group is the second one in BV starting with s + 1, which is s + 2 in
this example.

With BV and BC, cleary needs only 2|H | additional bits of space. The rearranging strategy is simi-
lar to Hopscotch hashing [38], where entries are rearranged such that the distance of an entryq(K )
to h(K ) is within a cache line.

Insertions are done in the following way: Suppose that we want to insert K into the cell H [p]
with p = h(K ). If H [p] is empty, then we are done by setting H [p] ← q(K ), BC[p] ← 1, and
BV[p] ← 1. If H [p] is not empty, then we check in BV[p] whether there is a group with hash
value p.

• If this is the case, then we find this group as above by locating the largest position s < p with
H [s] being empty and then linearly scanning the cells until we find this group. We scan to
the end of this group, checking if one of the stored quotients matches the quotient q(K ) we
want to insert.

— If we find such a quotient, then we are done, since the element we want to insert has
already been inserted.

— Otherwise, we reach the end of this group at position i . We shift all succeeding consecutive
cells (i.e., the contents of H , BC and BV) that are not empty by one position to the right,
and then insert q(K ) at position i + 1, setting BC[i + 1]← 0.

• Last, if there is no such group, then we find the group with the preceding hash value, ending
at position i , and do the same steps (we shift the cells and insert q(K )). However, this time,
we set BV[p]← 1 and BC[i + 1]← 1.

In our sparse layout, we partition not only H but also BV and BC into sections. We can handle
the bit vectors with the same logic as for handling satellite data. This works well, because we do
not rely on rank or select support data structures, that is, we naively scan both bit vectors.

3.3 Identifier

The identifier is an integer in the range [1..ρ], where ρ = Ω(n) is defined independently for each
hash table (cf. Table 4).

Displacement array D. All approaches maintaining the displacement array D (such as elias and
layered) can guarantee that a hashed element will not be moved until rehashing. Therefore, the
identifier is the position in the hash table at which an element is stored, thus ρ = |H |.

cleary. Because cleary might move elements upon insertions, we cannot simply use the posi-
tions in H as identifiers. Instead, we use the pair (h(K ),д) for a key K , where д is the number
of keys that are in the same group as K and have been inserted in H prior to K . This identifier
stays unchanged upon insertions [21, p. 282] and can be stored in lg( |H |λ) bits, where λ is the
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maximum group size. For λ = Ω(lgn/ lg lgn), it is guaranteed that a rehashing can be delayed for
Θ(n) insertions [65, Section 2.3], which yields the bounds for ρ in Table 4.

3.4 Other Collision Resolutions

A displacement strategy is usually based on the collision resolution, which is linear probing in our
case. In fact, we can also use bidirectional linear probing [1], as originally proposed by Cleary [20],
by considering negative values in the displacement array. Other strategies like Cuckoo-Hashing,
instead, do not make much sense as ID dictionaries, since we would need to store the identifiers
explicitly to support element swapping. If the identifiers are not necessary (e.g., our lz78 and lzw
trie representation cht in Section 4.2.2 only needs a compact hash table), then other strategies like
Hopscotch hashing [38] or Robin-Hood hashing [16] can also be combined with our displacement
strategies above, yielding other interesting compact hash tables.

Here, we focus on a compact hash table resorting to closed addressing by hashing entries to a
bucket with a limited maximum size. Besides the one given in Table 4, which we name bucket (it
is called cht in Reference [49]), Köppl et al. [49] proposed another compact hash table called grp,
using B ( |K |,n) +O (n) bits and with O (lg |K |) worst-case time for insert and O (1) expected time
for lookup. Unfortunately, this table groups the buckets similarly to cleary but in such a way that
it is not clear how to represent the identifiers in a space-friendly way to guarantee Ω(n) insertions
before a rehashing.

3.5 Open-addressing Implementations

For the practical implementation of our open-addressing hash tables, we describe how to perform
resizes and which hash function we choose.

First, we double the number of cells ofH on rehashing, that is, when reaching the maximum num-
ber of entries α |H | for a user-defined constant α ∈ (0, 1], which we call the maximum load factor.

3.5.1 Table Size. We choose the hash table size |H | to be a power of two. Having |H | = 2k for
k ∈ N, we can compute the remainder of the division of a hash value by the hash table size with a
bitwise-and operation: h(K ) mod 2k = 1 + ((h(K ) − 1) & (2k − 1)), which is faster in practice (see,
e.g., Reference [54]).

3.5.2 Reasons for Linear Probing. Linear probing inserts a tuple with key K at the first free en-
try, starting at the hash valueh(K ). It is cache-efficient if the keys have a small bit width (i.e., fitting
in a computer word). Using large hash tables and small keys, the cache-efficiency can compensate
the chance of more collisions [8, 37]. Linear probing excels if the load ratio is below 50%, and it is
still competitive up to a load ratio of 80% [14, 53]. Nevertheless, its main drawback is clustering:
Linear probing creates runs, that is, entries whose hash values are equal. With a sufficiently high
load, it is likely that runs merge and long sequences of entries with different hash values emerge.
When looking up a keyK , we have to search the sequence of successive cells starting at the h(K )th
cell until finding a tuple whose key is K or an empty entry. Fortunately, this search is fast if the
maximum load factor α ∈ (0, 1] is not too close to 1, since it takes O (1/(1−α )2) expected time [47]
under the assumption that the used hash function h distributes the keys independently and uni-
formly. In practice, even weak hash functions (like those we use in this article) tend to behave as
truly independent hash functions [18].

3.5.3 Bijective Transform. We follow the ideas of Poyias et al. [65] for the bijective trans-
form: We use f (K ) = aK mod p with h(K ) := f (K ) mod |H | and q(K ) := � f (K )/|H |�,
where a ∈ [1..p − 1] is a randomly chosen constant, and p is the first prime such that
p > |K |.
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Since p ≤ 2|K | [36, p. 343] (see also Reference [17]), it holds that q(K ) = O ( |K |/|H |), and
thus the quotients stored in H require lg |K | − lg |H | + O (1) bits. With this information, we can
reconstruct aK mod p = q(K ) |H | + h(K ), and then K = a−1 · (a · K ) mod p, where a−1 is the
modular multiplicative inverse of a with modulus p, which can be computed with the extended
Euclidean algorithm in O (lg |K |) time in a precomputation step [46, Section 4.5.2].

Note that the obtained hash functionh(K ) = f (K ) mod |H | is only 1-independent for randomly
chosen a and p. Just 1-independence is not sufficient to ensure randomness in the case of linear
probing; this has been proven only for 5-independence [62, 63]. To make the hash function 5-
independent, the component a · K of our bijective transform f should become a polynomial of
degree four, f (K ) = (a0 + a1K + a2K

2 + a3K
3 + a4K

4) mod p. However, we do not know how to
invert this function f for arbitrarily chosen constants a1, a2, a3, a4 ∈ [1..p − 1].

Luckily, the following experiments reveal that those theoretical reservations do not have a sig-
nificant impact on the practical performance of the scheme.

3.6 Experiments

We evaluate our proposed sparse layout with experiments measuring their usefulness compared
to the plain layout. Our focus lies on inserting and querying elements, which are the main tasks
for the lz78 construction.

For the open-addressing Bonsai tables, we append subscripts “P” or “S” if the respective variant
uses the plain or sparse form, respectively. We set the load factor of all open-addressing hash
tables to α ← 0.95. For layered = layered2, we set b0 := 4, and use std::unordered_map as the
dictionary for all values with bit width > b0. For elias, we set the block lengths to 1,024.

We evaluated all the compact hash tables mentioned in Figure 6 on randomly generated inputs
consisting of 32-bit keys and 8-bit values. The first observation is that the sparse variants indeed
save space while being somewhat slower than their plain counterparts. The variant layeredP is
one of the extreme solutions, being the fastest option both for insertion and querying but also
the worst solution regarding space requirements. While its sparse variant layeredS has nearly as
good query times, it is outpaced by several other approaches for insertions. clearyS and clearyP
are always superior to eliasS and eliasP with respect to time and mostly to memory, and are better
balanced than the layered variants. The most space-economical approaches are grp, followed by
clearyS, eliasS, and bucket. For the insertions, bucket is faster than grp, which is again faster than
clearyS. At querying, all these variants behave roughly the same.

Comparison and Outlook. We conclude that grp and cleary are well-suited as compact hash
tables. If we focus on small identifiers, then both approaches are inferior to layered, which is a
well-suited Bonsai table. In the rest of this article, we stick to

• grp and cleary for compact hash table representations, and to
• layered2 and layered3 for Bonsai table representations, where layered3 uses bucket as the

compact hash table in the middle layer.

