
2024年度冬の LAシンポジウム [24]

On Solving the Sparse Matrix Compression Problem Greedily

Dominik Köppl ∗ Vincent Limouzy † Andrea Marino ‡ Giulia Punzi §

Takeaki Uno ¶

Abstract

The sparse matrix compression problem asks for

a one-dimensional representation of a binary n× ℓ

matrix, formed by an integer array of row indices

and a shift function for each row, such that ac-

cess to the matrix can be done in constant time by

consulting the representation. It has been shown

that the decision problem for finding an integer ar-

ray of length ℓ+ k or restricting the shift function

up to values of k is NP-complete. In that light,

a greedy algorithm has been proposed to shift the

i-th row until it forms a solution with its prede-

cessor rows. Despite this greedy algorithm being

cherished for its good approximation in practice,

we show that it actually exhibits an approximation

ratio of Θ(
√
ℓ+ k).

1 Introduction

Binary matrices have ubiquitous applications in

computer science, such as in databases, data min-

ing, and machine learning. For instance, a binary

matrix can represent an incidence matrix of a bipar-

tite graph or a transition matrix of a finite automa-

ton. In practice, these matrices are often sparse,

which means that most of the entries are zero. To

∗University of Yamanashi
†University Clermont Auvergne
‡University of Florence
§University of Pisa
¶National Institute of Informatics

save space and time, it is desirable to compress

these matrices. One way to compress a sparse ma-

trix is to represent it as a one-dimensional array of

row indices and a shift function for each row. Such

a representation allows for constant-time access to

the matrix, and has already been proposed in the

1970s. It was also studied in the context of com-

pilers and databases in the 1980s [1]. The problem

of finding such a representation is known as the

sparse matrix compression problem, which we de-

note by smc. The original version of the decision

problem of smc is defined as follows:

Problem 1.1 (smc, [10, Chapter A4.2, Problem

SR13]). Given an n × ℓ matrix A[1..n][1..ℓ] with

n rows and ℓ columns and entries A[i][j] ∈ {0, 1}
for all i ∈ [1..n], j ∈ [1..ℓ], and an integer k ∈
[0..ℓ · (n − 1)], determine whether there exists an

integer array C[1..ℓ+ k] with C[i] ∈ [0..n] for every

i ∈ [1..ℓ+ k], and a function s : [1..n] → [0..k] such

that A[i][j] = 1 ⇔ C[s(i) + j] = i for all i ∈ [1..n]

and j ∈ [1..ℓ]. Here, we assume A[0][j] = 0 for all j

to allow setting C[i] = 0 for some i, modeling that

this entry is unassigned.

In what follows, we call C the placement and s

the shift function of the representation of A asked

by smc.

Example 1.2. Consider the smc problem with k =

2 for the following matrix A (of size 3× 5) defined

24 – 1

as follows (first zero row omitted):

A =

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 0 0 1


Intuitively, we wish to find a way to shift each row

in a way such that no column contains two ‘1’s, and

use this information to compress the matrix into

a one-dimensional vector of row indices of length

5 + 2 = 7.

For instance, the shift function s(1) = 0, s(2) =

2, s(3) = 1 allows no column collisions for the ‘1’s.

Such shift can be represented as follows:

0 1 0 0 1 0

→ → 0 1 0 1 0 0

→ 0 1 0 0 0 1

From this, we can obtain the placement C =

[0, 1, 3, 2, 1, 2, 3] by setting C[j] to be equal to the

only row index which has a 1 in column j after the

shift function is applied. Since such C is of the

desired length, the problem has a positive answer.

Solving this problem is not an easy task. For in-

stance, a brute-force algorithm checks for all possi-

ble shifts whether we can linearize the shifted ma-

trix A with C. However, the number of possible

configurations for the shift function s is (k + 1)n,

which is prohibitive even for a maximum shift k

of 1.

The optimization version of smc is to find the

smallest k such that there exists a solution. We can

also understand this problem as finding the smallest

upper bound on the maximum shift.

However, the decision problem is already NP-

complete, as shown by Even et al. [9]. They showed

that the problem is NP-complete by reducing the

3-coloring problem to smc. The 3-coloring

problem is to decide whether a given graph can be

colored with three colors so that no two adjacent

vertices have the same color.

