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Abstract: The Burrows–Wheeler Transform (BWT) is a widely used reversible data com-
pression method, forming the foundation of various compression algorithms and indexing
structures. Prior research has analyzed the sensitivity of compression methods and repet-
itiveness measures to single-character edits, particularly in binary alphabets. However,
the impact of such modifications on the compression efficiency of the bijective variant of
BWT (BBWT) remains largely unexplored. This study extends previous work by examining
the compression sensitivity of both BWT and BBWT when applied to larger alphabets,
including alphabet reordering. We establish theoretical bounds on the increase in compres-
sion size due to character modifications in structured sequences such as Fibonacci words.
Our devised lower bounds put the sensitivity of BBWT on the same scale as of BWT, with
compression size changes exhibiting logarithmic multiplicative growth and square-root
additive growth patterns depending on the edit type and the input data. These findings
contribute to a deeper understanding of repetitiveness measures.

Keywords: lossless data compression; Burrows–Wheeler Transform (BWT); bijective
BWT (BBWT); compression sensitivity; string transformations; Fibonacci words; Lyndon
factorization; compression efficiency analysis
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1. Introduction
The Burrows–Wheeler transform (BWT) [1] has attracted great attention in interdis-

ciplinary fields such as lossless data compression and text indexing. It lies at the heart
of compression algorithms like bzip2 and text indexing data structures such as the FM-
index [2]. By compressing single character runs of the BWT, we obtain a compressed but
reversible transformation, which can be augmented with techniques akin to the FM-index
to give rise to compressed text indices [3–8]. Because of its reversible nature, the BWT is
also used in bioinformatics applications such as sequence alignment and genome assem-
bly [9,10]. Workshops (e.g., [11,12]) and books (e.g., [13]) have been dedicated exclusively
to the BWT and its applications.

Given word T of length n, the BWT of T is a permutation of its characters. In detail, we
sort all cyclic conjugates of T lexicographically and concatenate the last characters of these
conjugates to form the BWT of T. The BWT is a reversible transformation by application of
the so-called Gessel–Reutenauer transform [14].

Among various variants of the BWT (e.g., [15–19]), the bijective BWT (BBWT) [20]
can be considered as one of the well-perceived ones that is a word isomorphism. A word
isomorphism maps a word to another word injectively, and each word is a unique image of
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another word. For instance, this is not the case for the BWT, whether we add additional
information such as an artificial delimiter (known as the $ character) or a starting position,
cf. [21–23].

In this article, we focus on the run-length compression of the BWT and the BBWT: run-
length compression is usually the first step in the compression pipeline of the BWT and
its variants. In addition, compressed text indices such as the r-index [4] store the BWT in
a run-length compressed form. The run-length compression of word T is the number of
maximal runs of equal characters in T. For instance, the word mississippi can be written
in an exponential notation as m1i1s2i1s2i1p2i1 and therefore has eight runs. We denote
the run-length compression of word T by runs(T). Given word T, we define the following
two repetitiveness measures:

• r = r(T) = runs(BWT(T)) and
• ρ = ρ(T) = runs(BBWT(T)).

In this article, we investigate the sensitivity of the BWT and the BBWT to single-
character edits. This means that we analyze how the run-length compression of the BWT
and the BBWT changes when we modify a single character of the input word. Previous
research has shown that the run-length compression of the BWT is sensitive to single-
character edits in binary alphabets [24]. Here, we extend this research to larger alphabets
and analyze the sensitivity of the BBWT to single-character edits. Research on compression
sensitivity is not a new topic, of which we are aware. We present following related work.

2. Related Work and Contribution
The sensitivity [25] of a repetitiveness measure m is the maximum difference in the

sizes of m(T) for word T and for a single-character edited word T′. Sensitivity measures the
robustness of a repetitiveness measure against small changes in the input word introduced
by various sources of input (source code changes, biological sequencing errors, typos, etc.).
Akagi et al. [25] reviewed known results that directly imply a sensitivity for repetitiveness
measures such as for Lempel–Ziv 78 [26] or the BWT [24]. Additionally, they offered and
improved upper and lower bounds on the multiplicative sensitivity of various compressors
and measures including the Lempel–Ziv dictionary compressors [27,28] and the smallest
string attractors [29].

In detail, for two words W1 and W2, we let ed(W1, W2) denote the edit distance between
W1 and W2. We define the additive sensitivity ASm and multiplicative sensitivity MSm of a
repetitiveness measure m by

• ASm(n) = maxW1∈Σn{m(W2)−m(W1) | W2 ∈ Σ∗ : ed(W1, W2) = 1}, and

• MSm(n) = maxW1∈Σn

{
m(W2)
m(W1)

| W2 ∈ Σ∗ : ed(W1, W2) = 1
}

.

The sensitivity has been studied for lexparse [30] by Nakashima et al. [31] and for the
size of the compact directed acyclic word graph [32] by Fujimaru et al. [33]. In particular,
Giuliani et al. [24] showed that MSr(n) = Ω(log n) and ASr(n) = Ω(

√
log n).

Our contribution. In this article, we show identical results for the BBWT, con-
firming that it is also sensitive to single-character edits. Concretely, we establish that
MSρ(n) = Ω(log n) with Theorem 5 and ASρ(n) = Ω(

√
log n) with Lemma 47. In detail,

we obtain the asymptotically same results regarding MSρ(n):

• in Theorem 5 for deletion,
• in Theorem 6 and Theorem 7 for substituting a character with a smaller or larger one,

respectively, and
• in Theorem 8 and Theorem 9 for insertion of a or a strictly smaller character #, respectively.

We also obtain the asymptotically same results regarding ASρ(n):
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• in Theorem 10 for deletion,
• in Theorem 12 for inserting a large character, and
• in Theorem 11 and Theorem 13 for substituting a character with a smaller or larger

one, respectively.

Additionally, we broaden the study of the sensitivity of the BWT by allowing larger
alphabets (Theorem 2) and alphabet reordering (Theorem 4), obtaining the same asymptotic
complexities as reported by Giuliani et al. [24].

Since our major contribution is on the BBWT, we also briefly review known results
related to it.

BBWT. Since its inception [20], the BBWT has been studied under various aspects.
We are aware of construction algorithms (cf. [34] or [35] and the references therein), in-
dexes [35] based on the BBWT, studies about the relationship of ρ and r [36], ρ(T) and ρ of
the reverse of T [37].

3. Preliminaries
In this section, we provide the necessary definitions and terminology used throughout

the paper. A list of symbols is given in Table 1.

Words. We let Σ be a finite and ordered alphabet with cardinality σ. The elements
of Σ are called characters. A word over Σ is a finite sequence W = W[0]W[1] · · ·W[n − 1] =
W[0..n − 1] of characters from Σ. The order of the alphabet induces the lexicographic order
on words, which we also denote by ≺lex.

We denote the length of W by |W|, with ε being the unique word of length 0. We denote
the set of words of length n by Σn, and represent the set of all words on Σ by Σ∗ =

⋃
n≥0 Σn.

Given word W = W[0..n − 1], we define its reverse by rev(W) = W[n − 1]W[n − 2] · · ·W[0].
If W = XYZ for words W, X, Y, Z, then X, Y, Z are, respectively, a prefix, a subword, and a
suffix of W. We call word W ′ a conjugate of W if and only if there is integer i ∈ [0..|W| − 1]
such that W ′ = W[i..|W|]W[0..i − 1]. In this case, we write W ′ = conji(W). In particular,
W = conj0(W). We call word U a circular factor of word W if it is a prefix of conji(W)

for some i ∈ [0..|W| − 1]; in this case, we call i (the starting position of) an occurrence of
U. If we can express word W as W = Vk for word V and integer k ≥ 2, then we call W
a power, otherwise we call W primitive. Finally, W is primitive if and only if it has |W|
distinct conjugates.

Given two words V, W, the longest common prefix of V and W, denoted lcp(V, W), is
the unique word U such that U is a prefix of both V and W, and V[|U|] ̸= W[|U|] if neither
of the two words is a prefix of the other.

The Burrows–Wheeler Transform (BWT). We define the BWT of word W based on
its conjugates. For that, we define two concepts, an order and a list of conjugates sorted
in that order. First, the omega-order [16] of two words T and S as follows: T ≺ω S if
either Tω ≺ Sω or Tω = Sω and |T| < |S|. Here, Sω denotes the infinite word obtained by
concatenating word S an infinite number of times. The omega-order coincides with the
lexicographic order if neither of two words is a proper prefix of the other but may differ
otherwise. Second, we let M(W) be the list of sorted conjugates of word W in omega-order.

Now, we can define the Burrows–Wheeler Transform (BWT) [1] of the word W, denoted
by BWT(W), as the word obtained by reading the last character of each conjugate in M(W).

For instance, the BWT of word mississippi is pssmipissii. By construction, it
follows that W and W ′ are conjugates if and only if BWT(W) = BWT(W ′). We denote
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by r(W) = runs(BWT(W)) the number of runs in the BWT of word W. For example,
r(mississippi) = runs(pssmipissii) = 8.

Table 1. Definitions of symbols introduced in this article.