4 LZ TRIE REPRESENTATIONS

In this section, we focus on the classic lz78 and lzw algorithms described in Section 2.1.2. These
algorithms compute the respective factorization by maintaining the lz trie in memory. For the
lz trie, we study five representations providing different tradeoffs between computation speed
and memory consumption. All representations have in common that they work with dynamic
arrays.
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Fig. 6. Managing randomly generated 32-bit keys and 8-bit values with the compact hash tables described
in Section 3.

Resize Hints. The usual strategy for dynamic arrays is to double the size of an array when it
becomes full. To reduce the memory consumption, a hint on how large the number of factors z
might be is convenient for a dynamic lz trie data structure. We provide such a hint based on
Lemma 2.1. At the beginning of the factorization, we let a dynamic trie reserve enough space to
store at least

√
2n elements without resizing, as this is the lower bound on the number of factors.

Upon enlarging a dynamic trie, we usually double its size. However, if the number r of remaining
characters to parse is below a certain threshold, then we scale the data structure up to a value with
which we expect that all factors can be stored without resizing the data structure again. Let z ′ be
the computed number of factors up to now. If r > n/2, then we use z ′ + 3r/ lg r as an estimate
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Fig. 7. Array data structures of binary built on the lz78 example given in Figure 1.

(the number 3 is chosen empirically14), derived from z − z ′ = O (r/ logσ r ) based on Lemma 2.1.
Otherwise, we interpolate z ′ + z ′r/(n − r ) with the assumption that the ratio between z ′ and n − r
will be roughly the same as between z and n.

4.1 Deterministic LZ Tries

We first cover two trie implementations that use arrays to store at position x the node labeled with
the factor index x ∈ [1..z].

4.1.1 Binary Search Trie. The first-child next-sibling representation binary maintains its nodes
in three arrays. A node stores a pointer to one of its children, and a pointer to one of its siblings.
It additionally stores the label (i.e., a character) of the edge to its parent. The trie binary takes
2z lg z + z lgσ bits when storing z nodes. Figure 7 gives an example. To navigate from a node v to
its child with label c ∈ Σ, we take the first child ofv and then sequentially scan all its next siblings
until finding a node storing the character c . We propose three variants regarding the order of
the siblings: In the first variant, called binary, we store the siblings in the order in which they are
inserted. In the second variant, called binarymtf, we apply a move-to-front heuristic: We store a new
child as the leftmost child, shifting all other children to the right. Similarly, we make each child
we visit the leftmost child. This heuristic is 2-competitive with the number of accesses needed by
the optimal child ordering [68]. In the last variant, called binarys, we sort the nodes according to
the character on their incoming edge. This helps us to speed up unsuccessful searches, as we can
stop when accessing a node whose incoming edge has a label larger than the label of the query.

4.1.2 Ternary Search Trie. The Ternary Search Trie [13], ternary, differs from binary in that a
ternary node stores one more pointer to a sibling: A node of ternary stores a character, a pointer to
one of its children, a pointer to one of its smaller siblings, and a pointer to one of its larger siblings.
The trie ternary then takes 3z lg z+z lgσ bits when storing z nodes. Similarly to binary, we do not
rearrange the nodes. To navigate from a node v to its child with label c ∈ Σ, we take the pointer
to one of its children and then binary search for the sibling storing the character c: Given that we
are at a node storing a character d , we

• take its smaller sibling if c < d ,
• take its larger sibling if c > d , or otherwise
• descend to the current child, since c = d .

4.1.3 Space Analysis. Since we double the arrays when they become full, our peak memory
usage happens during the last resizing, where we keep the old trie with m cells and the new trie
with 2m cells in memory, where z ∈ (m, 2m]. The best and worst cases are z = 2m and z =
m + 1, respectively. Let m be the last size of a trie before doubling its size. For binary, we need
m lg(m2σ ) + 2m lg(4m2σ ) = 3m(lg(m2σ ) + 4/3) bits of space, which is (3/2)z (lg(z2σ ) − 2/3) bits

14There are artificial texts like an for which we overestimate the number of factors.
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Table 5. Upper and Lower Bound of the Maximum Memory Used during
an lz78/lzw Factorization with z Factors

Space [bits] Space [bytes]

Trie Entry Best Case Upper Bound Practice

binary lg(z2σ ) 3
2z (lg(z2σ ) − 2

3 ) 3z (lg(z2σ ) + 4
3 ) 27m

ternary lg(z3σ ) 3
2z (lg(z3σ ) − 1) 3z (lg(z3σ ) + 2) 39m

hash lg(z2σ ) 3
2α
z (lg(z2σ ) − 2

3 ) 6
α
z (lg(z2σ ) + 4

3 ) 27
α
m

cht lg(2αzσ ) 3
2α
z (lg(αzσ ) + 8

3 ) 3
α
z (lg(αzσ ) + 11

3 ) 129
8α
m

rolling w 3
α
z (w + lg(z) − 1

3 ) 3
α
z (w + lg(z) + 2

3 ) 36
α
m

The size of a fingerprint is w bits. The best case and the upper bound are the values for z = 2m

and z =m, respectively, where m is the capacity of the respective trie (i.e., the maximum number
of storable nodes without a reallocation of memory). The last column gives the maximum
memory peak when setting w = 64, lg m = 32, and lg σ = 8 to constant, which is the setting in
our practical evaluation in Section 4.4.

for the best case z = 2m. For ternary, we needm lg(m3σ )+2m lg(8m3σ ) = 3m(lg(m3σ )+2), which
is (3/2)z (lg(z3σ ) − 1) bits for the best case. Table 5 puts these space bounds in relation to the
following trie data structures.

4.2 LZ Tries with Hashing

A dictionary (such as a hash table) can simulate a trie by representing the trie nodes as elements in
the dictionary: Given a trie edge (u,v ) with label c , we use the unique key (�, c ) to store v , where
� is the label (factor index) of u; the root is assigned the label 0. This allows us to find and create
nodes in the trie by simulating top-down-traversals. This trie implementation is called hash in the
following: If an operation on the dictionary of hash can be carried out in O (1) expected time, then
we can carry out the whole factorization in O (n) expected time.

We use a hash table as underlying implementation of the dictionary of hash. If the resize hint
described at the beginning of Section 4 suggests that the next power of two is sufficient for storing
all factors, then we set the maximum load factor α to 0.95 before enlarging the size (if necessary).
We also implemented a hash table variant that changes its size to fit the provided hint. This variant
then cannot use the fast bit mask (cf. Section 3.5.1) to simulate the operation mod |H |. Instead, it
uses a practical alternative that scales the hash value by |H | and divides this value by the largest
possible hash value,15 that is, |H |h(K )/(maxK ′ h(K ′)). We mark those hash table variants with a
plus sign, for example, hash+ is the respective variant of hash.

4.2.1 Space Analysis. Let m be the capacity of H , that is, the maximum number of elements H
can store before a rehashing is needed (this is α |H | for open-addressing hash tables having |H |
cells). The hash table always stores trie nodes with labels that are at most m; this is an invariant,
since we enlarge the hash table and consequently letm grow before inserting a node with labelm+1.
Therefore, the key of a node can be represented by a �lg(mσ )�-bit integer by interpreting a key as
a single integer with

[1..m] × Σ→ [0..mσ − 1], (y, c ) �→ (σy + c ). (2)

Consequently, the hash table needs (m/α )�lg(m2σ )� bits of space. Since an entry of binary has the
same space cost, the total space cost of hash is the same as that of binary divided by the maximum
load factor α .

15http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/.
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4.2.2 Compact Hashing. We can further reduce the space requirements by switching to one of
the compact hash tables described in Section 3. We call this approach cht, which works as follows:
When enlarging the compact hash table, we choose a new bijective transform and rebuild the entire
table with the new size and a newly chosen transform. We first choose a bijective transform f
according to Section 3.5.3, adjusting the prime number p ∈ [mσ ..2mσ ] of f such that f maps from
[1..p] to [1..p] bijectively. Since f is a bijection, the function

[0..mσ − 1]→ [1..|H |] × [0..�(2mσ − 1)/|H |�]
i �→ (h(K ),q(K )) := ( f (K ) mod |H |, � f (K )/|H |�)

is injective. Consequently, a quotient costs lg(2ασ ) bits, and therefore an entry uses lg(2ασm) bits
in total. With cleary using two bit vectors of total size 2|H | for the displacement, we obtain that cht
uses |H |(2 + lg(2ασm)) bits. Given thatm is the capacity of H before the last rehashing, our peak
memory usage during this rehashing needs |H | lg(2ασm) + 2|H | lg(4ασm) = (3m/α ) (lg(ασm) +
11/3) bits. In the best case, this is 3z (lg(αzσ ) + 8/3)/2α bits for z = 2m. This yields the following
result:

Theorem 4.1. We can compute the lz78 or lzw factorization online in O (n/(1 − α2)) expected

time using at most z (3 lg(zσα ) + 11)/α bits of working space, for a user-defined constant α ∈ (0, 1).