However, here we study a modification of smc,

which we justify by the fact that the original prob-

lem does not take into account that the leftmost

columns of all rows could be empty (as in the ma-

trix of Example 1.2). So, we want to consider the

length of the placement (b1, . . . , bℓ+k) after trim-

ming its empty borders. It is therefore no longer

the case that minimizing the length of the place-

ment and minimizing the maximum length of a

shift are equivalent. For instance, a matrix consist-

ing of only the empty row would give a sequence

of length ℓ. We name our variant 1tetris, based

on the fact that we can model the problem as a

combinatorial puzzle of 1-dimensional polyominos

with gaps, which we call tiles in the following. The

problem is formally defined as follows.

Problem 1.3 (1tetris). Given a set of n binary

strings S1, . . . , Sn of length ℓ such that Si ∈ {◦, i}ℓ

and an integer k ∈ [0..ℓn], determine whether there

exists a placement S[1..k] ∈ ({◦} ∩ [1..n])k such

that Si has a match in S, where ◦ always matches

(making it possible to match longer strings with

shorter ones).

An instance of 1tetris with Si[1] = Si[ℓ] = i

is equivalent to smc if we increment k by ℓ. Vice

versa, an instance of smc is equivalent to 1tetris

when we

1. trim all columns by their prefixes and suffixes

of ’0’s,

2. decrement k by the length of the longest col-

umn after trimming,

3. map all remaining zeros to ◦, and

4. map each ‘1’ to its corresponding row index.

Example 1.4. For matrix A of Example 1.2, we

have a corresponding instance of 1tetris given by

S1 = 1◦◦1, S2 = 2◦2, and S3 = 3◦◦◦3. For k = 6,

a possible placement is S = 132123.

24 – 2

Lemma 1.5. A placement of 1tetris without

holes is optimal, but not every problem instance

admits a placement without holes.

2 Related Work

Ziegler [13] was the first who mentioned Prob-

lem 1.1. He gave a heuristic that tries to fit the

next row at the leftmost possible available posi-

tion. He also augmented his heuristic with a strat-

egy that rearranges the order of the rows by priori-

tizing the row with the largest number of ‘1’s. This

strategy is known as Ziegler’s algorithm. Despite

the fact that Ziegler’s algorithm is only a heuris-

tic, it is often used in practice due to its good

performance. For instance, Sadayappan and Vis-

vanathan [12] similarly studied practical aspects

of Ziegler’s algorithm, and Aho et al. [1, Section

3.9.8] recommend using Ziegler’s algorithm to rep-

resent the state transition of a deterministic finite

automaton (DFA) in a compressed form. However,

the approximation ratio of Ziegler’s algorithm has

not been studied yet.

Unfortunately, finding the optimal solution is

generally hard. Even et al. [9] gave an NP-hard

proof based on 3-coloring, which found an entry in

the textbook of Garey and Johnson [10, Chapter

A4.2, Problem SR13]. They showed that the prob-

lem is NP-complete even if the maximum needed

shift is at most two. Problem 1.1 has been adapted

to Bloom filters [4, 5, 8], and has also been studied

under the name Compressed Transition Ma-

trix [6, Sect. 4.4.1.3] problem. Finally, Bannai

et al. [2] showed that Problem 1.1 is NP-hard even

when the width ℓ of the matrix is ℓ ∈ Ω(lg n). Their

hardness proof can be applied directly to 1tetris,

proving that 1tetris is NP-hard even when all tiles

have a width of ℓ ∈ Ω(lg n).

Chang and Buehrer [3] considered a different

variant in which cyclic rotations of a matrix row are

allowed. However, this work is only practical and

does not provide any theoretical guarantees. An-

other variation is to restrict rows to have no holes

and to have not only one placement, but a fixed

number of placements of the same length, which re-

duces to a rectangle packing problem [7, Section 2].

Finally, Manea et al. [11] studied a variant of em-

bedding subsequences with gap constraints.

3 Preliminaries

The leftmost-fit greedy strategy processes the tiles

in the order in which they are given, for instance

by an queue.

1. Place the first tile at position 1.

2. Place the next tile at the leftmost position ≥ 1

at which the tile fits.

3. Repeat Step 2 until the last tile of the input

queue has been placed.

Ziegler’s algorithm runs the leftmost-fit greedy

strategy after sorting the input sequence by the

number of ‘1’s, starting with the tile that has the

larger number of ‘1’s. In this handout, we show the

following result on the approximation ratio of the

leftmost-fit greedy strategy and Ziegler’s algorithm.

Theorem 3.1. Both greedy strategies have an ap-

proximation ratio of O(
√
m) for 1tetris if the op-

timal solution has length m. This ratio is tight in

the sense that there is an instance for which both

strategies exhibit a ratio of Ω(
√
m).

