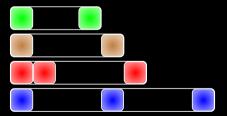
On Solving the Sparse Matrix Compression Problem Greedily

Dominik Köppl¹ Vincent Limouzy² Andrea Marino³ Giulia Punzi⁴ Takeaki Uno⁵

- ¹: University of Yamanashi
- ²: University Clermont Auvergne
- ³: University of Florence
- ⁴: University of Pisa
- ⁵: National Institute of Informatics

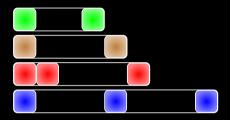


LSD & LAW for Costas

problem setting

given

- n 1-dimensional tiles
- a tile consists of blocks and gaps



task

- \blacksquare combine all *n* tiles to a single tile, called placement
- can fill gaps but blocks must not overlap
- goal: construct shortest placement

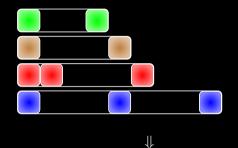
problem setting

Lemma

a computed placement with no gaps is a solution

Proof.

because blocks cannot overlap



decision problems

MINLENGTH can you combine all tiles to a placement of length k?
MAXSHIFT if the first block of each tile is on the first column, can you form a placement with a maximum shift to the right of at most k?
turns out that MAXSHIFT has already been studied under the name Sparse Matrix Compression (SMC) problem

■ Garey+'79 showed that SMC is \mathcal{NP} -hard for $k \ge 2$

Bannai+'24 showed that both problems are \mathcal{NP} -hard even for widths in $\Omega(\lg n)$

Problem (SMC, [Garey+'79, Chapter A4.2, Problem SR13])

■ $n \times \ell$ matrix $A[1..n][1..\ell]$ with n rows and ℓ columns and entries $A[i][j] \in \{0,1\}$ for all $i \in [1..n]$, $j \in [1..\ell]$

• integer
$$k \in [0..\ell \cdot (n-1)]$$

goal: check whether the following two can exist:

- an integer array $C[1..\ell+k]$ with $C[i] \in [0..n]$ for every $i \in [1..\ell+k]$, and
- a shift function $s : [1..n] \rightarrow [0..k]$ such that $A[i][j] = 1 \Leftrightarrow C[s(i) + j] = i \ \forall \ i \in [1..n], \ \forall \ j \in [1..\ell]$
- assume $A[0][j] = 0 \forall j$ to allow setting C[i] = 0 for some *i*, modelling that this entry is unassigned

applications:

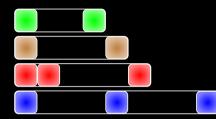
given:

- matrix compression [Ziegler'77]
- search trie implementations
 [Tarjan,Yao'79]

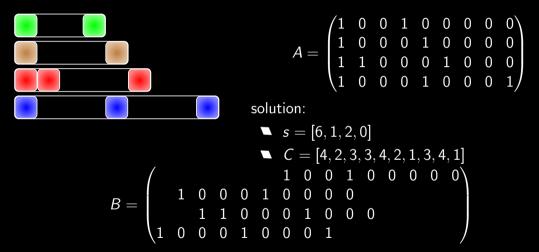
compilers [Aho+'86]
 Bloom filters [Chang,Wu'91]

5 / 12

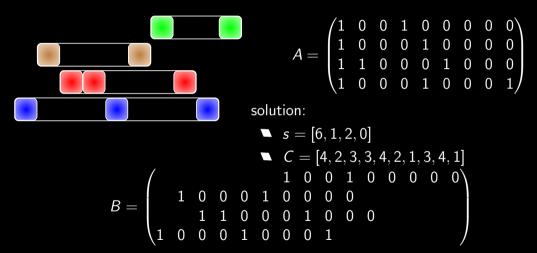
from tiles to matrix



from tiles to matrix



from tiles to matrix



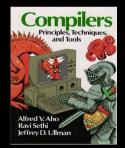
Ziegler'77: greedy algorithm: first fits first

- place first tile at first position
- for each subsequent tile: put it at the leftmost fitting position

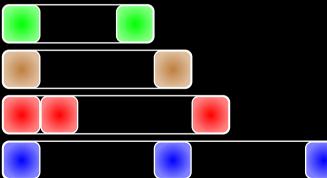
repeat

used in the classic textbook "Compilers: Principles, Techniques, and Tools", Section 3.9.8

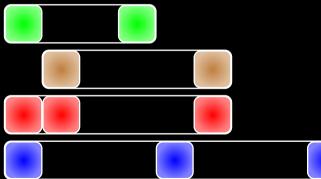
While we may not be able to choose *base* values so that no *next-check* entries remain unused, experience has shown that the simple strategy of assigning *base* values to states in turn, and assigning each base[s] value the lowest integer so that the special entries for state s are not previously occupied utilizes little more space than the minimum possible.