4.2.3 Rolling Hashing. Last, we present an alternative trie representation with hashing called
rolling. The idea is to maintain the Karp-Rabin fingerprints [43] of all computed factors in a hash ta-
ble such that the navigation in the trie is simulated by matching the fingerprint of a substring of the
text with the fingerprints in the hash table. Given that the fingerprint of the substringT [i ..i+�−1]
matches the fingerprint of a node u, we can compute the fingerprint of T [i ..i + �] to find the
child of u that is connected to u by an edge with label T [i + �]. We compute a fingerprint with

the randomized Karp-Rabin fingerprint family ID37 [50]16 with ID37(T ) =
∑ |T |

i=1 h(T [i])37 |T |−i

mod 2w , where w is the machine word size and h is a hash function that maps the alphabet uni-
formly to the range [0..232 − 1]. This rolling hash function discards the classic modulo opera-
tion with a prime number in favor of integer overflows due to performance reasons; this trick
was already suggested by Gonnet and Baeza-Yates [34]. The lz78/lzw factorization algorithm us-
ing rolling is a Monte Carlo algorithm, since the computation can produce a wrong factorization
if the computed fingerprints of two different strings are the same (because the fingerprints are

the hash table keys). With wrong, we mean that some computed referred indexes might differ
from the correct ones, and thus the decompression might produce a different string. Given that
rolling has a capacity to store m entries, an entry takes lgw + lgm bits. On rehashing, we need
m(w + lgm) + 2m(w + lg(2m)) = 3m(w + lgm + 2/3) bits. In the optimal case (z = 2m), this is
(3z/2) (w + lgm − 1/3) bits.

4.3 Algorithm Engineering Aspects

We consider the following options for tweaking the presented trie data structures to improve time
and/or space requirements: First, we propose jump pointers (Section 4.3.1), which help us traverse
the lz trie more quickly when parsing a long factor. Next, we propose two adaptations that use
multiple lz tries for the factorization. While the first variant (Section 4.3.2) is independent from
the actual LZ trie implementation, the second variant (Section 4.3.3) only makes sense with the
hash tries hash and cht. Finally, we propose a combination of these two variants (Section 4.3.4).

16https://github.com/lemire/rollinghashcpp.
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Fig. 8. Jump pointers with δ = 2. Top Left : We augment the node v whose depth is a multiple of δ with a
dictionary that helps us to directly traverse the δ characters of the string S downwards to the descendant u.
Top Right: An example trie. Bottom: The two dictionaries Dr and Db of the example trie.

4.3.1 Jump Pointers. Similarly to the word-packed lookup techniques of compacted tries
[11, 69], we can speed up the lz trie traversal by augmenting certain nodes with dictionaries to
jump over multiple heights: Given an integer parameter δ , we augment each nodeu having a depth
of the form δd with a dictionaryDu mapping strings of length δ to its descendants at depth δ (d+1)
whose heights are at least δ . Suppose that, during the factorization, we look for the factor having
the longest common prefix with the remaining text by traversing the lz trie. Whenever we reach
a node u having a depth of the form δd , we query Du for the string consisting of the next δ text
characters. If this string exists in Du , then it directly leads us to a descendent ofu at depth δ (d +1),
so we have processed δ characters in one step. Otherwise, we proceed character-wise from u. See
Figure 8 for an illustration.

We can maintain the jump pointer dictionaries Du as we build the trie: Suppose that we did an
lz trie traversal to add a new leaf �, where we visited the last 2δ nodes including the leaf � without
using a pointer of one of the dictionaries (i.e., we traversed the last 2δ nodes character-wise). This
means that the ancestor u of � at distance 2δ from � does not have a jump pointer to the ancestor
v of � at distance δ , which can only happen becausev was of height less than δ . However, the new
leaf � has made v of height δ and thus now we can add a jump pointer from u to v . By keeping
the last 2δ characters read from the text and the two last visited nodes whose depths are multiples
of δ in memory, we can easily augment the dictionary Du with v .

A hash table equipped with a hash function treating an input string as an integer array (by
means of word-packing) can hash a string of length δ in O (δ (lgσ )/w ) expected time and check
two strings for equality within the same time. Implementing Du as such a hash table results in
O (δ (lgσ )/w ) expected time for retrieving a pointer.
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The number of pointers is O (z/δ ), since we only add a node into a jump pointer dictionary
when (a) its depth is a multiple of δ and (b) its height is at least δ . This ensures that every node
v inserted in some Du has at least δ − 1 descendants that are not inserted in any dictionary. This
gives us an overhead of O ((z/δ )w ) bits. Matching a string of length � with the lz trie then costs
O (�/δ + δ ) time, since we need to compare less than 2δ edges without using a jump pointer. This
gives us O (n/δ +δz) time for the entire factorization. If we implement the dictionaries of the jump
pointers with a hash table and set δ := O (w/ lgσ ), then we pay O (((z lgσ )/w )w ) = O (z lgσ ) bits
of additional space for storing the pointers, but can query for a jump pointer in constant expected
time and therefore conduct the whole factorization in O (n lgσ/w +wz/ lgσ ) time, which is o(n)
for small alphabets and compressible texts with z = o(n lgσ/w ).

Especially for trie representations with (practically) slow lookup times like the compact hash
tables, this technique can help boost the factorization. On our datasets, we could observe a benefit
with δ = 8 (so the keys fit into a 64-bit machine word) when storing only jump pointers from
the root. We could not observe a benefit for deeper nodes, since it is less likely to query those
dictionaries, and it is even less likely to find the desired substrings.

4.3.2 Key-split Variant. The idea is to represent the lz trie with multiple trie instances with
different index ranges (for binary and ternary of Section 4.1) or different key bit widths (for hash
and cht of Section 4.2). For the former group, we store an array A of pointers to trie instances
such that A[k] stores the trie nodes whose labels are in the range [2k−1..2k − 1] for k ≥ 1. For the
latter group, this array A stores hash tables for each key bit width such that the kth hash table
A[k] manages keys whose binary representation uses exactly k bits. All solutions start with the
array A where only A[1] points to an allocated trie while the rest of pointers are null. The number
of pointers is lg z for the deterministic tries, and lg(zσ ) for the hash tries. Starting with k = 1,
whenever the trie A[k] becomes full, we allocate A[k + 1] with twice the number of cells of A[k],
that is, |A[k]| = 2|A[k − 1]| = ∑k−1

j=1 |A[j]|+ 1. On a global perspective, such an allocation increases
the total number of cells from m to 2m + 1.

On the upside, this technique can yield a speedup, since we omit the resize operations. cht can
profit from this technique with respect to memory consumption, since each compact hash table
can tailor its quotient bit width �lg|q |� individually according to the key bit width, whereas trie
data structures like binary represent a factor index implicitly as an array index or explicitly (as a
content in the arrays for the first child or next sibling) needing lg z bits in general.

On the downside, this method needs an additional pointer indirection from A to delegate a call
of insert or lookup with the key K (respectively, factor index K for the non-hash-based tries) to the
trie A[�lgK�], which can slow down the computation. Here, �lgK� is computable in constant time
on most architectures (and in theory by using small precomputed tables).

4.3.3 Key/Value-split Variant. When working with hash or cht, another possibility is to main-
tain multiple hash tables for each possible key and value bit widths, resulting in a matrixA of hash
tables such that the hash table A[k][v] stores keys and values with bit width k and v , respectively.
A has �lg zσ � rows and �lg z� columns, where the vth column stores all hash tables with value bit
width v .