Symbol Meaning

r run length of the BWT
ρ run length of the bijective BWT
n length
k index
# a character lexicographically smaller than a

c a character lexicographically larger than b

Fk kth Fibonacci word
fk kth Fibonacci number
Xk kth central word
Lk kth Lyndon Fibonacci word
F♭

k kth Fibonacci word deleting its last character
L♭

k kth Fibonacci Lyndon word deleting its last character
Pk abkaa

Ek abkabak−2

Qk abka

Q♭
k abk

Wk

(
∏k−1

i=2 PiEi

)
Qk

W♭
2k W2k deleting its last character

Pk bakbb

Ek bakbabk−2

Qk bakb

Q♭
k bak

Wk

(
∏k−1

i=2 PiEi

)
Qk

W♭
k W ′

k deleting the last character
Ck Lyndon word of Wk
C♭

k Ck deleting its last character b
Dk C♭

k deleting its last character a
Hk−1 Ek−1 changed into abk−1ak−3

Sk−1 Ek−1 changed into abk−1abcak−3

Rk−1 Ek−1 changed into abk−1acak−3

β(W) subword of BWT(W) corresponding to the range of contiguous conjugates prefixed by W
β′(W) subword of BWT(W) applied to a specific edit operation
α f2k−3 + f2k−5 + · · ·+ f3 + f1
M(W) the list of lexicographically sorted conjugates of word W

Lyndon Words. A word is called a Lyndon word if it is lexicographically strictly
smaller than all of its conjugates [38]. In particular, a Lyndon word must be primitive.
Each primitive word S has exactly one conjugate that is Lyndon. We denote this conjugate
by LynConj(S) and call it the Lyndon conjugate of S. The Lyndon factorization [39] of word
W is a unique factorization of W into Lyndon words. In detail, it decomposes word W
into a list of Lyndon words Se1

1 , Se2
2 , . . . , Sem

m such that W = Se1
1 Se2

2 · · · Sem
m , where Sm ≺lex

Sm−1 ≺lex · · · ≺lex S1 and ei ≥ 1. By construction, word S is Lyndon if and only if its
Lyndon factorization consists of only one factor, i.e., S itself. We denote the multiset of
Lyndon factors in the Lyndon factorization of S by L(S). As an example, we consider
LynConj(mississippi) = imississipp. The Lyndon factorization of mississippi is m ·
iss2 · ipp · i. We have L(mississippi) = {m, iss, iss, ipp, i}.



Mathematics 2025, 13, 1070 5 of 46

Bijective BWT (BBWT). The Bijective BWT (BBWT) [20] of word T is the word
obtained by sorting all conjugates of the Lyndon factors in the multiset L(T) in ω-order and
then concatenating the last character of each sorted conjugate. For example, the BBWT of
the word mississippi is ipssmpissii. In this article, we denote ρ(W) as the compression
ratio of BBWT, which means ρ(W) = runs(BBWT(W)). For instance, ρ(mississippi) =

runs(ipssmpissii) = 8.

Fibonacci Words. Fibonacci words are so-called standard words ([40], Section 10.1),
which are defined as follows. F0 = b, F1 = a, Fk+1 = FkFk−1, for every k ≥ 1. For all
k ≥ 0, |Fk| = fk, where { fk}k≥0 are the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, . . ., defined
by the recurrence f0 = f1 = 1, fk+1 = fk + fk−1, for k ≥ 1. Since Fibonacci numbers grow
exponentially in k, we have k = Θ(log |Fk|). We also introduce so-called central words [41]
Xk for k ≥ 2, which are palindromes defined by equation F2k = X2kab, F2k+1 = X2k+1ba

for all k ≥ 1. The central words X2k and X2k+1 are palindromes. In particular, X2 = ε. The
recursive structure of words X2k and X2k+1 is also known [42]:

• X2k = X2k−1baX2k−2 = X2k−2abX2k−1 and
• X2k+1 = X2kabx2k−1 = X2k−1baX2k.

We study Fibonacci words in this article because they have the minimal number of
BWT runs among binary words. This is because Mantaci et al. [43] have shown that the
BWT of a binary word has exactly two runs if and only if it is a conjugate of a standard word
or a conjugate of a power of a standard word. Further, there is rich literature (e.g., [44–46])
about Fibonacci words and their rotations.

4. Multiplicative Sensitivity of r by Ω(log n)
As a startup, we follow the steps of (Giuliani et al. [24], Section 3), who studied a

family of Fibonacci word-related words for which they could observe a multiplicative
sensitivity of Θ(log n) for the number of character runs in the BWT. We here show a similar
result, but use a new character (#) instead of one already appearing in the binary word. To
facilitate notation, we write < for <ω when sorting conjugates. We build our proofs on the
insights from the following results from the literature.

Lemma 1 (Remark 11 from [16]). All conjugates of a word have the same BWT.

Lemma 2 (Proposition 4 of [24]). We let F♭
2k be a word that removes the last character of F2k, then

r(F♭
2k) = 2k.

Lemma 3 (Lemma 7 of [24]). conjn−3(F♭
2k) is the smallest conjugate in M(F♭

2k).

Lemma 4. We let v ∈ Σ∗ be a Lyndon word of F♭
2k that contains at least two distinct characters

and let # be a character that does not occur in v. Then, r(v) ≤ r(#v) = r(v#) ≤ r(v) + 2.

Proof. We refer to conjn−3(F♭
2k) from Lemma 3 as v here if only 0 ≤ i, j ≤ f2k − 1. The con-

jugates of v with index i and j are conji(v), conjj(v), respectively. Also, we set the lexico-
graphic order between two conjugates as conji(v) < conjj(v); thus, v[i..|v| − 1]v[0..i − 1] <
v[j..|v| − 1]v[0..j − 1]. We prove this separately in two cases, where Figure 1 sketches
the setting.
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i |v| − 1 0 i − 1conji(v)

j |v| − 1 0 j − 1conjj(v)

Figure 1. Sketch of the setting conji(v) < conjj(v) considered in the proof of Lemma 4.

Case 1: |lcp(conji(v), conjj(v))| < min(|v| − i + 1, |v| − j + 1) ;
Case 2: |lcp(conji(v), conjj(v))| > min(|v| − i + 1, |v| − j + 1) .

The red rectangle in Figure 2 is an example of a common prefix of conji(v) and conjj(v).
In Case 1, it is conji(v) < conjj(v), meaning that the character of conji(v) in position
|lcp(conji(v), conjj(v))|+1 is smaller than in the one in the same position in conjj(v). Thus,
inserting # in position |v| does not change the lexicographic order between conji(v) and
conjj(v). The order is preserved.

i |v| − 1 0 i − 1#v[i..|v| − 1]#v[0..i − 1]

j |v| − 1 0 j − 1#v[j..|v| − 1]#v[0..j − 1]

Figure 2. Illustration of the first case in Lemma 4. Inserting # does not change the lexicographic order
between conji(v) and conjj(v).

The red rectangle in Figure 3 depicting the longest common prefix of the two strings
in question is longer than |lcp(conji(v), conjj(v))|. In Case 2, it must be i > j, which
means |v[i..|v| − 1]| < |v[j..|v| − 1]|. When it is i < j, then |v[j..|v| − 1]| < |v[i..|v| − 1]|,
meaning that # appears first in conjj(v). As a result, conjj(v) < conji(v), which contradicts
conji(v) < conjj(v). Thus, in Case 2, we only consider when it is i > j, as illustrated in
Figure 3.

i |v| − 1# 0 i − 1v[i..|v| − 1]#v[0..i − 1]

j |v| − 1 0 j − 1#v[j..|v| − 1]#v[0..j − 1]

Figure 3. Illustration of the second case in Lemma 4.

Furthermore, we distinguish the second case between two subcases: We let u be unique
circular factor which is smaller than all the other circular factors having the same length
in v.

Case 2 (a): when u is a prefix of v[i..|v| − 1];
Case 2 (b): when v[0..i − 1] is a prefix of u.

When it is Case 2 (a), u appears only in the prefix of v[0..i − 1]. Thus, the first difference
between conji(v) and conjj(v) lies within the unique occurrence of u. The situation is
depicted at Figure 4. After inserting the #, conji(v) becomes v[i..|v| − 1]#v[0..i − 1], creating
factor #u at position |v| − i + 1, which is not only unique but also smallest among other
factors of length |#u| in v. Any factor that appears in the same position in v[j..|v| − 1]#u is
greater than #u. Thus, the order is preserved.
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i |v| − 1# 0 i − 1v[i..|v| − 1]#v[0..i − 1]

j |v| − 1 0 j − 1u

u

#v[j..|v| − 1]#v[0..j − 1]

Figure 4. Illustration of Case 2 (a) in Lemma 4. Inserting # in does not affect lexicographic order
between conji(v) and conjj(v).

In Case 2 (a), u is the smallest prefix which appears only once in v[0..i − 1]. v is a
Lyndon word; thus, v[0..i − 1], it is also the smallest factor in v. However, in Case 2 (b), u
is longer than v[0..i − 1]. We sketch the situation in Figure 5, where we visualize u with
a purple rectangle. Therefore, v[0..i − 1] must appear more than twice in u. If v[0..i − 1]
appears only once, u is analogous with v[0..i − 1]. Also, from conji(v) ̸= conjj(v), there
must be a difference in v[0..i − 1]. Moreover, since v is primitive, v cannot be expressed
in the form Zk for word Z and a integer k ≥ 2. The first distinct character between
conji(v) and conjj(v) is within conji(v)[|v| − i + 1..|v| − 1]. We assume otherwise that
there is no mismatching character pair with v[0..i − 1] and the prefix of conji(v), which
is v[i..2i − 1]. Since v[0..i − 1] = v[i..[2i − 1], conji(v) also has a smallest prefix and it
contradicts with v, which is one and only Lyndon word. Moreover, conji(v) becomes
v[0..i − 1]v[i..2i − 1] . . . = v[0..i − 1]2 . . ., thus contradicting its primitivity.