4 Approximation Ratio of

Greedy Strategies

We proof Thm. 3.1 in two parts for the lower and

the upper bounds.

24 – 3

Table 1: X and Y for k = 4 with collisions at i1 = 1 and i2 = 13.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

X 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

Y 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

4.1 Lower Bound

We consider only two different types of tiles X

and Y with frequencies k − 2 and k − 1, respec-

tively. We define both tiles X and Y to be periodic

with roots 10k−2 and 10k−1, respectively. Since

k − 1 and k are co-prime, X[i] = Y [i] = 1 if and

only if i = 1+ jk(k− 1) for some integer j ≥ 0 and

j ≤ min(|X|, |Y |). Let us suppose that X and Y

have lengths of at least 1+k(k−1). We can then say

more generally that, for every d ∈ [0..k], there ex-

ists an i ∈ [1..k(k−1)] such thatX[i] = Y [i+d] = 1.

Thus, given that we placed Y as the first tile at po-

sition 1, the first position we can place X is in the

range [|Y | − 2k..|Y |]. Similarly, if we placed X as

the first tile at position 1, the first position we can

place Y is in the range [|X| − 2k..|X|]. Suppose

that we have placed Y first and second X at the

first available position. Further, suppose that we

want to place Y . Because Y is in conflict with it-

self, we need to shift it. However, we need to shift

to the last k position of the placed X, otherwise

some positions of Y are in conflict with the already

placed X. If we continue placing X and Y in alter-

nating order, we end up with a placement of length

Ω((k−2)(|X|−2k)+(k−1)(|Y |−2k)). Setting the

lengths of X and Y to k(k + 1) + 1, the placement

length is Ω(k3).

However, an optimal placement has length

Θ(k2). To see this, first place all k − 2 many

X tiles at positions 1, 2, . . ., 1 + k − 2. This

gives a placement of length 1 + k − 2 + |X| − 1 =

1 + k − 2 + k(k + 1) + 1 − 1 = k2 + 2k − 1. Next,

place all Y tiles at subsequent positions k2 + 2k,

k2+2k+1, . . ., k2+3k−2. The total length of this

placement thus is k2 +3k− 2+ |Y | = Θ(k2). Since

this placement is without holes, it is optimal by

Lemma 1.5. In total, the placement of the greedy

algorithm is at least Ω(k) times larger than the op-

timal solution of length Θ(k2). Since k is arbitrary,

the greedy algorithm selecting alternatively X and

Y tiles has an approximation ratio of at least
√
m,

where m = Θ(k2) being the length of the optimal

solution.

Finally, we can scale the lengths of each X and

Y tile individually to let Ziegler’s method behave

like the leftmost-fit greedy strategy. Since Ziegler’s

method greedily selects the remaining tile with the

highest number of ‘1’s, we make every X and Y

tile unique such that the method will select X and

Y in an alternating order. To this end, define

Xi = (10k−2)2i+11 and Yi = (10k−1)2i1. This lets

Ziegler’s precomputation step arrange the tiles in a

list [Yk−1, Xk−2, Yk−2, Xk−3, . . . , X1, Y1]. Like be-

fore, an optimal solution is to combine all Xi and

Yi, each separately into two placements without

holes, each of length Θ(k2). Analogously, Ziegler’s

method works like the alternating algorithm result-

ing in a string of length Ω(k3).

Corollary 4.1. Both greedy strategies have an ap-

proximation ratio of Ω(
√
m) for smc if the optimal

solution has length m.

Proof. If we write each tile as a row in a matrix,

then both greedy strategies have a maximal shift of

Ω(k3). Our solution without holes needs a maximal

shift of O(k2) to move the last Y . Therefore, the

approximation ratio is at least Ω(
√
m).

24 – 4

4.2 Upper Bound

Given that the length of the optimal solution is

m, assume for a proof by contradiction that one

of the greedy strategies generates a placement T

longer than (3m+ 1)m. The coarse idea is to split

T into two strings X and Y such that we can show

that X or Y have at least m many ‘1”s, which con-

tradicts the optimal length m by the pigeonhole

principle. In detail, we split T into a prefix X of

2m
√
m positions and a suffix Y of (m+ 1)

√
m po-

sitions. We further decompose X into chunks of

length 2m. Let C denote the chunk in X with the

minimum number of ‘1”s, which we define to be x.