A disadvantage is that, to find the value of a key K , we may need to query all (k,v )th hash
tables with k = �lgK�. Hence, the expected time for lookup becomes O (lgz). Nevertheless, we
can bound a root-to-leaf traversal on a path of length � in the lz trie to O (� + lg z) expected time
with the following amortization argument: While descending from the root to a leaf, the labels of
the visited nodes on the path are in increasing order, meaning that the returned values of lookup
are in increasing order. Therefore, whenever we query the (k,v )th hash table during a traversal,
we will never query a hash table with key and value bit widths smaller than k and v , respectively.
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In total, we selected at most � + �lg z� hash tables. This gives us a total expected running time of
O (n + z lg z) for the whole factorization.

On the upside, we can improve the memory footprint, since each hash table can store the values
bit-optimally. On the downside, we maintain more hash tables that might be far from being full.
This could be mitigated with the sparse hash table layout or by storing only entries with high key
and value bits in the matrix while keeping small entries in a single hash table (in particular, the
(k,v )th hash table with v < k − lgσ is always empty). We present next an engineered version
aiming to combine the best from this representation with previous ones.

4.3.4 Combined Four-tier Approach. We implement the compact hash table grp of Section 3 as
a four-tier trie data structure, where

(1) the children of the root are stored in a plain array,
(2) the keys whose bit widths are at most 8 + �lgσ � are stored in a single grp table,
(3) the remaining keys, subtracting 28+ �lg σ � from each, whose bit widths are below an integer

parameter β ≥ 0 are put in an array of grp tables for different key bit widths, as described
in Section 4.3.2, and

(4) all other keys are put in a matrix of grp tables with different key and value bit widths, as
described in Section 4.3.3.

We call this variant grpβ in the following experiments.

4.4 Experiments

We implemented our lz trie representations in the C++ framework tudocomp [22].17 The frame-
work provides the implementation of an lz78 and an lzw compressor. Both compressors are pa-
rameterized with an lz trie and an encoder. The encoder is a function that takes the output of the
factorization and generates the final binary output. We selected the encoder bit, which produces
the encoding as described in Section 2.1.3.

The lz78 and lzw compressors are independent of the lz trie implementation, that is, all the
trie data structures described in the previous sections can be easily plugged into the lzw or
lz78 compressors. Moreover, hash and cht work with any hash table or compact hash table, re-
spectively. Here, we used a simple linear-probing hash table for hash, and the compact hash ta-
ble cleary from Section 3 for cht. We additionally add unordered (the C++17 standard implemen-
tation std::unordered_map of a hash table) and grp as alternative implementations of hash and
cht, respectively. Finally, we incorporated the Judy array judy into tudocomp, which is advertised
to be optimized for avoiding CPU cache misses (cf. References [41, 52] for evaluations). We added
a lightweight wrapper around it to provide the same interface for all tries.18

Our implementation of cht uses clearyS as the default. Its variants using an array for each differ-
ent key bit width (cf. Section 4.3.2) or a matrix for each different key and value bit width (cf. Sec-
tion 4.3.3) have subscripts “k” and “kv,” respectively. We also add grp and grpβ parameterized with
β (cf. Section 4.3.4) as alternative implementations of cht.

We represent the indices of the factors with 32-bit integers. Hence, the values stored by hash,
rolling, and cht are 32-bit integers. Since we use a byte alphabet representing a character in 8 bits,
the keys of hash and cht are 40-bit integers. The fingerprints of rolling are 64-bit integers. For all
variants working with open-addressing hash tables, we initially set α to 0.3.

17The source code of our implementations is freely available at https://github.com/tudocomp.
18Unfortunately, the cedar trie [71] evaluated by Fischer and Köppl [29] fails to handle our datasets, which are many times
larger than the 200 MiB datasets studied there.
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4.4.1 Structure of the Benchmarks. We study the time and space tradeoffs of all the aforemen-
tioned trie implementations during the factorization of all the datasets described in Table 3. To
ease the visualization, we put each trie in one of three groups. The first group comprises those
tries that do not show interesting characteristics and are therefore evaluated only in Section 4.4.2.
The lz78 and lzw factorization benchmark results of all the other tries are visualized in Figures 10
and 11 and in Figures 12 and 13, respectively. We provide a joint evaluation in Figures 10 and 12,
and then separate time-efficient (Section 4.4.3) from memory-efficient (Section 4.4.4) implementa-
tions in Figures 11 and 13. In each plot, a vertical dashed line at eight bits marks the size of a single
character such that every approach to the left of this line uses less memory than the space of the
input data.

4.4.2 Preliminary Evaluation. A preliminary benchmark in Figure 9 allows us to discard some
alternatives upfront.

First, we observe that binarys is always less performant than binary, while binarymtf is some-
times a little bit faster and sometimes a little bit slower than binary. An empirical conclusion is
that applying sorting seems not to pay off. Indeed, we see a similar behavior when using a hash
table with a sorting technique like ordered hash tables [1] or Robin-Hood hashing [16] for hash.
We also apply the trie split techniques introduced in Section 4.3.2 and 4.3.3 only to the compact
hash tables, as we do not see any benefits for the other trie variants. For instance, we observe that
the variant binaryk using multiple binary tries for different key bit widths (Section 4.3.2) is inferior
to the plain binary representation.

Second, unordered always uses much more space than hash, to the extent that we could not
benchmark unordered on commoncrawl without running out of memory (therefore, there is
no data point available for that instance). Except for fibonacci, hash is also always faster that
unordered.

Last, we study the jump pointer technique applied to binaryk and grp0, tagged with the names

binaryJ
k and grpJ

0, respectively. We see only a slight time improvement, which is always tied with
an increase in the memory requirement for storing these pointers.

Therefore, to simplify the following benchmarks, we omit the variants of binary (such as binarys)
and unordered, as well as the jump pointer technique of Section 4.3.1.

4.4.3 Time-efficient Tries. From Figures 10 and 12, we observe that rolling, followed by its vari-
ant rolling+, is the most memory-hungry option, but also in multiple cases the fastest (for english,
proteins, and wikipedia). Remember that hash+ and rolling+ are variants of hash and rolling,
respectively, following our resize hint as explained in Section 4.2. The size of its fingerprints is a
tradeoff between space and the probability of a correct output. When space is an issue, rolling with
64-bit fingerprints is no match for more space-saving trie data structures. hash follows rolling and
its variants in terms of memory consumption. With 40-bit keys, it uses less memory than rolling,
but it is slightly slower on most datasets (an exception is commoncrawl). Depending on the quality
of the resize hint, the variants hash+ and rolling+ take 50% to 100% of the size of hash and rolling,
respectively. hash+ and rolling+ are mostly always slower than their respective standard variants,
sometimes slower than the deterministic data structures ternary and binary (cf. fibonacci, xml, or
gutenberg). binary’s speed excels in texts with very small alphabets (cf. dna, fibonacci), while
ternary usually outperforms binary on larger ones (cf. commoncrawl, wikipedia, and english).
However, binary is always smaller than ternary. The third-party data structure judy is always out-
performed by ternary or/and binary. Only cht and its variants can compete with binary in terms
of space, but it is significantly slower than all aforementioned implementations.
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Fig. 9. Evaluation of the lz78 factorization with the trie implementations studied in Section 4.4.2, namely,

binarymtf (binary using MTF-encoding), binaryk (binary using the technique of Section 4.3.2), binaryJ
k

(binaryk combined with the jump pointer technique of Section 4.3.1), binarys (binary with sorting), grpJ
0

(jump pointers applied to grp0 defined in Section 4.3.4 for β = 0), and unordered (hash with the C++ STL
hash table), which we omit in the following evaluations.

4.4.4 Space-efficient Tries. We evaluated cht with cleary as the default hash table and with
grp (cf. Section 3.4) and grpβ (cf. Section 4.3.4). The variants of cht described in Section 4.3.2 and
Section 4.3.3 are denoted chtk and chtkv , respectively. From the results shown in Figures 11 and 13,
we can conclude that chtkv is the most memory-efficient variant, but most of the times the slowest
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Fig. 10. Juxtaposition of all lz trie implementations for the lz78 factorization.

(an exception is wikipedia). chtk is often faster and more memory-efficient than cht (using just a
single cleary hash table). When comparing the alternative hash tables cleary and grp for cht, we
see that grp is most of the times faster, but not a winner with respect to the space. Here, we see
an improvement when using grpβ , which is grp with the technique of Section 4.3.4.