In this way, after inserting a #, the analogous behavior of Case 2 (a) is observed.

# 0 i − 1v[i..|v| − 1]#v[0..i − 1]

0 j − 1#v[j..|v| − 1]#v[0..j − 1]

Figure 5. Illustration of Case 2 (b) in Lemma 4.

The order of original conjugates of v is preserved with respect to the original BWT
according to the cases above. Thus, the only difference in inserting # in v occurs in
conjugates of #v and v#. On the one hand, we observe that #v is now the smallest among
all conjugates of M(#v), and it ends with the last character of v. On the other hand, v#
becomes the second smallest conjugate and ends with #. Hence, we have BWT(#v) =
BWT(v)[0] · # · BWT(v)[1..|v| − 1], which concludes the proof. □

Theorem 1. We let F2k be the Fibonacci word of even order 2k > 4, and f2k = |F2k|. We let F♭
2k be

the word that results from substituting a b by a # at position f2k − 1. Then, r(F♭
2k#) = 2k + 2.

Proof. We let S = F♭
2k#. From Lemma 2, r(F♭

2k) = 2k. And by Lemma 3, we know
that conjn−3(F♭

2k) is the smallest conjugate among M(F♭
2k). By Lemma 4, we have

2k ≤ r(#conjn−3(F♭
2k)) ≤ 2k + 2. More precisely, it is 2k + 2 since #conjn−3(F♭

2k) is the
smallest conjugate in M(F♭

2k#) and conjn−3(F♭
2k)# is the second smallest conjugate. The

relative order among the conjugates of #conjn−3(F♭
2k) coincides with that of the conju-

gates of F♭
2k, using the same argument as in the proof of Lemma 4. This means that

to obtain BWT(S), it suffices to insert a # between the first two bs in BWT(F♭
2k). Since

r(#conjn−3(F♭
2k)) = r(#F♭

2k) = r(F♭
2k#), we obtain the claim. □
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5. Additive Sensitivity of r by Ω(
√

n)
In Section 4, we presented a word such that substituting one of its characters by

#, which is strictly lexicographically smaller than all its characters, resulted in a loga-
rithmic multiplicative increase in the number of runs r in the BWT. We now follow
(Giuliani et al. [24], Section 4), who presented a family of words where a single edit can
produce an additive increase of Θ(

√
n) in r. Like before, we want to study the sensitivity

when introducing a new character (#) in Section 5.1 or additionally when inverting the
order of the alphabet in Section 5.2.

Definition 1. For any k > 5, we let Pk = abkaa and Ek = abkabak−2 for all i ∈ [2..k − 1],
and Qk = abka. Then,

Wk =

(
k−1

∏
i=2

PiEi

)
Qk =

(
k−1

∏
i=2

abiaaabiabai−2

)
abka. (1)

The length of these words is

n =
k−1

∑
i=2

(3i + 4) + (k + 2) =
3k2 + 7k

2
− 9. (2)

Thus, k = Θ(
√

n). W♭
k is

W♭
k =

(
k−1

∏
i=2

PiEi

)
abk =

(
k−1

∏
i=2

abiaaabiabai−2

)
abk. (3)

We append #, which is lexicographically smaller than character a at the last part of W♭
k and

name the resulting word W♭
k#.

Also, Wk, with its characters a and b swapped, is defined as Wk, which is

Wk =

(
k−1

∏
i=2

PiEi

)
Qk =

(
k−1

∏
i=2

baibbbaibabi−2

)
bakb. (4)

To characterize the BWT of words W♭
k#, Wk and W♭

kc, we partition each of the BWT conjugates

M(W♭
k#), M(Wk), M(W♭

kc) into distinct groups of consecutive conjugates having identical
prefixes and define the subword of BWT(Wk) corresponding to each of these prefixes.

Given X ∈ Σ∗ , we denote by β(X, Wk) the subword of BWT(Wk) corresponding
to the range of contiguous conjugates prefixed by X. We omit the second parameter of
β(X, Wk) when it is clear from the context. β(X) is the concatenation of the last characters
of conjugates with prefix X. For example, when X is banana, there are two conjugates
starting with the prefix an which are ananab and anaban; thus, β(an) of banana is bn.

Lemma 5. In Proposition 28 of [24], it is already known that r(Wk) = 6k − 12.

5.1. BWT of Wk After Substituting a Character

The lemmas presented below characterize the BWT of Wk after certain modifications
have been applied. Rather than deriving the entire structure of the BWT from scratch, we
analyze how replacing a character affects either the relative order or the final character of
the conjugates of Wk. We let M(W♭

k #) be the list of lexicographically sorted conjugates of
the word W♭

k #.
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Lemma 6. β(#, W♭
k #) = b.

Proof. The first conjugate in M(W♭
k #) is #P2 · · · b. Since the lexicographic order of # is

smaller than all other characters, a conjugate starting with # is smaller than every conjugate
starting with a. # can be obtained by the last character of W♭

k#, which is preceded by a b. □

Lemma 7. β(aib, W♭
k #) = bak−i−2 for all i ∈ [4..k − 2].

Proof. Given integer i ∈ [4..k − 2], the conjugates of M(W♭
k #) starting with aib are

ai−1Pi+2 · · · b < ai−1Pi+3 · · · a < · · · < ai−1Pk−1 · · · a < ai−1Q♭
k# · · · a.

In M(W♭
k #), a prefix aib can only be obtained by concatenation of the suffix ai−2 of Ei,

with the prefix ab of Pi+1 or the prefix of ab of Q♭
k# if i = k. Note that all these conjugates

end with an a, with the exception of the conjugate starting with ai−1Pi+1, since this is where
the unique occurrence of bai−1b can be found. □

Lemma 8. β(aaab, W♭
k #) = b5(ab)k−6a.

Proof. The conjugates in M(W♭
k #) starting with aaab are

aaE2 · · · b < aaE3 · · · b < aaE4 · · · b < aaP5 · · · b < aaE5 · · · b
< aaP6 · · · a < aaE6 · · · b < · · · < aaPk−1 · · · a < aaEk−1 · · · b

< aaQ♭
k# · · · a.

In M(W♭
k #), the conjugates that start with aaab can be obtained for all i ∈ [4..k − 1]

from the concatenation of the suffix aa from Ei with Pi+1 or with Q♭
k# if i = k. If i ∈ [2..k− 1],

concatenation of the suffix aa of Pi with the prefix ab of Ei also makes aaab. Also, we can
sort the conjugates with following order:

⋃4
i=2{aaEi} ∪

⋃k−1
i=5 {aaPiaaEi} ∪ {aaQ♭

k#}. All
conjugates of aaEi end with a b and if i ∈ [5..k − 2], aa of Ei concatenated with Pi+1 or Q♭

k#
if i = j also ends with a. On the other hand, aaP5 ends with b. □

Lemma 9. β(aab, W♭
k #) = aaba2k−8.

Proof. The conjugates in M(W♭
k #) starting with aab are

aE2 · · · a < aE3 · · · a < aP4 · · · b

< aE4 · · · a < aP5 · · · a < aE5 · · · a < · · · < aPk−1 · · · a < aEk−1 · · · a < aQ♭
k# · · · a.

Each of the conjugates starting with aaab from Lemma 8 induces a conjugate starting with
aab, obtained by shifting on the left one character a . It follows that all of these conjugates
end with an a. The other conjugates that start with aab are those obtained by concatenating
the suffix a of E3 with the prefix ab of P4 which ends with b. □

Lemma 10. β(ab, W♭
k #) = bk−2#aba2k−6.

Proof. The conjugates in M(W♭
k #) starting with the prefix ab are

abak−3Q♭
k# · · · b < abak−4Pk−1 · · · b < · · · < abP3 · · · b

< P2 · · · # < E2 · · · a < P3 · · · b

< E3 · · · a < P4 · · · a < E4 · · · a < · · · < Pk−1 · · · a < Ek−1 · · · a < Q♭
k# · · · a.
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For all two distinct integers i, i′ with i > i′ ≥ 0, we have abaib < abai′b. Thus, the first
conjugate in the lexicographic order starting with ab is the one followed by the longest a.
The smallest of these conjugates can be found from the suffix abak−3b of Ek−1, followed by
the suffix abai−2b of Ei for all 2 ≤ i ≤ k − 2 taken in decreasing order.

By construction of Ei, for all 2 ≤ i ≤ k − 1, these conjugates must end in a b. The
remaining conjugates starting with ab are exactly those of either Pi or Ei, for all 2 ≤ i ≤ k− 1,
or Q♭

k#. The conjugates can be obtained by shifting on the left one character a from the
conjugates starting with aab from Lemma 9, with the exception of one starting with P3

since it ends with a b, and the other starting with P2 which ends with #, while the other
conjugates end with an a. □

Lemma 11. β(bi#, W♭
k #) = b for all 1 ≤ i ≤ k − 1.

Proof. The conjugate in M(W♭
k #) starting with bi# for all 1 ≤ i ≤ k − 1 is bi#P2 · · · b. This

conjugate can be obtained by a suffix of Q♭
k#, and is always preceded by a b. □

Lemma 12. β(ba, W♭
k #) = ak−5bbbabk−5abk−2a.