We consider tiles that the greedy strategy could

not place in X and thus got placed into Y . Let P

be one of these tiles with the least number of ‘1’s,

which we define as y. Since the optimal solution has

length m, all tiles have lengths of at most m. In

particular, P is completely contained in Y , which

is composed of at least
√
m+ 1 tiles.

Since P could not be placed in X, P conflicts

with C at each position of C. Each conflict can be

expressed by the ranks of ‘1’ of the x ‘1’s in C and

the y ‘1’s in P . Using a counting argument for the

ranks ∈ [1..x] × [1..y], the product xy must be at

least as large as 2m, the length of C. In particular,

x or y must be at least
√
m, for which we have a

short case analysis.

• If x is at least
√
m, then X must have at least

m ‘1’s. That is because it has
√
m chunks and

each chunk has at least as many ‘1’s as C by

choice of C.

• If y is at least
√
m, then Y must have at least

m ‘1’s. That is because at least
√
m tiles have

been placed into Y , and each has at least as

many ‘1’s as P by choice of P .

In both cases, the number of ‘1’s in T must ex-

ceed m. We thus obtain a contradiction that T and

the optimal solution must contain the same num-

ber of ‘1’s, so the optimal solution must be longer

than m.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-

man. Compilers: Principles, Techniques, and

Tools. Addison-Wesley series in computer sci-

ence / World student series edition. Addison-

Wesley, 1986.

[2] Hideo Bannai, Keisuke Goto, Shunsuke

Kanda, and Dominik Köppl. NP-completeness

for the space-optimality of double-array tries.

arXiv CoRR, abs/2403.04951, 2024. doi: 10.

48550/ARXIV.2403.04951.

[3] Chin-Chen Chang and Daniel J. Buehrer. An

improvement to Ziegler’s sparse matrix com-

pression algorithm. J. Syst. Softw., 35(1):67–

71, 1996. doi: 10.1016/0164-1212(95)00086-0.

[4] Chin-Chen Chang and Tzong-Chen Wu. A

letter-oriented perfect hashing scheme based

upon sparse table compression. Softw. Pract.

Exp., 21(1):35–49, 1991. doi: 10.1002/SPE.

4380210104.

[5] Chin-Chen Chang, Huey-Cheue Kowng, and

Tzong-Chen Wu. A refinement of a

compression-oriented addressing scheme. BIT

Numerical Mathematics, 33(4):529–535, 1993.

doi: 10.1007/BF01990533.

[6] Jan Daciuk, Jakub Piskorski, and Strahil Ris-

tov. Natural language dictionaries imple-

mented as finite automata. In Carlos Mart́ın-

Vide, editor, Scientific Applications Of Lan-

guage Methods, volume 2, chapter 4. World

Scientific, 2010.

24 – 5

[7] Erik D. Demaine and Martin L. Demaine. Jig-

saw puzzles, edge matching, and polyomino

packing: Connections and complexity. Graphs

Comb., 23(Supplement-1):195–208, 2007. doi:

10.1007/S00373-007-0713-4.

[8] Peter C. Dillinger, Lorenz Hübschle-Schneider,

Peter Sanders, and Stefan Walzer. Fast suc-

cinct retrieval and approximate membership

using ribbon. In Proc. SEA, volume 233 of

LIPIcs, pages 4:1–4:20, 2022. doi: 10.4230/

LIPICS.SEA.2022.4.

[9] S. Even, D.I. Lichtenstein, and Y. Shiloah. Re-

marks on Ziegler’s method for matrix compres-

sion. unpublished, 1977.

[10] Michael R. Garey and David S. Johnson. Com-

puters and Intractability: A Guide to the The-

ory of NP-completeness. A Series of books in

the mathematical sciences. Bell Laboratories,

1979.

[11] Florin Manea, Jonas Richardsen, and

Markus L. Schmid. Subsequences with gen-

eralised gap constraints: Upper and lower

complexity bounds. In Proc. CPM, volume

296 of LIPIcs, pages 22:1–22:17, 2024. doi:

10.4230/LIPICS.CPM.2024.22.

[12] P. Sadayappan and V. Visvanathan. Efficient

sparse matrix factorization for circuit simula-

tion on vector supercomputers. IEEE Trans.

Comput. Aided Des. Integr. Circuits Syst., 8

(12):1276–1285, 1989. doi: 10.1109/43.44508.

[13] S. F. Ziegler. Small faster table driven parser.

Technical report, Madison Academic Comput-

ing Center, University of Wisconsin, 1977. un-

published.

24 – 6

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Approximation Ratio of Greedy Strategies
	4.1 Lower Bound
	4.2 Upper Bound