For grpβ , we conducted our experiments with β = {0, 10, 20, 30}, where β = 0 disables the key-
split array of Section 4.3.2, while β = 30 disables the key-value-split matrix of Section 4.3.3 for our
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Fig. 11. Evaluation of our lz trie implementations for the lz78 factorization.

datasets with �lg z� ≤ 32 and �lgσ � = 8. The evaluation shows that the larger the parameter β ,
the faster and less memory-efficient the data structure becomes. Overall, grpβ parameterized by
β forms most of the time a Pareto-front dominating the cleary variants (cht, chtk , and chtkv ) and
grp (an exception is fibonacci and commoncrawl, respectively).

4.4.5 Evaluation of rolling. Selecting a strong rolling hash function for rolling is crucial to avoid
the possibility of a hash collision. Hash collisions happened during the experiments when using
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Fig. 12. Juxtaposition of all lz trie implementations for the lzw factorization.

a simple rolling hash function such as h(T ) =
∑ |T |

i=1 (T [i] − 1) (σ + 1) |T |−i mod 2w , where w is the
word size and the modulo by the maximum value 2w surrogates the integer overflow.

The likelihood that the fingerprints of two different substrings match is anti-correlated to the
number of bits used for storing the fingerprint if we assume that the used rolling hash function
distributes uniformly. This means that the domain of the Karp-Rabin fingerprints can be made
large enough to be robust against collisions when hashing large texts. In our case, we used 64-bit
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Fig. 13. Evaluation of our lz trie implementations for the lzw factorization.

fingerprints because, unlike 32-bit and 40-bit fingerprints, the factorization produced by rolling
is correct for all test instances with the rolling hash function ID37. Nevertheless, this bit width
can be considered as too weak for processing massive datasets: Even if the rolling hash function
distributes uniformly, the probability of a collision is 1/264. Although this number is very small,
processing 109 datasets, each 200 MiB large, would give a collision probability of roughly 1%.
This probability can be reduced by enlarging the bit width, and hence improving the correctness
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Table 6. Performance Comparison of 64-bit and 128-bit Fingerprints of rolling with Its Variant
rolling+ when Computing the lz78 and lzw Factorization

lz78 lzw

dataset / time space time space
trie [μs/n] bits

n
[μs/n] bits

n

dna

rolling 0.16 23.17 0.15 23.17
rolling+ 0.15 16.63 0.17 16.90
rolling128 0.16 38.62 0.17 38.62
rolling128+ 0.17 27.72 0.19 28.17
english

rolling 0.12 18.00 0.13 18.00
rolling+ 0.13 16.15 0.18 16.34
rolling128 0.17 30.00 0.15 30.00
rolling128+ 0.16 26.92 0.17 27.23
proteins

rolling 0.14 32.65 0.16 32.65
rolling+ 0.19 23.56 0.20 26.02
rolling128 0.15 54.41 0.18 54.41
rolling128+ 0.23 39.26 0.34 43.37
xml

rolling 0.09 16.32 0.09 16.32
rolling+ 0.09 14.87 0.10 15.25
rolling128 0.09 27.19 0.13 27.19
rolling128+ 0.10 24.78 0.12 25.42

lz78 lzw

dataset / time space time space
trie [μs/n] bits

n
[μs/n] bits

n

commoncrawl

rolling 0.18 14.40 0.21 14.40
rolling+ 0.20 13.55 0.20 13.74
rolling128 0.21 24.00 0.20 24.00
rolling128+ 0.21 22.59 0.22 22.89
fibonacci

rolling 0.12 0.66 0.12 0.66
rolling+ 0.13 0.33 0.10 0.33
rolling128 0.11 1.10 0.13 1.10
rolling128+ 0.11 0.55 0.12 0.55
gutenberg

rolling 0.15 19.33 0.16 19.33
rolling+ 0.17 15.42 0.18 15.65
rolling128 0.13 32.21 0.18 32.21
rolling128+ 0.14 25.70 0.20 26.08
wikipedia

rolling 0.12 19.74 0.13 19.74
rolling+ 0.18 17.55 0.13 17.77
rolling128 0.12 32.91 0.13 32.91
rolling128+ 0.18 29.25 0.21 29.61

probability by sacrificing working space. We reran our experiments with 64-bit and 128-bit
fingerprints, and we measured time and space usage in Table 6. There, we observe that switching
to a greater bit width slightly degrades the running time, but severely degrades the space usage.
On all instances, the + variants (cf. Section 4.2) use less memory than the standard variants; on
fibonacci, rolling128+ uses even less memory than the default rolling.

Another option to sustain a correct computation is to check the output of the factorization. This
check can be done by reconstructing the text with the output and the lz trie built. However, a com-
pression with rolling combined with a decompression step takes more time than other approaches
such as hash or binary. Hence, a Las Vegas algorithm based on rolling is practically not interesting.

4.4.6 Compression Ratio. Finally, we compare the compression ratios obtained with the classic
encoding described in Section 2.1.3 with the Unix tool compress.19 This tool uses a modified LZW
coding and has the upper bound of 216 on the lz trie nodes. Whenever this upper bound is reached,
it no longer inserts new nodes into the lz trie; instead, it clears the trie based on a heuristic. Despite
being fast and memory-friendly, its compression ratios are inferior to the classic encoding working
without such kind of restriction, as can be seen in Figure 14.

In what follows, we study an alternative coding of the lz78 factors based on the Bonsai tables
(which are a sub-class of compact hash tables).

19We used the implementation ncompress version 4.2.4.6.
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Fig. 14. Compression ratios of the classic coding of lz78 and lzw described in Section 2.1.3, compared with
the Unix tool compress with its best compression.

5 LZ78 COMPUTATION WITH BONSAI TRIES

An application for the Bonsai tables introduced in Section 3 is the Bonsai trie introduced by Dar-
ragh et al. [21]. A Bonsai trie is an ID dictionary (defined in Section 3) withK := [1..ρ]×Σ,20 where
[1..ρ] is the domain of all identifiers of the ID dictionary. A node of the trie is represented by an
identifier. Given that the root is present as an entry in the hash table, every other node v with
identifier ιv is represented by the key (ιu , c ) such that lookup(ιu , c ) = ιv , where ιu is the identifier
of the parent u of v , and c is the character labeling the edge connecting u with v . The methods
insert, lookup, and key can be directly translated to trie methods:

• insert(ιu , c ) creates a leafv as a child of the node with identifier ιu , connecting
them by an edge labeled with c ∈ Σ, and returns the identifier ιv of v .
• lookup(ιu , c ) returns the identifier of the child of the node u with identifier ιu

that is connected to u with an edge labeled with c ∈ Σ, or ⊥ if such a child
does not exist.
• key(ιv ) returns the key (ιu , c ) of a node v with identifier ιv , where ιu is the

identifier of the parent u of v connected with v by an edge with label c .

For instance, we can insert a new child of a node with identifier ι with connecting edge label c
by inserting (ι, c ) into H . We additionally need the function root(), returning the identifier of the
root in the trie.

With the Bonsai trie, we can create the lz trie in a top-down manner. However, performing DFS
or BFS traversals on this trie implementation is not efficient: Although we can move with lookup

20We can represent elements of K by integers, transforming a pair (i, c ) ∈ K into an integer iσ + (c − 1) ∈ [1..(ρ + 1)σ ),
similarly to Equation 2 of Section 4.2.1.
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Table 7. Overview of the Results of Section 5

Theorem Time Internal Space External Space

Theorem 5.1 O (n) O (n lgσ/ logσ n) streaming
Theorem 5.2 O (n lgz) O (z lgσ ) streaming, overwritable
Theorem 5.3 O (n) O (z lgσ ) sequential reads/writes
Theorem 5.4 O (n lgσ ) O (z lgσ ) streaming

Times are the expected time for the lz78 factorization. Internal space is measured in bits.
Each solution has an external memory working space of z lg �ρ � bits, which can be used
only for streaming the final output, rewriting the streamed output, or used for reading
and writing.

to a specific child, enumerating all children can only be done by trying out all characters, which
is costly for non-constant alphabets.

Our following solutions for the lz78 factorization use a Bonsai table as an ID dictionary taking
O (tBonsai) time for any of the above operations (see Table 4 for concrete implementations) and
are based on a technique similar to hash (Section 4.2) along with its simplifying assumptions
on the hash function (Section 3.5.3): A usual analysis assumes that the hash function is chosen
independently of the set of keys to hash. For the Bonsai trie, however, a key (ι, c ) to hash depends
on the identifier ι, which in turn depends on the hash function for all known Bonsai tables. So, at
least in principle, the typical assumptions to prove 2-independence do not hold, even if we change
our bijective transform to the standard h(K ) = (a0 + a1K ) mod p for randomly chosen a0 and a1.