Proof. The conjugates in M(W♭
k #) starting with ba are

bak−3Q♭
k# · · · a < bak−4Pk−1 · · · a < · · · < ba3P6 · · · a

< baaE2 · · · b < baaE3 · · · b < baaE4 · · · b < baaP5 · · · a
< baaE5 · · · b < baaE6 · · · b < · · · < baaEk−1 · · · b < baP4 · · · a

< babak−3Q♭
k# · · · b < babak−4Pk−1 · · · b < · · · < babP3 · · · b < babbbaa · · · a.

We have as many circular occurrences of ba as the number of maximal character runs
of b in W♭

k#. Then, for all 2 ≤ i ≤ k − 1,

Case 1: one run of b in Pi and
Case 2: two runs in Ei .

For Case 1, we have one conjugate starting with baaEi for each i ∈ [2..k − 1]. Since
each run of b within each word of Pi is of length of at least 2, all conjugates in (1) end with b.
For Case 2, for all i ∈ [2..k − 1] we can distinguish between two subcases, based on where
ba starts:

Case 2 (a): from the first run of b in Ei, which is babai−2Pi+1 when i ∈ [2..k − 2] or
babak−3Q♭

k# if i = k − 1. Since b has at least 2 runs, conjugates with prefix
(2.1) always end with b.

Case 2 (b): from run bai−3Pi+1 for all i ∈ [2..k − 2], and bak−3Q♭
k#. Each conjugate of

Case 2 (b) is obtained by shifting two characters to the right in each conjugate
in Case 2 (a). Therefore, these conjugates end with an a.

Observe that only for Case 2 (b) we have conjugates starting with baaaa. Hence,
the first conjugate in the lexicographic order is the one starting with bak−3Q♭

k#, followed by
those starting with bak−4Pk−1 < bak−5Pk−2 < · · · < baaaP6.

Among the remaining conjugates, those that have the prefix baaa start with baaP5

from Case 2 (b) or baaEi from Case 2 (a). Thus, we can sort them according to lexicographic
order. Then, the remaining conjugates, which start with baa, are obtained by baP3 only.
Finally, let us focus on the conjugates from Case 2 (a), which start with ba. These conjugates
are sorted according to the length of the runs of as following the common prefix bab,
similarly to the sorting of conjugates from Case 2 (b). The last conjugate left is the one
starting with bP3 from Case 2 (b). Since bP3 is lexicographically greater than all other cases,
this is the greatest conjugate of W♭

k# starting with ba and we can conclude our claim. □
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Lemma 13. β(bja, W♭
k #) = ab2k−2j−2a for all 2 ≤ j ≤ k − 2.

Proof. The conjugates starting with bai with integer 2 ≤ j ≤ k − 2 in M(W♭
k #) are

biaaEi · · · a < biaaEi+1 · · · b < · · · < biaaEk−1 · · · b

< biabak−3Q♭
k# · · · b < biabak−4Pk−1 · · · b < · · · < biabai−1Pi+2 · · · b

< biabai−2Pi+1 · · · a.

All runs of b of length at least 2 ≤ i ≤ k − 2 appear in either

Case 1: Pi or
Case 2: Ei for all i ≤ j ≤ k − 1.

Let us consider these two cases separately. For all i ≤ j ≤ k − 1, the conjugate starting
within Pj has prefix biaaEj. For all i ≤ j ≤ k − 2, the conjugate starting within Ej has
prefix biabaj−2Pj+1, and for j = k − 1, we have the conjugate with prefix biabak−3Q♭

k#. By
construction, we have all the conjugates from Case 1 sorted according to the lexicographic
order of the words with respect to the length of the run by b obtained by Ej.

The conjugates covered by Case 2 are sorted according to the decreasing length of the
run of a, following the common prefix biab. Only when the run of b is exactly i long, its
conjugate ends with a. Thus, the conjugates ending with an a are those starting with Pi and
Ei, which have prefixes biaaEi and biabai−2Pi+1. □

Lemma 14. β(bk−1a, W♭
k #) = aa.

Proof. The two conjugates in M(W♭
k #) which start with bak−1a are

bk−1aaEk−1 · · · a < bk−1abak−3Q♭
k# · · · a.

The conjugates with the prefix bk−1a start with Ek−1 or Q♭
k#. These conjugates have prefixes

of bk−1aaEk−1 and bk−1abaQ♭
k#, respectively. One can see that these conjugates taken in

this order are already sorted, and both conjugates end with a. □

Lemma 15. β(bk#, W♭
k #) = a.

Proof. The last conjugate in M(W♭
k #) is bk#P2 · · · a. The last conjugate in lexicographic or-

der starts with bk#P2, and since the run of b is maximal, it ends with a, and the claim follows.
□

In conclusion, we define the above theorem.

Theorem 2. r(W♭
k #)− r(Wk) = 2k − 5 for every k ≥ 6.

Proof. The BWT of the Wk
b# is BWT(Wk

b#) =β(#)∏k−1
i=2 β(ak−ib) ·∏k−1

i=1 β(bi#)β(bia) · β(bka).
We refer to Table 2. Moreover, r(W♭

k#) = 8k − 17 which has 2k − 5 more runs than
r(Wk) = 6k − 12, cf. Lemma 5.

The lexicographic order of # is lower than an a, and a conjugate starting with #
is smaller than any conjugate starting with a. Moreover, every conjugate in β(aib) is
smaller than every one in β(ai′b), for every 1 ≤ i′ ≤ i ≤ k − 2. In addition, ev-
ery conjugate contributing a character to β(bja) is smaller than a conjugate contribut-
ing a character to β(bj′a) for every 1 ≤ j ≤ j′ ≤ k − 1. And with a conjugate start-
ing with bi#, the number is smaller than that of bia. Since we considered all the dis-
joint ranges of conjugates of W♭

k # based on their common prefix, the word BWT(W♭
k#) is
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β(#)∏k−1
i=2 β(ak−ib) · ∏k−1

i=1 β(bi#)β(bia) · β(bka). With the structure of BWT(W♭
k#), we can

derive its number of runs. The words β(#) and ∏k−4
i=2 β(ak−ib) have 2(k − 6) runs: we start

with 1 run from β(#) = b which is merged by β(ak−2b)β(ak−3b) = bba. And concatenating
them β(aib) up to β(a4b) adds 2 new runs each. β(aaab), β(aab), β(ab) have 2(k − 5), 3,
5 runs, respectively. However, the boundaries between β(aaab) and β(aab) are merged
by an a; therefore, β(aab) has 2 runs. β(b#) has 1 run, followed by β(ba) which makes
7 runs. Then, β(bi#) and β(bia) repeat, making 1 and 3 runs until i = k − 2 thus makes
4(k − 3) runs. β(bk−1#) adds 1 run. Also, β(bk−1a) adds 1 run and is the last run since
β(bk#) does not add new runs, since it consists only of a a that merges with the previous
one. Altogether, we have 2(k − 6) + 2(k − 5) + 2 + 5 + 1 + 7 + 4(k − 3) + 1 + 1 = 8k − 17,
and the claim holds. The main difference in the runs of W♭

k# and Wk occurs from the prefix
beginning with bi# that concatenates with bia, repeating baba for i ∈ [2..k − 1], while Wk

repeats only ba. Thus, it makes additive runs of 2k − 5 = Θ(k) = Θ(
√

n).

Table 2. Classification of the number of runs obtain in Theorem 2. The total number of runs is 8k − 17.

BWT of W♭
k # Runs

β(#) = b 1

β(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2 2k − 11 but, when merged, 2k − 12

β(aaab) = b5(ab)k−6a 2k − 10 but, when merged, 2k − 11

β(aab) = aaba2k−8 3 but, when merged, 2

β(ab) = bk−2#aba2k−6 5

β(bi#) = b for all i ∈ [1..k − 1] k − 1

β(ba) = ak−5bbbabk−5abk−2a 7

β(bja) = ab2(k−j−1)a for all j ∈ [2..k − 2] 3(k − 3)

β(bk−1a) = aa 1

β(bk#) = a 1 but, when merged, 0

Tables 3–7 depict M(W♭
k #). The first column partitions conjugates by common prefixes

and names the common prefix shared by all conjugates in a partition. The second column
shows the remaining part of the respective conjugate followed by the prefix of its partition.
The remaining part of a conjugate decides its relative order inside its partition. The BWT
column shows the last character of each conjugate. □

Table 3. Lexicographically sorted conjugates of W♭
k # studied in Theorem 2, Part 1.

Prefix Remaining Part BWT

# P2 b

ak−2b bk−1# b

ak−3b
bk−2aa b

bk−1# a

ak−4b

bk−3aa b

bk−2aa a

bk−1# a

. . . . . . . . .
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Table 4. Lexicographically sorted conjugates of W♭
k # studied in Theorem 2, Part 2.

Prefix Remaining Part BWT

a3b

bab b

bbaba b

bbbabaa b

b4aa b

b4aba3 b

b5aa a

b5aba4 b

b6aa a

b6aba5 b

. . . . . .
bk−2aa a

bk−2abak−3 b

bk−1# a

a2b

bab a

bbaba a

bbbaa b

bbbabaa a

b4aa a

b4aba3 a

. . . . . .
bk−2aa a

bk−2abak−3 a

bk−1# a

Table 5. Lexicographically sorted conjugates of W♭
k # studied in Theorem 2, Part 3.