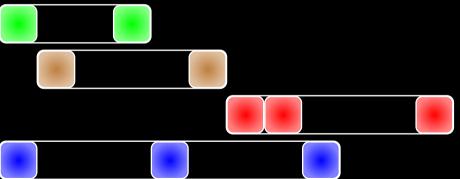
- place first tile at first position
- for each subsequent tile: put it at the leftmost fitting position
- repeat



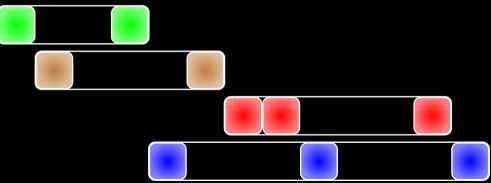
- place first tile at first position
- for each subsequent tile: put it at the leftmost fitting position
- repeat



- place first tile at first position
- for each subsequent tile: put it at the leftmost fitting position
- repeat



- place first tile at first position
- for each subsequent tile: put it at the leftmost fitting position
- repeat



- place first tile at first position
- for each subsequent tile: put it at the leftmost fitting position
- repeat

- approximation ratio really so small?
- **a** answer: NO, in fact: $\Theta(\sqrt{m})$, where *m* is the optimal value!

lower bound: $\Omega(\sqrt{m})$ approximation ratio

- \blacksquare two different tiles: X and Y, $X = (1 \cdot 0^{k-2})^k$, $Y = (1 \cdot 0^{k-1})^k$
- #X tiles: k-2, #Y tiles: k-1
- tiles are given in order Y, X, Y, X, Y, \ldots
- each placement adds length at least $\overline{k^2 k}$ to the solution, so total length is $\Omega(k^3)$
- contrarily all X and Y's can be combined within themselves to solid blocks of length $\Theta(k^2)$ (optimal value)
- \Rightarrow approximation ratio is \sqrt{m}

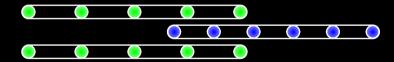
• start with Y and find first fitting place for X

• start with Y and find first fitting place for X

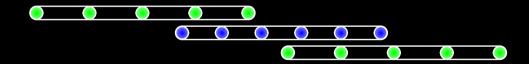
• start with Y and find first fitting place for X

- **•** start with Y and find first fitting place for X
- X fits visible at the last k entries of Y

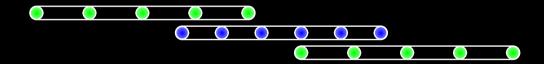
- **•** start with Y and find first fitting place for X
- X fits visible at the last k entries of Y
- next Y conflicts with put Y and X



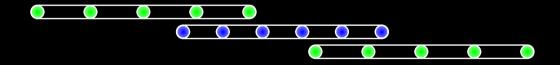
- **•** start with Y and find first fitting place for X
- **•** X fits visible at the last k entries of Y
- next Y conflicts with put Y and X



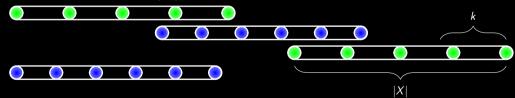
- **•** start with Y and find first fitting place for X
- **•** X fits visible at the last k entries of Y
- next Y conflicts with put Y and X



- **•** start with Y and find first fitting place for X
- X fits visible at the last k entries of Y
- next Y conflicts with put Y and X
- fits only at the last k entries of X

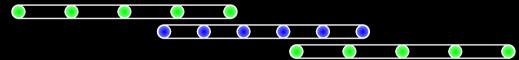


- **•** start with Y and find first fitting place for X
- X fits visible at the last k entries of Y
- next Y conflicts with put Y and X
- fits only at the last k entries of X
- recurse
- **\square** placement enlarges by |X| k per put tile



greedy algorithm: recap

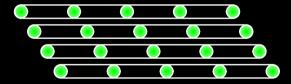
- have tiles of types X and Y each $\Theta(k)$ times
- each tile has length $\Theta(k^2)$
- per tile: enlarge placement by at least $k^2 k$
- total placement length: $\Omega(k^3)$
- what is a shortest placement?



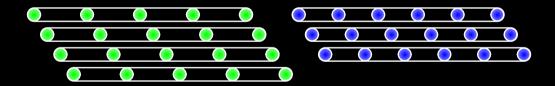
■ first align all Y's

■ first align all Y's

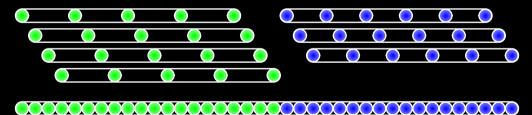
- first align all Y's
- \blacksquare all Y's fit perfectly



- first align all Y's
- \blacksquare all Y's fit perfectly
- \blacksquare same goes for all X



- first align all Y's
- all Y's fit perfectly
- same goes for all X
- solution is optimal since there are no gaps
- solution has length $(|X| + |Y|) + 2k \in \Theta(k^2)$



recap

- optimal solution length $m \in \Theta(k^2)$
- greedy algorithm solution length: $\Omega(k^3)$
- at least $\Omega(k)$ worse, where $k \in \sqrt{m!}$

we can also show:

- by pigeonhole principle, greedy cannot be worse that $\mathcal{O}(\sqrt{m})$
- $\Rightarrow\,$ greedy has approximation ratio \sqrt{m}
- Since given an $n \times \ell$ matrix, we can solve both problems *exactly* in $O(n^{2^{\ell}} \ell n 2^{\ell} n)$ time
- \Rightarrow For $\ell \in \mathcal{O}(\lg \lg n)$: problems are in \mathcal{P}

open problems

- 1. Lower bound of $\Omega(\sqrt{m})$ for any ordering?
- 2. Better approximation algorithms?
- 3. Is there an FPT algorithm parameterized by
 - number of tile types?
 - \Box maximum number of blocks ('1') in a tile?
- 4. maximum length ℓ of tiles
 - \square $\Omega(\lg n) \Rightarrow \mathcal{NP}$ -hard Bannai+'24
 - $\square \mathcal{O}(\lg \lg n) \Rightarrow \mathcal{P}$
 - $\Box \ \omega(\lg \lg n) \cap o(\lg n) \Rightarrow ?$