Assuming that we can read/write from/to disk sequentially with constant time per machine
word, we give an overview of our following results, which we additionally have collected in Table 7.
In Section 5.1, we start with a solution running inO (n) expected time while usingO (n lgσ/ logσ n)
bits of working space. The space can be lowered to O (z lgσ ) bits by running the algorithm O (lgz)
times, giving O (n lgz) expected time. We improve this time bound to O (n) expected time in Sec-
tion 5.2 with the help of external memory as working space. Finally, we can avoid working with
the external memory with the solution of Section 5.3, running in O (n lgσ ) time. The output of all
solutions consists of the Bonsai trie representing the LZ trie, and a list of the identifiers of the LZ
nodes sorted by creation time.

5.1 A Bonsai Table of Fixed Size

We start with a solution, called fix, which manages a Bonsai trie whose underlying Bonsai table
is sufficiently large such that it can guarantee no rehashing while populating the trie with all lz
trie nodes. To this end, we set the upper bound on the number of nodesm to the smallest number
with (m− 1) (logσ (m)− 3) ≥ n; recall Lemma 2.1. Thus,m = Θ(n/ logσ n). Further, we use an array
L[1..z] to store in L[x] the position in H where the lz trie node of the xth factor is stored. Each
entry of L takes �lg ρm� bits, where [1..ρm] is the domain of identifiers for a Bonsai table that can
storem entries. This array is generated on external memory in a streaming fashion.

To compute the next factor Fx = T [i ..i + � − 1], we start from the trie root with identifier
ι0 := root() and recursively lookup the identifiers ιk = (ιk−1,T [i + k − 1]) with k ≥ 1 until
lookup(ι�−1,T [i + � − 1]) = ⊥ does not exist in the trie. At this point, we

• insert the node representing the factor Fx = FyT [i + �− 1] with ι� := insert(ι�−1,T [i + �− 1]),
where Fy is represented by the node with identifier ι�−1, subsequently
• write the next value L[x]← ι� to disk, and
• continue with T [i + �..n].
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The working space is dominated by the large allocated Bonsai table. After we have computed
the factorization, we serialize the Bonsai trie such that it can be later reloaded into main memory
for decompression.

To improve the space needed for the serialization, we first write a bit vector B of length ρm

storing at B[ι] whether there is a key in H having identifier ι. Hence, B has exactly z ones, and
requires ρm bits. Having B, we only need to write the (non-empty) z entries ofH to the compressed
file, yielding a final compressed file size of z (lg ρm + lgσ ) + ρm bits. We call this representation of
the factorization the Bonsai coding.

If we select elias as the underlying Bonsai table, then we have ρm = O (m) and |K | =
ρmσ = O (mσ ). Hence, our Bonsai trie storing m = Θ(n/ logσ n) nodes needs O (B ( |K |, z)) =
O (n lgσ/ logσ n) bits of space according to Table 4, where we used thatB (x ,y) = Θ(y lg((x+y)/y))
for y ≤ x . With this space bound, we obtain the following theorem:

Theorem 5.1. We can compute the lz78 factorization in O (ntBonsai) time within O (n lgσ/ logσ n)
bits of main memory working space, streaming the Bonsai coding to disk.

To further reduce the output size, we can postprocess L to use only z lg z bits instead of z�lg ρm�
bits of disk space. For that, we scan L and replace L[x] by B. rank1 (L[x]). An original value can
be recovered with B. select1 (L[x]). Both operations work in constant time if B is equipped with a
rank- and select-support.

5.1.1 Decompression. We can decompress in streaming mode while using memory space only
for the Bonsai trie. For that, we only need to deserialize the Bonsai trie, keeping L still on disk.
Having the Bonsai trie representing the lz trie into memory, we read the consecutive entries of
L[1..z] in streaming mode, starting with L[1]. Suppose we read L[x] = ι� for an identifier ι� of
a node with an arbitrary depth �. Then, we know that there is a path (ι0, . . . , ι� ) from the root
with identifier ι0 to a node with identifier ι� , With (ι�−1, c�−1) ← key(ι� ) and (ι�−k−1, c�−k−1) ←
key(ι�−k ) for k ∈ [1..� − 1], we climb up from the node with identifier ι� until reaching the root
with (ι0, c0) ← key(ι1). Then, we append the string c0c1 . . . c�−2c�−1 to the decompressed text in
streaming mode. For that, we use a stack that we fill with up to maxx ∈[1..z] |Fx | characters. The
stack may require up to z lgσ bits, but this is still within our main memory budget.21 (Alternatively,
we can read L backwards and generateT from the end to the beginning at the expense of increased
I/Os.) Depending on the size of the serialized Bonsai trie, the decompression may require less main
memory working space than the classical method (cf. Section 2.1), where each factor is represented
by a character and a reference to an earlier factor index. There, the decompression is done in linear
time by keeping S and R in memory, which requires z lgσ + z lg z bits.

As a side note, the Bonsai coding permits retrieving the contents of any individual factor Fx by
traversing the lz trie upwards from L[x], just as done for decompression. This observation can
make our output useful as a practical compressed data structure for substring extraction as well.

5.1.2 Space Improvement. The obvious disadvantage of our simple factorization algorithm fix
is that it uses more than O (z lgσ ) bits of space when z = o(n/ logσ n), which is when it is most

interesting to compressT ! A simple workaround is to start withm =
√

2n based on the lower bound
on the number of lz78 factors (cf. Lemma 2.1). If, during the factorization, this limit is exceeded,
then we double the value of m and repeat the whole process. Since we may rerun the process
O (lgz) times, the total expected time is O (n lgz) = O (n lgn) (recall that lg z = Θ(lgn) according
to Lemma 2.1).22 In exchange, the main memory space is now always O (z lgσ ) bits. Further, the

21This stack size is a rough upper bound; a generally stricter bound is
√

2n lg σ bits [9, Lemma 1].
22In fact, the time is linear in most texts, because we process roughly a doubling amount of text in each run. In some texts,
however, this is not the case; consider n equal characters followed by other n random characters.
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extra space added to the compressed file due to the Bonsai trie is just O (z lgσ ) + ρm withm ≤ 2z.
We call this variant brute, inspired by the fact that it uses a brute force strategy to find z.

Theorem 5.2. We can compute the lz78 factorization in O (n lgz) expected time within O (z lgσ )
bits of main memory working space, streaming the Bonsai coding to a rewritable external memory.

Proof. Using elias as our Bonsai table representation, we have tBonsai = O (1) expected time
and ρm = O (m). Therefore, O (n lgσ/ logσ n) + ρ2z = O (z lgσ ) bits. �

Apart from the increased time, a flaw of this algorithm is that it may read T several times from
disk, and thus it is not a streaming algorithm. In the next sections, we explore two faster solutions
that in addition scan T only once.

5.2 A Growing Bonsai Table

We can obtain O (z lgσ ) bits of working space for any input text by letting the Bonsai table rehash
when reaching the maximum supported number of entries. We start with a Bonsai table that can
store m ←

√
2n elements without rehashing, since

√
2n is a lower bound on z (cf. Lemma 2.1).

Whenever we want to insert a new element into H storing alreadym elements, we allocate a new
Bonsai table H ′ capable of storing 2m elements and populate it with the trie nodes stored in H . By
doing so, we read T only once, but we now need to read and rewrite L on each rehash.

The main challenge is how to relocate each lz trie node u from H to H ′, since its identifier ιu
in H is mentioned not only in L but also in the identifiers of its children H .lookup(ιu , c ) for c ∈ Σ.
However, as explained, to map u from ιu to its new identifier ι′u in H ′, we need to know the new
identifier ι′w of its parent w . To resolve this dependency problem, we map the lz trie nodes top-
down. However, a simple DFS traversal on the lz trie is slow, because enumerating the children of a
nodew costs O (σ ) expected time: We can only tryH .lookup(ιw , c ) for all possible characters c ∈ Σ.