Prefix Remaining Part BWT

ab

ak−3Q♭
k# b

ak−4Pk−1 b

. . . . . .
P3 b

baa #
bab a

bbaa b

bbaba a

b3aa a

b3aba2 a

. . . . . .
bk−2aa a

bk−2abak−3 a

bk−1# a

b# P2 b

ba

ak−4Q♭
k# a

ak−5Pk−1 a

. . . . . .
a2P6 a

b2ab b

b3aba b

b4abaa b

aab5aa a

aab5aba3 b
. . . . . .
aabk−1abak−3 b

P4 a

bP3 b

. . . . . .
bak−3Q♭

k# b

b3aa a
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Table 6. Lexicographically sorted conjugates of W♭
k # studied in Theorem 2, Part 4.

Prefix Remaining Part BWT

bb# P2 b

b2a

aab2ab a

aab3aba b

. . . . . .
aabk−1abak−3 b

bak−3Q♭
k# b

. . . . . .
baP4 b

bP3 a

bbb# P2 b

b3a

aab3aba a

aab4abaa b

. . . . . .
aabk−1abak−3 b

bak−3Q♭
k# b

. . . . . .
baaP5 b

baP4 a

bbbb# P2 b

. . . . . . . . .

Table 7. Lexicographically sorted conjugates of W♭
k # studied in Theorem 2, Part 5.

Prefix Remaining Part BWT

bk−2# P2 b

bk−2a

aabk−2abak−4 a

aabk−1abak−3 b

bak−3Q♭
k# b

bak−4Pk−1 a

bk−1# P2 b

bk−2a

aabk−1abak−3 a

bak−3Q♭
k# a

bk# P2 a

5.2. BWT of Wk After Substituting a Character

In this subsection, we consider the word Wk =
(

∏k−1
i=2 PiEi

)
Qk =

(
∏k−1

i=2 ba
ibbbaibabi−2

)
baib,

where we swapped a with b in Wk. The following series of lemmas characterize the subword
of BWT(Wk) using M(Wk) for each range we consider.

Lemma 16. β(akb, Wk) = b.

Proof. The first conjugate in M(Wk) is akb · · · b. The first conjugate in lexicographic order
must start with the longest run of as. By the definition of Wk, the longest run of a has length
k, which is obtained by ak of Qk, which is preceded by a b. □

Lemma 17. β(aib, Wk) = ba2k−2i−1b for all i ∈ [2..k − 1].
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Proof. With integer i ∈ [2..k − 1], the conjugates starting with aib in M(Wk) are

aibabi−2 · · · b < aibabi−1 · · · a < · · · < aibabk−3 · · · a < aibP2 · · · a
< aibbbak−1 · · · a < · · · < aibbbai+1 · · · a
< aibbbai · · · b.

For all i ∈ [2..k − 1], the factor of aib can only be obtained for all j ∈ [i..k − 1], from aibabj−2

from Ej, or aibb from Pj, and if j = k, aib from Qk. We can sort the conjugate according to
the lexicographic order. Note that all these conjugates end with b, with the exception of the
conjugate starting with aib obtained by Ei and Pi ending with b. □

Lemma 18. β(ab, Wk) = bak−2baak−5baaabk−5.

Proof. In M(Wk), the conjugates starting with ab are

abaaabbE2 · · · b < abaP3 · · · a < ababP4 · · · a < · · · < ababk−3Qk · · · a
< abP4 · · · b < abP2 · · · a < abbEk−1 · · · a < · · · < abbE5 · · · a
< abbP5 < abbE4 · · · a < abbE3 · · · a < abbE2 · · · a
< abbbP6 · · · b < · · · < abk−3Qk · · · b.

We have as many circular occurrences of ab as the number of maximal (circular) runs of b
in Wk. Then, for all i ∈ [2..k − 1], we have three cases.

Case 1: one run of ab in Pi ,
Case 2: two runs in ab in Ei ,
Case 3: one run ab in Qk .

For Case 1, we have one conjugate starting with abbEi, for each i ∈ [2..k − 1]. Since
each run of a within each word of Pi is of length at least 2, all conjugates in Case 1 end in a.
For Case 2, for all i ∈ [2..k − 1], we can distinguish between two sub-cases based on where
ab starts.

Case 2 (a): from the first run of a in Ei, starting with ababi−2Pi+1, if i ∈ [2..k − 2],
or ababk−3Qk ,

Case 2 (b): from the second run in Ei, starting with abi−2Pi+1, if i ∈ [2..k− 2], or abk−3Qk.

Similarly to Case 1, each conjugate for Case 2 (a) ends with a. Each conjugate
in Case 2 (b) is obtained by shifting two characters on the right in each conjugate in Case 2 (a).
Therefore, all these conjugates end with b.

For Case 3, the conjugate starting with ab in Qk has abP2 as a prefix and is preceded by
a. Observe that only for Case 2 (b), we have one conjugate that starts with abaaa obtained
by aP3 and it is the first conjugate in the lexicographic order of Wk. Then, the conjugates
start with abab followed by abaP3 < ababP4 < · · · < ababk−3Qk from Case 2 (a).

Among the remaining conjugates, those with the prefix abb start with abP4 from
Case 2 (b) or abP2 from Case 3. Then, among the left conjugates, the conjugate with the
prefix abbb from Case 2 (a), for all i ∈ [2..k − 1], or abbP5 from Case 2 (b) follows. The
last remaining conjugates have the prefix abi−2 for i ∈ [6..k − 1] or abk−3Qk, which can be
obtained by Case 2 (b). Since abk−3Qk is greater than all other conjugates, it is the greatest
conjugate of Wk starting with ab and we conclude this proof. □

Lemma 19. β(ba, Wk) = bb2k−8babbak−2.
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Proof. The conjugates in M(Wk) that start with ba are

bakbP2 · · · b < bak−1abk−3Qk · · · b < bak−1bbEk−1 · · · b < bak−2babk−4Pk−1 · · · b
< bak−2bbEk−2 · · · b < · · · < ba4babbP5 · · · b < ba4bbE4 · · · b
< baaababP4 · · · b < baaabbE3 · · · a < baabaP3 · · · b < baabbE2 · · · b
< baP3 · · · a < babP4 · · · a < · · · < babk−3Qk · · · a.

For integer i, we can see that baibabi−2 is lexicographically smaller than baibb. Thus,
the first conjugate in lexicographic order starting with ba is the one followed by the longest
run of a, and it can be found by bakb of Qk, followed by conjugates starting with baibabi−2

of Ei and baibb of Pi for all i ∈ [2..k − 1] taken in decreasing order. By construction of Ei,
for i ∈ [2..k − 1], these conjugates must end with a b. Otherwise, for Pi, conjugates also end
with b, with the exception of a conjugate starting with P3, since it is preceded by an a from
P2. The remaining conjugates starting with ba are exactly those conjugates that have the
prefix of the suffix babi−2Pi+1 if i ∈ [2..k − 2] or babk−3Qk. All of these conjugates end with
a, since they are preceded by a. □

Lemma 20. β(bba, Wk) = b2k−8abba.

Proof. The conjugates starting with bba in M(Wk) are

bQk · · · b < bEk−1 · · · b < bPk−1 · · · b < · · · < bE5 · · · b < bP5 · · · b < bE4 · · · b
< bP4 · · · a < bE3 · · · b < bE2 · · · b < bP2 · · · a.

These conjugates are obtained by following four cases.

Case 1: concatenating suffix b of Pj with Ej for all j ∈ [2..k − 1],
Case 2: concatenating suffix b of Ej with Pj+1 for all j ∈ [3..k − 2],
Case 3: concatenating suffix b of Ek−1 with Qk,
Case 4: concatenating suffix b of Qk with P2.

The first conjugate in lexicographic order starting with bba is the one followed by the
longest run of a. The smallest of these conjugates can be found by Case 3, concatenation
of the suffix b of Ek−1 with Qk. We can directly observe that bbajbabj−2 < bbajbb holds
for every integer j ≥ 0. Thus, the next conjugate will have the prefix bEj from Case 1 and
bPj from Case 2 repeating in decreasing order. Since bEj of Case 1 and bQk of Case 3 is
preceded by a b, those end with a b. On the other hand, bPj+1 precedes b for all j ∈ [4..k − 2]
until bP4 appears since it precedes an a. Lastly, conjugates with the prefix bbaaa and bbaa

by Case 1 end with a b. The greatest lexicographic conjugate is from Case 4 as it has the
smallest runs of a which is two and ends with a.

We can sort all of these conjugates according to the order of the words in

{bQk}
k−1⋃
j=4

{bEjbPj} ∪
3⋃

j′=2

{Ej′} ∪ {bP2}.

□

Lemma 21. β(bbba, Wk) = b(ab)k−6
a5.
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Proof. The conjugates in M(Wk) starting with bbba are

bbQk · · · b < bbEk−1 · · · a < bbPk−1 · · · b < · · · < bbE6 · · · a < bbP6 · · · b
< bbE5 · · · a < bbP5 · · · a < bbE4 · · · a < bbE3 · · · a < bbE2 · · · a.

Some of the conjugates starting with bbba can be obtained by two cases.

Case 1: from the concatenation of the suffix bb of Ej−1 with a prefix of ba of Pj for all
j ∈ [5..k − 1]
or Qk if j = k;

Case 2: from the concatenation of the suffix bb of Pj with prefix ba of Ej for all j ∈
[2..k − 1].

