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problem setting

given
♦ n 1-dimensional tiles
♦ a tile consists of blocks and gaps

task
♦ combine all n tiles to a single tile, called placement
♦ can fill gaps but blocks must not overlap
♦ goal: construct shortest placement
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problem setting

Lemma
a computed placement with no gaps is a
solution

Proof.
because blocks cannot overlap

⇓
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decision problems

minlength can you combine all tiles to a placement of length k?

maxshift if the first block of each tile is on the first column, can you form a
placement with a maximum shift to the right of at most k?

turns out that maxshift has already been studied under the name Sparse
Matrix Compression (smc) problem

♦ Garey+’79 showed that smc is NP-hard for k ≥ 2
♦ Bannai+’24 showed that both problems are NP-hard even for widths in
Ω(lg n)
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Problem (smc, [Garey+’79, Chapter A4.2, Problem SR13] )

given:

♦ n × ℓ matrix A[1..n][1..ℓ] with n rows and ℓ columns and
entries A[i ][j ] ∈ {0, 1} for all i ∈ [1..n], j ∈ [1..ℓ]

♦ integer k ∈ [0..ℓ · (n − 1)]
goal: check whether the following two can exist:

♦ an integer array C [1..ℓ+ k] with C [i ] ∈ [0..n] for every i ∈ [1..ℓ+ k], and
♦ a shift function s : [1..n] → [0..k] such that
A[i ][j ] = 1 ⇔ C [s(i) + j ] = i ∀ i ∈ [1..n], ∀ j ∈ [1..ℓ]

♦ assume A[0][j ] = 0 ∀ j to allow setting C [i ] = 0 for some i , modelling that
this entry is unassigned

applications:

♦matrix compression [Ziegler’77]
♦ search trie implementations
[Tarjan,Yao’79]

♦ compilers [Aho+’86]
♦ Bloom filters [Chang,Wu’91]
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from tiles to matrix

A =


1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1



solution:
♦ s = [6, 1, 2, 0]
♦ C = [4, 2, 3, 3, 4, 2, 1, 3, 4, 1]

B =


1 0 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0 1


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approximation algorithm

Ziegler’77: greedy algorithm: first fits first
♦ place first tile at first position
♦ for each subsequent tile: put it at the leftmost fitting position
♦ repeat

used in the classic textbook ”Compilers: Principles, Techniques, and Tools”,
Section 3.9.8

While we may not be able to choose base values so that
no next-check entries remain unused, experience has
shown that the simple strategy of assigning base values
to states in turn, and assigning each base[s] value the
lowest integer so that the special entries for state s are
not previously occupied utilizes little more space than
the minimum possible.
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approximation algorithm

Ziegler’77: greedy algorithm: first fits first
♦ place first tile at first position
♦ for each subsequent tile: put it at the leftmost fitting position
♦ repeat

♦ approximation ratio really so small?
♦ answer: NO, in fact: Θ(

√
m), where m is the optimal value!
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lower bound: Ω(
√
m) approximation ratio

♦ two different tiles: X and Y , X = (1 · 0k−2)k , Y = (1 · 0k−1)k

♦#X tiles: k − 2, #Y tiles: k − 1
♦ tiles are given in order Y ,X ,Y ,X ,Y , . . .
♦ each placement adds length at least k2 − k to the solution, so total length is
Ω(k3)

♦ contrarily all X and Y ’s can be combined within themselves to solid blocks
of length Θ(k2) (optimal value)

⇒ approximation ratio is
√
m
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greedy algorithm
♦ start with Y and find first fitting place for X

♦ X fits visible at the last k entries of Y
♦ next Y conflicts with put Y and X
♦ fits only at the last k entries of X
♦ recurse
♦ placement enlarges by |X | − k per put tile

Y =

X =
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greedy algorithm: recap
♦ have tiles of types X and Y each Θ(k) times
♦ each tile has length Θ(k2)
♦ per tile: enlarge placement by at least k2 − k
♦ total placement length: Ω(k3)
♦what is a shortest placement?

Y =

X =
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optimal solution

♦ first align all Y ’s

♦ all Y ’s fit perfectly
♦ same goes for all X
♦ solution is optimal since there are no gaps
♦ solution has length (|X |+ |Y |) + 2k ∈ Θ(k2)
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recap
♦ optimal solution length m ∈ Θ(k2)
♦ greedy algorithm solution length: Ω(k3)
♦ at least Ω(k) worse, where k ∈

√
m!

we can also show:
♦ by pigeonhole principle, greedy cannot be worse that O(

√
m)

⇒ greedy has approximation ratio
√
m

♦ given an n × ℓ matrix, we can solve both problems exactly in O(n2
ℓ
ℓn2ℓn)

time

⇒ For ℓ ∈ O(lg lg n): problems are in P
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open problems

1. Lower bound of Ω(
√
m) for any ordering?

2. Better approximation algorithms?

3. Is there an FPT algorithm parameterized by
♢ number of tile types?
♢ maximum number of blocks (’1’) in a tile?

4. maximum length ℓ of tiles
♢ Ω(lg n) ⇒ NP-hard Bannai+’24
♢ O(lg lg n) ⇒ P
♢ ω(lg lg n) ∩ o(lg n) ⇒ ?
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