Instead, we relocate the nodes as follows: We scan L sequentially (on disk), starting with L[1].
Given we access L[x], we traverse the lz trie stored inH upwards to the root, starting at the nodev
with identifier L[x] (i.e.,v corresponds to the xth factor Fx ). During this traversal, we put the edge
labels c1, . . . , c |Fx | (with Fx = c1 . . . c |Fx |) of the traversed path on a stack. Since all the nodes
visited during this traversal, starting from the parent of v , must already exist in H ′, we can use
the computed stack of characters to traverse downwards in H ′. In detail, we traverse the trie of H ′

downwards from the root with ι′0 := H ′.root() and ι′
k

:= H ′.lookup(ι′
k−1, ck ) for k ∈ [1..|Fx |). Then,

we insertv intoH ′with ι′|Fx | := H ′.insert(ι′|Fx |−1, c |Fx | ). Finally, we rewriteL[x]← ι′|Fx | , because we
use ι′|Fx | as the identifier ofv from now on. In total, our retraversal costs O ( |Fx |tBonsai) time. Given
that H stores y factors, the total time for relocating all nodes is O ( |F1 . . . Fy |tBonsai) = O (ntBonsai).
Since we perform O (lgz) passes, the total time reaches O (tBonsain lg z) = O (tBonsain lgn).

With a technique similar to the jump pointers of Section 4.3.1, we can reduce the time to
O (ztBonsai logσ n) = O (ntBonsai) by storing, while relocating nodes from H to H ′, O (z/ logσ n)
sampled nodes of H in a (classic) hash tableW , which maps the identifiers of H to the identifiers
of H ′. The table W uses O (z lgσ ) bits, which is within our budget. During the relocation of the
nodes, we fill it with every lz trie node whose depth is a multiple of logσ n and whose height is at
least logσ n. By doing so, we ensure that O (z/ logσ n) nodes are sampled and that we traverse less
than 2 logσ n nodes in H from any identifier L[x] before reaching a sampled node, from which we
can descend in H ′ and update L[x] in time O (tBonsai logσ n). Thus, we do the complete relocation
in O (tBonsai |L| logσ n) time. Since the size of L doubles each time, we increase the table, the total
work amounts to O (z logσ n) Bonsai operations.

Once we have built H ′, we continue with H ′ and discard H . The peak space usage is when we
have both H and H ′ in memory, taking (3/α )m lgσ + O (m) = O (z lgσ ) bits with z ∈ (m..2m] and
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an open-addressing Bonsai table with the maximum load factor α = m/|H |. We can always keep
the entries of L within �lgσ � +O (1) bits, slightly expanding them when we retraverse L to rewrite
the new positions in H ′. At the end, L stores identifiers of the keys stored in a Bonsai table that
can store up to 2z entries, thus using z lg�ρ2z� + O (z) bits, which is O (z) bits for elias.

Theorem 5.3. We can compute the lz78 factorization in O (n) expected time within O (z lgσ ) bits

of main memory working space and O (z) bits of external memory, streaming the Bonsai encoding to

disk at the end. We need z lg2 z bits of I/O, or O ((z lg2 z)/b+ lg z) I/O transfers in the external memory

model with a block size of b bits.

5.3 Multiple Bonsai Tables

Similar to Section 4.3.3, a way to avoid rebuilding the Bonsai table is to maintain multiple Bonsai
tables Hh for h ≥ 0, starting with h = 0 and a single Bonsai table H0. When Hh becomes full (i.e.,
when its load factor reaches its maximum limit), we allocate a new tableHh+1, with |Hh+1 | = 2|Hh |,
where all the subsequent insertions take place from then on.

To properly address the nodes, we need to build a global identifier matching the entry of any
Bonsai table. Our idea is to regard the tables as their concatenation, that is, G := H0H1H2 . . .. In
this perspective, we compose a global identifier G .lookup(x ) := |H0H1 . . .Hh−1 | + Hh .lookup(x )
of a key x stored in table Hh by adding |H0H1 . . .Hh−1 | to the (local) identifier of x with respect
to Hh .

Suppose we are at a node u with the global identifier ιu in a table Hд and append a leaf v to u
with edge label c by insertingv into the current hash tableHh withHh .insert(ιu , c ). By doing so, we
leave no indication inHд of the existence ofv . A consequence is that, if we want to descend fromu
by the character c , then we must probe the tablesHд ,Hд+1, . . . ,Hh to see if a child with edge label c
was inserted in one of these later tables. Therefore, the cost of traversing towards a child worsens to
O (tBonsai lg z) time, because we can build at most lg z tables during the factorization. However, since
the children are always inserted later than their parents, the current table index does not decrease
as we descend from the root towards the node where we will insert the new leaf, and thus, we
do these O (lgz) probes once per inserted leaf, for a total time of O (tBonsaiz lg z) = O (tBonsain lgσ ).
The Bonsai coding now stores G = H1 . . .Hh and L.

This technique has the advantage that it treats T and L in streaming mode. The entries written
in L are final (note that their bit widths grow each time we start using a new table). These can be
compacted as outlined in Section 5.1 if we are willing to perform a second pass on L.

Theorem 5.4. We can compute the lz78 factorization in O (n lgσ ) expected time within O (z lgσ )
bits of main memory working space, streaming the Bonsai coding of the factorization to disk.

For decompression, we load all Bonsai tables H1, . . . ,Hh back into memory and treat them as
one global table G. Remembering that L stores the list of global identifiers of the lz trie nodes, we
can compute the local identifier ιv and the corresponding Bonsai table index д ∈ [1..h] from the
global identifier L[x] such that Hд .key(ιv ) = (ιu , c ), where ιu is the global identifier of the parent
of the node v having the global identifier L[x]. Since |Hд | = 2|Hд−1 | for every д ≥ 1, finding the
table Hд from the global identifier L[x] is a matter of dividing L[x] by |H0 | and then taking the
logarithm to base 2, similarly to Section 4.3.2.

Implementation Details. Each table Hд has its own identifier domain [1..ρ |Hд |], hash function
with prime number pд , and so on. The prime pд of its hash function must be larger than (ρ |H0 | +
ρ |H1 | + . . . + ρ |Hд | ) · σ , so any element (ι, c ) can be stored in H , where ι is a global identifier of
H0 . . .Hд . For the Bonsai tables using the displacement array such as layered and elias, we have
pд/ρ |Hд | = Θ(pд/|Hд |) ≤ 2σ + O (1).
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Table 8. Alias Names of the Algorithms Introduced in Section 5 Computing the Bonsai Scheme

Name Location Description

fix Section 5.1 and Theorem 5.1 fixed Bonsai table of maximum size, no rebuilding,
fix+ Section 5.4 fix knowing z in advance,
brute Section 5.1 and Theorem 5.2 try-and-error on different fixed table sizes,
grow Section 5.2 growing Bonsai table without node sampling,
grows Section 5.2 and Theorem 5.3 growing Bonsai table with hash table W storing the node sampling,
multi Section 5.3 and Theorem 5.4 multiple Bonsai tables.

5.4 Recompression

After having computed the lz78 factorization, we know the number of factors z, and therefore can
represent the lz trie with a Bonsai table that can just store z entries. Storing this dense Bonsai
table makes the bit vector B marking the free cells useless and can improve the compression ratio.
We can directly convert a Bonsai coding with the algorithm of Section 5.2 to this format. To see
how well this recompression may work, we add the variant fix+ of fix, which allocates a Bonsai
table that can store exactly z elements (the number of cells is then z/α , α being the maximum load
factor). fix+ requires the number of factors z of the input as an additional parameter.

5.5 Implementation

For the following experiments, we use layered2 and layered3 of Section 3.2.3 as the Bonsai table,
indicating the use of the latter with a subscript “3” in the alias names listed in Table 8. We use
bucket (Section 3.4) as the compact hash table in the second layer of layered3. The last layer
in both variants always uses the C++ STL class std::map, which is a balanced binary search
tree implementation. The coding consists of the bit vector B described in the paragraph before
Theorem 5.1, and the non-empty cells of the Bonsai table. Our compressors are publicly available
at https://github.com/koeppl/Low-LZ78.

We evaluated the experiments with the maximum load factors 1/α = 1.05, 1.10, 1.20, 1.40, 1.60
for layered, where the displacement values are stored in two or three layers with the first layer
being an array storing integers with a bit width of b0 = �lg 1/(1/α − 1)� for layered2 and b0 =

3,b1 = 7 for the first and second layer, respectively, for layered3. The idea behind b0 of layered2 is
that large displacement values become more likely with larger load factors.

We use Θ(lgσ ) as our sampling rate in grows; more precisely, �lg (p + |H |)/|H |� = Θ(lgσ ) for
a prime number p with |K | = |H |σ < p ≤ 2|H |σ , where K = [1..|H |] × Σ is the universe of keys
that can be stored in a Bonsai table H .