Thus, all conjugates starting with bbba are sorted according to the lexicographic order
of the words in {bbQk} ∪

⋃k−1
j=5 {bbEjbbPj} ∪

⋃4
j=2{Ej}. All conjugates starting with bbPj

for all j ∈ [6..k − 1] or bbQk in Case 1 end with b. Otherwise, conjugates starting with bbP5

of Case 1 or bbEj for all j ∈ [2..k − 1] of Case 2 end with a. □

Lemma 22. β(bja, Wk) = bk−j−2a for all j ∈ [4..k − 2].

Proof. All runs of b of length of a range j ∈ [4..k − 3] appear only by concatenating suffix
bj−1 of Ej+1 with prefix ba of Pj′ for all j′ ∈ [j + 2..k − 1] in decreasing order. All of these
conjugates end with a b, with the exception of a conjugate bj−1Pj+2 which ends with an a

since suffix bj−1 precedes an a. Hence, the last conjugate in lexicographic order starting
with bk−2a is within bk−3Qk and since the run of b is maximal it ends with a, and the
claim follows. □

The following theorem presents the shape of the BWT of Wk.

Theorem 3. For every k ≥ 6, r(Wk) = 6k − 12. cf. Table 8.

Table 8. Classification of the number of runs obtained in Theorem 3. The total number of runs is
6k − 12.

BWT of Wk Runs

β(akb) = b 1

β(aib) = ba2(k−1−i)+1b for all i ∈ [2..k − 1] 2k − 3 but, when merged, 2k − 4

β(ab) = bak−2baak−5baaabk−5 7 but, when merged, 6

β(ba) = b2k−6abbak−2 4 but, when merged, 3

β(bba) = b2k−8abba 4

β(bbba) = b(ab)k−6
a5 2k − 10

β(bia) = bk−i−2a, for all i ∈ [4..k − 2] 2k − 12

Proof. Let us put the result from Lemma 16 to Lemma 22 together. Every conjugate of
contributing a character to β(aib) is smaller than a conjugate contributing a character to
β(ai′b), for every 1 ≤ i′ ≤ i ≤ k. Symmetrically, every conjugate in β(bja) is greater
than every conjugate in β(bj′a), when 1 ≤ j′ ≤ j ≤ k − 2. Since we considered all the
disjoint ranges of conjugates of Wk based on their common prefix, the word ∏k−1

i=0 β(ak−ib) ·
∏k−2

i=1 β(bia) is the BWT of Wk.
With the structure of BWT(Wk), we can derive its number of runs. The word

∏k−1
i=0 β(ak−ib) has exactly 2k + 3 runs: we start with 1 run from β(akb) but it is merged
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by a b from β(ak−1b). Then, concatenating each β(ak−1b) up to β(aab) adds 3 runs each.
However, the boundaries between these words merge because b appears continuously.
Thus, each β(aib) for i ∈ [2..k − 1] makes 2 runs each. By counting, we observe that β(ab)

runs 7 times. The remaining part of the BWT, that is, ∏k−2
i=1 β(bia) has 4k − 12 runs: the

word β(ba), has 4 runs, but the first b merges with a b from β(ab), so we only charge 3
runs for this word. Then, β(bba) and β(bbba) add 4 and 1 + 2(k − 6) + 1 runs, respectively.
Finally, ∏k−2

i=4 β(bia) runs for 2 until i = k − 3. The word β(bk−2a) does not add new
runs, as it consists only of an a that merges with the previous one. Altogether, we have
2(k − 2) + 7 + 3 + 4 + 1 + 2(k − 6) + 1 + 2(k − 6) = 6k − 12, and the claim holds. □

The following lemmas describe the BWT of Wk after applying one specific edit oper-
ation. W♭

kc is a word obtained by replacing the last character b of Wk with c, where c is

lexicographically larger than b. The number of runs in the BWT of W♭
kc can be derived

by comparing the BWT of W♭
kc to the BWT of Wk, for which we explicitly counted the

number of runs, so we omit these parts of the proof using M(W♭
kc), which is a list of

lexicographically sorted conjugates of word W♭
kc. Substituting the last character with c in

Wk also increases the number of runs by Θ(k).

Lemma 23. β(akc, W♭
kc) = b.

Proof. The first conjugate in M(W♭
kc) starts with akc · · · b. The first conjugate in lexico-

graphic order must start with the longest run of a. By the definition of W♭
kc, the longest run

of a is obtained by suffix akc of Q♭
kc, preceded by a b. □

Lemma 24. β(aib, W♭
kc) = ba2k−2i−2b for all i ∈ [2..k − 1].

Proof. The conjugates in M(W♭
kc) starting with the prefix aib for i ∈ [2..k − 1] are

aibabi−2Pi+1 · · · b < aibabi−1Pi+2 · · · a < · · · < aibabk−4Pk−1 · · · a < aibabk−3Q♭
kc · · · a

< aibbEk−1 · · · a < · · · < aibbEk−2 · · · a < · · · < aibbEi+1 · · · a
< aibbEi · · · b.

For every integer i ∈ [2..k − 1], the conjugates in M(W♭
kc) starting with bia can only be

obtained from two cases:

Case 1: aibabi−2 of Ej for all j ∈ [i..k − 1],
Case 2: aibb of Pj for all j ∈ [i..k − 1].

We can sort these conjugates according to the lexicographic order of
⋃k−2

j=i {a
ibabj−2Pj+1}∪

aibabk−3Q♭
k ∪

⋃k−1
j=i {a

ibbEj}. Note that all these conjugates end with an a, with the excep-

tion of the conjugate starting with aibabi−2Pi+1 and aibbEi, since these are the only places
where the occurrence of aib can be found. □

Lemma 25. β(aic, W♭
kc) = a for all i ∈ [1..k − 1].

Proof. The only conjugate in M(W♭
kc) starting with aibc for all i ∈ [1..k − 1] has a prefix of

aibcP2 · · · a. For all two distinct integers i, i′ with i > i′ ≥ 0, we have aibc < ai′bc. Also,
since the lexicographic order of a word in W♭

kc is a < b < c, it is also clear that aib < aic.

The conjugates starting with aic are obtained from aic from Q♭
kc and since the length of a is

k, all conjugates with ai with i ∈ [1..k − 1] end with a. □
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Lemma 26. β(ab, W♭
kc) = bak−2bak−5baaabk−5.

Proof. In M(W♭
kc), the conjugates starting with ab are

aP3 · · · b < abaP3 · · · a < ababP4 · · · a < · · · < ababk−3Q♭
kc · · · a

< abP4 · · · b
< abbEk−1 · · · a < · · · < abbE5 · · · a
< abbP5 · · · b < abbE4 · · · a < abbE3 · · · a < abbE2 · · · a

< abbbP6 · · · b < · · · < abk−3Q♭
kc · · · b.

We have as many circular occurrences of ab as the number of maximal runs of a in W♭
kc.

Then, for all i ∈ [2..k − 1], we have two cases.

Case 1: one run in Pi obtained by concatenating suffix abb of Pi with Ei, for each i ∈
[2..k − 1], and

Case 2: two runs in Ei.

For Case 1, since each run of a within each word of
⋃k−1

i=2 abbEi is of length of at least
2, all conjugates in Case 1 end with an a.

For Case 2, for all i ∈ [2..k − 1], we can distinguish between two sub-cases, based on
where ab starts, if either

Case 2 (a): from the first a in Ei or
Case 2 (b): from the second a in Ei.

For Case 2 (a), we can see that these conjugates are of the type ababi−2Pi+1 if
i ∈ [2..k − 2] or ababk−3Q♭

kc. Similarly to Case 1, each conjugate for Case 2 (a) ends with
a. Each conjugate in Case 2 (b) is obtained by shifting two characters on the right each
conjugate in Case 2 (a). Therefore, all of these conjugates end with a b and have prefix of
type abi−2Pi+1, if i ∈ [2..k − 2] or abk−3Q♭

kc. All these conjugates end with a b since a is
preceded by b. Observe that only for Item Case 2 (b), we have conjugates starting with
abaaab which is aP3. Hence, it is the first conjugate in lexicographic order, followed by
those starting with abaP3 < ababP4 < · · · < ababk−3Q♭

kc from Item Case 2 (a) and these
conjugates start with abab.

Next, conjugates with a prefix of abba which is abP4 from Case 2 (b) follow, then
those having prefix abbba either start with abbEi for all i ∈ [5..k − 1] from Case 1 follow in
decreasing order. Then, abbP5 from Case 2 (b) and abbE4, abbE3 , abbE2 from Case 1 follow.

The remaining conjugates are those which start with a prefix of abia for i ∈ [4..k − 2],
which are obtained by abi−1Pi+2 if i ∈ [4..k − 3] or abk−3Q♭

kc, from Case 2 (b). These
conjugates are sorted according to the length of the run of a following the common prefix.
Then, the result is

{aP3} ∪
k−2⋃
j=2

{ababj−2Pj+1} ∪ {abak−3Q♭
kc} ∪ {abP4} ∪

k−6⋃
i=0

{abbEk−i−1}

∪ {abbP5} ∪
2⋃

i=0

{abbE4−i} ∪
k−3⋃
j=4

{aj−1Pj+2} ∪ {abk−3Q♭
kc}.

□

Lemma 27. β(ba, W♭
kc) = b2k−6abcak−2.
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Proof. The conjugates in M(W♭
kc) starting with the prefix ba are

bakcP2 · · · b < bak−1abk−3Q♭
kc · · · b < bak−1bbEk−1 · · · b < · · · < ba4babbP5 · · · b

< ba4bbE4 · · · b < ba3babP4 · · · b < ba3bbE3 · · · a < baabaP3 · · · b

< baabbE2 · · · c < baP3 · · · a < babP4 · · · a < · · · < babk−3Q♭
kc · · · a.

There are many occurrences of a conjugate starting with the prefix ba, and it occurs in
three parts.

Case 1: one run of ba in Pj, for all j ∈ [2..k − 1] ,
Case 2: two runs from Ej, for all j ∈ [2..k − 1] ,

Case 3: one run from Q♭
kc .

The conjugates in Case 1 start with baj for all j ∈ [2..k − 1]. Since bai < bai′ if only
i > i′, the conjugates are sorted in decreasing order. All conjugates for j ∈ [3..k − 1] end
with a b, except for conjugates with prefix P2 since it is preceded by c.

In Case 2, we can distinguish between two sub-cases based on where ba starts:

Case 2 (a): first run of ba from the prefix of Ej ,
Case 2 (b): from the second run of ba in Ej.

The conjugates in Case 2 (a) are the type of bajbabj−2Pj+1, if j ∈ [2..k − 2]

or bak−1babk−3Q♭
kc. All of these conjugates are preceded by Pj, thus ending with b. The con-

jugates in Case 2 (b) start from babj−2Pj+1 if j ∈ [2..k − 2] or babk−3Q♭
kc and end with an a.

In Case 3, only one conjugate can be found by a prefix of bakc, which ends with b.
Observe that only for Case 3 we have a conjugate with the longest run of a after

b. Hence, the first conjugate in lexicographic order is bakcP2 from Case 3. It is fol-
lowed by bak−1babk−3Q♭

kc < bak−1bbEk−1 < bak−2babk−4Pk−1 < bak−2bbEk−2 < · · · <
ba4babbP5 < ba4bbE4. All of these conjugates end with a b.

Among the remaining conjugates, those having prefix baaab either start with
baaababP4 from Case 2 (a) or baaabbE3 from Case 1. Then, the remaining conjugates
with prefix baab are those starting with baabaP3 from Case 2 (a) or baabbE2 from Case 1.
Lastly, k − 2 conjugates from Case 2 (b) follow, which are babj−2Pj+1 for all j ∈ [2..k − 2]

or babk−3Q♭
kc. All of these conjugates end with an a.

We prove our claim by sorting lexicographically the conjugates in

{bakcP2} ∪
k−3⋃
j=0

{bak−j−1babk−j−3Pk−j · bak−j−1bbEk−j−1} ∪
k−2⋃
j=2

{babj−2Pj+1} ∪ {babk−3Q♭
kc} .

□

Lemma 28. β(bba, W♭
kc) = b2k−8abb.

Proof. The conjugates in M(W♭
kc) starting with prefix bba are

bbakcP2 · · · b < bbak−1babk−3Q♭
kc · · · b < bbak−1bbEk−1 · · · b < · · ·

< bba5bab3P6 · · · b < bba5bbE5 · · · b < bba4babbP5 · · · b
< bba4bbE4 · · · a < bba3babP4 · · · b < bbaabaP3 · · · b.

The smallest conjugate with prefix bba can be obtained by three cases.

Case 1: concatenating suffix b of Ek−1 with Q♭
kc,

Case 2: concatenation of suffix b of Ej with Pj+1 if j ∈ [3..k − 2] or Q♭
kc,
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Case 3: concatenating suffix b of Pj with Ej, for all j ∈ [2..k − 1].

The conjugates in Case 1 and Case 3 end with b. Also, conjugates from Case 2 end
with b with an exception of a conjugate starting with bP4 since it is preceded by an a. We
conclude this proof by sorting lexicographically the conjugates in

{bbakcP2} ∪
k−5⋃
j=0

{bbak−i−1babk−i−3Pk−ibba
k−i−1bbEk−i−1} ∪

1⋃
j=0

{bba3−jbab1−jP4−j} .

□

Lemma 29. β(bbba, W♭
kc) = b(ab)k−6

aaaaa.

Proof. The conjugates in M(W♭
kc) starting with the prefix bbba are

bbQ♭
kc · · · b < bbEk−1 · · · a < bbPk−1 · · · b < · · · < bbE6 · · · a < bbP6 · · · b

< bbE5 · · · a < bbP5 · · · a < bbE4 · · · a < bbE3 · · · a < bbE2 · · · a.

Analogously to Lemma 28, the conjugates starting with bbba can be obtained from
three cases.

Case 1: concatenating suffix bb of Ek−1 with Q♭
kc,

Case 2: concatenation of suffix bb of Ej with Pj+1 if j ∈ [4..k − 2] or Q♭
kc,

Case 3: concatenating a suffix bb of Pj with Ej, for all j ∈ [2..k − 1].

The conjugate in Case 1 is the smallest conjugate starting with bbba since it has a
longest run of a and ends with a b. In addition, the conjugates of Case 3 end with a a since
bb are preceded by an a. In Case 2, all the conjugates end with b with an exception of a
conjugate starting with bbP5 since it is preceded by an a. We can sort these conjugates by

{bbQ♭
kc} ∪

k−6⋃
j=0

{bbak−i−1babk−i−3Pk−ibba
k−i−1bbEk−i−1} ∪

2⋃
j=0

{bba4−jbab2−jP5−j} .

□

Lemma 30. β(bja, W♭
kc) = bk−j−2a for all j ∈ [4..k − 2].

Proof. In M(W♭
kc), the conjugates starting with prefix bja for all j ∈ [4..k − 2] are

bj−1Q♭
kc · · · b < bj−1Pk−1 · · · b < bj−1Pk−2 · · · b < · · · < bj−1Pj+3 · · · b < bj−1Pj+2 · · · a.

Observe that the only conjugates with the prefix bja for j ∈ [4..k − 2] start with
concatenating bj−1 either to Q♭

kc or Pj′ if j′ ∈ [j + 2..k − 1]. One can see that these conjugates
taken in this order are already sorted, and all conjugates end with a b, with the exception
of a conjugate starting with bj−1Pj+2, since it is preceded by an a, therefore ending with
an a. We have all conjugates ordered according to the lexicographic order of the words
in bj−1Q♭

kc∪
⋃k−j−3

j′=0 {bj−1Pk−j′−1}. This concludes our proof. □

Lemma 31. β(c, W♭
kc) = a.
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Proof. The only conjugate in M(W♭
kc) that starts with prefix c is cP2 · · · a. Since c is

lexicographically larger than other characters such as a, b, it is the biggest conjugate in
M(W♭

kc), and it ends with an a. □

The following theorem puts the lemmas above together.

Theorem 4. Substituting the last character b of Wk by c increases r by 2k − 5, cf. Table 9.

Table 9. Classification of the number of runs obtain in Theorem 4. The total number of runs is 8k − 17.

BWT of W♭
kc Runs

β(akc) = b 1

β′(ak−1b) = bb 1 but, when merged, 0

β′(aib) = ba2k−2i−2b for all i ∈ [2..k − 2] 3k − 9

β′(aic) = a for all i ∈ [1..k − 1] k − 1

β′(ab) = bak−2bak−5baaabk−5 7

β′(ba) = b2k−6abcak−2 5

β′(bba) = b2k−8abb 3

β′(bbba) = b(ab)k−6
a5 2k − 10 but, when merged, 2k − 11

β′(bia) = bk−i−2a for all i ∈ [4..k − 2] 2k − 12

β′(c) = a 1 but, when merged, 0

Proof. Every conjugate contributing a character to β(aib) is smaller than a conjugate
contributing a character to β(ai′b) for every 1 ≤ i′ < i ≤ k − 1. By symmetry, every
conjugate contributing a character to β(bja) is greater than each conjugate contributing a
character to β(bj′a) for every 1 ≤ j′ ≤ j ≤ k − 2. With the structure of the BWT of (W♭

kc),
we can easily derive its number of runs. β(akc) · β(ak−1c) · ∏k−2

i=1 β(aib) · β(aic) has exactly
4k − 2 runs: we start from 1 run from β(akc) but it is merged with β(ak−1b). β(ak−1b) and
β(ak−1c) add 2 runs. Then, concatenating each β(aib) and β(aic) for all i ∈ [2..k − 2] in a
decreasing order, we add 3 and 1 runs each, which results in 4(k − 3) runs. By counting,
we observe that β(ab), β(a#) adds 7 and 1 runs, respectively.

The word β(ba), β(bba), β(bbba) has exactly 5, 3, 2k − 10 runs each, but since the
boundaries between β′(bba) and β(bbba) merge, the first b of β(bbba) does not count,
turning into 2k − 11. The remaining part of BWT, that is,∏k−3

j=4 β(bja) · β(bk−2a) · β(c) has

2k− 12 runs: we start by concatenating each β′(b4a) up to β(bk−3a), which adds 2 runs each.
The last β(bk−2a), β(c) does not add new runs, as it consists only of an a that merges with
the previous one. Altogether, we have 2 + 4(k − 3) + 7 + 1 + 5 + 3 + 2k − 11 + 2(k − 6) =
8k − 17, and the claim holds.