5.6 Experimental Results

We experimentally evaluate our introduced algorithms computing the Bonsai coding and compare
them with some space-efficient solutions empirically observed in Section 4 for computing the clas-
sic lz78 code, namely, grpβ , defined in Section 4.3.4, and binary and ternary, defined in Section 4.1.
We name the methods of this section as described in Figure 8. Like in Section 4.4, we measure the
time and memory needed for the factorization. We also measure these features for the decompres-
sion and study the overhead of the different Bonsai codings compared with the classic lz78 format
of Section 2.1.3. We do not show data points for fix and fix3 applied on fibonacci, because in this
instance the gap between the number of lz78 factors and its upper bound is too large, causing us
to allocate much more memory than actually needed.

Figure 15 shows the maximum RAM used by each structure during compression and the result-
ing compression time. Here, it can be seen that multi and multi3 largely outperform grow and
grow3, respectively, in both space and time, using 1.0–2.2 bits and 0.2–0.3 μsec per symbol with
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Fig. 15. Maximum RAM and time used during the lz78 factorizations with the Bonsai coding variants of
Section 5 and the space-efficient variants of Section 4.

1/α = 1.40 (omitting fibonacci). For the same space, the overhead of using multiple tables is lower
than that of rebuilding the table, which implies rereading the L array from disk. In general, the time
of multi and in particular multi3 is very sensitive to high load factors, without significantly im-
proving the space. Especially multi3 is one of the most memory-efficient variants. It gets close to
and even beats fix on most instances (with the exception of proteins, where the final-size guess
of fix is nearly optimal). The maximum space usage of grow occurs when it has to expand the table,
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at which moment it has the old and new tables in RAM. This requires more space than multi even
when the multi tables are emptier on average. Compared with the tries for the classic LZ coding,
we see that binary and ternary are always the fastest, but also among the least memory-efficient
approaches. The variant grpβ of cht is close to brute and fix, but it is almost always outperformed
by an instance of multi3.

Figure 16 shows the RAM used by each structure during decompression. This time grow always
obtains better space than multi, though it still requires more time. grow uses 0.9–1.8 bits and 0.1–
0.2 μsec per symbol, even outperforming fix, which uses much more space (except on proteins).
grow does not need to make the hash tables grow at decompression, thus it is much faster than
at compression and uses less space than multi, which has emptier tables. multi, in turn, is faster
than at compression because it traverses the paths upwards, although it still uses multiple tables.

Our classic lz78 decoder moves the arrays S and R into RAM, storing them in arrays with fixed
bit widths (i.e., 8 bits per entry in S and 32 bits per entry for R). We observe that decoding the
classic lz78 coding is faster than any of the Bonsai code decompressors. Its memory footprint,
however, is much larger than the codes using the lightweight layered3 Bonsai tables, though it is
competitive with the heavyweight layered2 Bonsai tables.

Our Bonsai encoders do not store the same information of a classical lz78 compressor. We expect
their compression ratio to be suboptimal, because they store hash tables with empty cells (or mark
those cells in a bitmap B), and they must store the displacements of the hash tables. An alternative
approach to store the Bonsai coding is to use the Elias-γ encoding for the displacement values (like
the hash table elias does). In Figure 17, we evaluate the use of Elias-γ encoding [23] for the first
layer of displacements stored by layered. We can observe that the maximum load factor and the
compression ratio are anti-correlated in most of the instances, that is, the higher the load factor,
the smaller the compressed size. For high load factors, however, the first displacement layer in
layered2 uses more bits per entry according to our definition of b0. Since the first layer is usually
mostly empty, the Elias-γ encoding produces a smaller output than dumping this array in its plain
form. This is, however, not true for smaller load factors, where the Elias-γ encoding can be even
more expensive (see the top tables in Figure 17 for examples). Since we gain with the Elias-γ when
encoding the best compression ratios, we stick to it in the following evaluations.

Figure 18 gives the best compression ratios of our algorithms along with the lz78 coding (see
Table 3). We observe that the coding using layered3 can be stored more compactly than the cod-
ing using layered2 except for grow, where we observe the contrary on some instances. In gen-
eral, the best compression ratios are obtained with variants of grow and brute, which (excluding
fibonacci) pose an overhead of 24%–37% over the plain lz78 encoding. The fully streaming algo-
rithm, multi, poses an overhead of 31%–41%. These ratios are obtained when using, roughly, the
minimum memory and maximum time for the factorization. Figure 19 relates the ratios with time
needed for computing the factorization. It can be seen that the given overheads are obtained with
a compression speed of 0.3–0.5 μsec per symbol for grow and brute, and 0.2–0.5 for multi.

6 CONCLUSIONS

We have presented the first practical evaluation of lz78 and lzw algorithms, mostly focusing in
low-memory footprints so large files can be processed. We introduced new compression algorithms
based on compact hashing, which can efficiently compute the lz78 and lzw factorizations in space
considerably less than the input size. For example, our most memory-efficient approaches, grp0
and grp10, typically use 25%–60% of the space required by the input text and compress the text at
a speed of about 1–2.5 MB/sec. If speed is of concern, then we can perform the factorization 1.5–5
times faster than a standard approach like judy, by using rolling or ternary, reaching a speed of
5–10 MB/sec.

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.14. Publication date: October 2021.



Engineering Practical Lempel-Ziv Tries 1.14:41

Fig. 16. Maximum RAM and time used during decoding of a file stored with one of the Bonsai coding variants
of Section 5. This is compared with the decompression of the same file compressed with lz78 using the classic
coding described in Section 2.1.3.

We then pushed even more on the space usage, developing a family of lz78 compression algo-
rithms that, under some simplifying assumptions, useO (z lgσ ) bits of main memory in expectation
(where z is the number of lz78 factors and σ is the alphabet size), that is, less memory space than
the O (z lgn) bits needed to store the compressed file (where n is the text length). These algorithms
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Fig. 17. Top: Compression ratios of the plain Bonsai coding and of the Bonsai coding with the stored dis-
placement values of the first layer in layered2 or layered3 encoded with Elias-γ (labeled with ‘γ ’). Bottom:
Compression ratios of fix (respectively, fix3) with and without Elias-γ encoding. We add γ in the subscript
if we apply Elias-γ encoding. For each dataset, we selected the best compression ratios while varying the
maximum load factor of the Bonsai table.

run inO (n lgσ ) expected time for compression and inO (n) expected time for decompression. Most
of them read the text and write the output in streaming mode, producing the output in a special
format.

None of the previous algorithms achieves such a low memory footprint. One of our most
memory-efficient variants, multi3, uses about half the space of the most memory-efficient imple-
mentation computing the classic lz78 factorization of most typical texts, at 2–5 MB/sec. Their
compressed format can be decompressed using typically 30%–60% of the memory requirement of
the classic lz78 decoder, while taking about 50%–100% additional time, that is, 5–10 MB/sec. A
disadvantage is that, although they compute the correct lz78 factorization and trie, their special
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Fig. 18. Compression ratios of our algorithms of Section 5 computing the Bonsai coding. We omit the “s”
variants of grow and grow3, since they only make a difference in the compression speed, not in the final
output. We compare these ratios with those of the classic coding of lz78 described in Section 2.1.3. For each
dataset, we selected the best compression ratios while varying the maximum load factor of the Bonsai table.

encoding is 25%–40% larger than the classic lz78 encoding, and thus they are weaker as plain
compressors.

This encoding overhead makes these latter compressors more interesting for other pur-
poses, such as building compressed text representations for substring extraction [67] or for the
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Fig. 19. Compression time versus the compression overhead, i.e., the ratio of the final compressed size over
the classical lz78 output size (cf. Table 3) minus 1. We clipped the plots at 100% compression overhead, where
the output size is twice the classical lz78 output size.

compressed-space construction of lz78-based text indexes [3]. In general, our insert-only com-
pact tries can be useful for many other applications unrelated to Lempel-Ziv compression.

As a final note for practical applications, we point out that writing a dedicated memory allo-
cator is crucial to actually achieving the space bounds observed by our experiments. This is be-
cause we monitored the sizes requested by calls to malloc or new, neglecting the costs for actually
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maintaining these requested parts of memory (i.e., both the memory allocator and our implemen-
tations maintain the lengths of the allocated arrays). In the usual setting, malloc stores additional
information about the size of the requested memory, which is again rounded up to be a multiple
of the machine word size. Having a lot of tiny memory fragments requested by a standard malloc
call considerably wastes much more memory than when using a memory manager tailored for the
compact hash tables studied here.
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