The main difference between Wk and W♭
kc comes from aib that is concatenated with

aic for i ∈ [2..k − 1], which repeats baba, while Wk repeats ba only, making 2k − 5 = Θ(k)
more runs. Tables 10–13 describe the scheme of the BWT of word W♭

kc. We have r(W♭
Kc) =

r(Wk) + 2k − 5. From Definition 1, we have k = Θ(
√

n). Thus, r(W♭
Kc)− r(Wk) = 2k − 5 =

Θ(
√

n). □
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Table 10. Lexicographically sorted conjugates of W♭
kc studied in Theorem 4, Part 1.

Prefix Remaining Part BWT

akc P2 b

ak−1b
abk−2 b

bbak−1 b

ak−1c P2 a

ak−2b

abk−3 b

abk−2 a

bbak−1 a

bbak−2 b

ak−2c P2 a

ak−3b

abk−4 b

abk−3 a

abk−2 a

bbak−1 a

bbak−2 a

bbak−3 b

ak−3c P2 a

. . . . . . . . .

aab

ab b

ab2 a

. . . a

abk−2 a

bbak−1 a

. . . a

bba3 a

bba2 b

aac P2 a

Table 11. Lexicographically sorted conjugates of W♭
kc studied in Theorem 4, Part 2.

Prefix Remaining Part BWT

ab

aaabb b

aP3 a

abP4 a

abbP5 a

. . . a

abk−4Pk−1 a

abk−3Q♭
kc a

P4 b

bEk−1 a

bEk−2 a

. . . a

bE5 a

bP5 b

bE4 a

bE3 a

bE2 a

bbP6 b

bbbP7 b

bbbbP8 b

. . . b

bk−5Pk−1 b

bk−4Q♭
kc b

ac P2 a
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Table 12. Lexicographically sorted conjugates of W♭
kc studied in Theorem 4, Part 3.

Prefix Remaining Part BWT

ba

ak−1c b

ak−2babk−3 b

ak−2bb b

ak−3babk−4 b

ak−3bb b

. . . . . .
aaababb b

aaabb b

aaabab b

aabb a

aba b

abb #
P3 a

bP4 a

. . . a

bk−4Pk−1 a

bk−3Q♭
kc a

bba

ak−1c b

ak−2babk−3 b

ak−2bb b

. . . . . .
a4bab3 b

a4bb b

a3babb b

aaabb a

aabab b

aba b

Table 13. Lexicographically sorted conjugates of W♭
kc studied in Theorem 4, Part 4.

Prefix Remaining Part BWT

bbba

ak−1c b

ak−2babk−3 a

ak−2bb b

ak−3babk−4 a

ak−3bb b

. . . . . .
a5bab4 a

a5bb b

a4bab3 a

a4bb a

a3bab2 a

aabab a

aba a

bbbba

ak−1c b

ak−2bb b

. . . b

a6bb b

a5bb a

. . . . . . . . .

bk−3a
ak−1c b

ak−2bb a

bk−2a ak−1c a

c P2 a
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6. Multiplicative Sensitivity of ρ by Ω(log n)
Recall that ρ(W) = runs(BBWT(W)). In this section, we return our attention to

Fibonacci words. Similar to Section 4, we use them to construct a family of words with a
multiplicative sensitivity of Θ(log n) for the number of runs ρ in the BBWT. Before that,
we start with some helpful lemmas known in the literature.

Lemma 32 ([41], Lemma 3). The 2kth Fibonacci word F2k is X2kab. The Lyndon conjugate of the
Fibonacci word F2k is L2k = aX2kb.

Lemma 33 ([37], Lemma 6). We let L2k be the Lyndon conjugate of the Fibonacci word F2k. Then,
r(BBWT(L2k))= 2.

Lemma 34 ([41], Lemma 8). If k < n, then the Lyndon conjugate of Fk is a prefix or a suffix of
aXnb. If Fk = Pkba, then its Lyndon conjugate aPkb is a prefix of aPnb; and if Fk = Pkab, then its
Lyndon conjugate aPkb is a suffix of aPnb.

The next lemma addresses the extended Burrows–Wheeler transform [16], which takes
a subset of steps from the BBWT by expecting the input to be a set of primitive words
(i.e., the Lyndon factors in case of the BBWT). We translate the following known result to
the BBWT:

Lemma 35 (Corollary 4 of [47]). We let {T1, . . . , Tm} be a conjugate-free set of primitive words
and let r′ be the number of runs of its extended Burrows–Wheeler transform. Then, m ≤ r′.

Corollary 1. We let T1, . . . , Tm be the Lyndon factors of word T, then m ≤ ρ(T).

In what follows, we establish a lower bound on the multiplicative sensitivity of ρ with
the Lyndon conjugates of Fibonacci words by leveraging Corollary 1.

6.1. Editing the Last Position of L2k

We start with deleting the last character of L2k, which directly leads to the following insight.

Theorem 5. ρ(L♭
2k) ≥ k.

Proof. L♭
2k = aX2k is not a Lyndon word; therefore, its Lyndon is factorized and has

more than one factor. According to Lemma 34, the Lyndon word of the Fibonacci word
F2k = X2kab is aX2kb. The central word X2k is X2k−1baX2k−2, so the Lyndon word of F2k is
aX2kb = aX2k−1baX2k−2b. aX2k−1b refers to L2k−1, which is aX2k−1b and the suffix aX2k−2b

is L2k−2.
However, by deleting the last character b, L♭

2k becomes aX2k−1baX2k−2, meaning that
L2k−2 does not exist. Thus, we can say that L2k−1 is one of the Lyndon factors, since it
is not followed by L2k−2. The remaining part of L♭

2k is aX2k−2. The same as X2k, central
word X2k−2 can be divided as X2k−3baX2k−4; thus, aX2k−2 = aX2k−3baX2k−4. We can find
Lyndon factor L2k−3 = aX2k−3b in the prefix. The remaining part is aX2k−4, which is not a
Lyndon word, same as aX2k−2 above, so aX2k−4 is Lyndon factorized and makes L2k−5 as a
prefix, and the remaining aX2k−6 makes L2k−7 as a prefix. And finally, aX4 is divided as
aX3baX2, where X2 is ε. Therefore, L♭

2k’s Lyndon factor is L2i−1 for i ∈ [2..k] and the last
remaining part a is the Lyndon word itself. Thus, L♭

2k has Lyndon factors L2i−1 for every
i ∈ [2..k] and a as a Lyndon factor. The number of the Lyndon factor is k, which we depict
in Figure 6. □



Mathematics 2025, 13, 1070 26 of 46

X2ka

X2k−1b aaa
L2k−1

X2k−2

L2k−1

X2k−1b aa X2k−3b a

L2k−3

a X2k−4

X2k−1b aa
L2k−1

X2k−3b a

L2k−3

X2k−5b

L2k−5

a X2k−6

X2k−1b a

L2k−1

a X2k−3b a

L2k−3

X2k−5b a

L2k−5

X2k−7ba

L2k−7

...

· · ·

a X3ba

L3 L1

Figure 6. Factorization of L♭
2k into Lyndon factors studied in the proof of Theorem 5. L♭

2k has k
Lyndon factors.

By Lemma 33 and Theorem 5, we conclude that the multiplicative sensitivity for
deleting the last character of L2k is Ω(k).

Theorem 6. We let L♭
2k# be the word obtained by substituting the last character b of L2k by #.

Then, ρ(L♭
2k#) ≥ k + 1.

Proof. Since # is lexicographically smaller than a, L♭
2k# is not a Lyndon word; it makes

Lyndon factors. Since # is smaller than both a and b, # is a Lyndon word. In addition, L♭
2k is

Lyndon factorized as Theorem 5, which produces Lyndon factors L2i−1 for i ∈ [2..k] and
the last Lyndon factor a. L♭

2k# makes one more Lyndon factor, which is #, which therefore
makes k + 1 a number of Lyndon factors. We depict the Lyndon factorization in Figure 7. □

X2ka #

X2k−1b aa
L2k−1

a X2k−2 #

X2k−1b aa
L2k−1

X2k−3b a

L2k−3

a X2k−4 #

X2k−1b aa
L2k−1

X2k−3b a

L2k−3

X2k−5b

L2k−5

a X2k−6 #

X2k−1b a

L2k−1

a X2k−3b a

L2k−3

X2k−5b a

L2k−5

X2k−7ba

L2k−7

...

· · ·

a X3ba

L3 L1

#
#

Figure 7. Factorization of L♭
2k# into Lyndon factors studied in the proof of Theorem 6. L♭

2k# has k + 1
Lyndon factors.
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By Lemma 33 and Theorem 6, we conclude that the multiplicative sensitivity for
substituting the last character of L2k is Ω(k). We observe a similar result when substituting
the last character with a larger character instead of a smaller one (#).

Theorem 7. ρ(L♭
2kc) ≥ k.

Proof. The lexicographic order between a, b, and c is a < b < c. Recall that L♭
2k makes

L2i−1 for i ∈ [2..k], and a as a Lyndon factor. In L♭
2kc, c is in position f2k; therefore, it does

not affect anything until the last Lyndon factor a. ac is the Lyndon word itself because
a < c. Therefore, L♭

2kc makes a k number of Lyndon factors, shown in Figure 8. □

X2ka c

X2k−1b aaa
L2k−1

X2k−2 c

X2k−1b aa
L2k−1

X2k−3b a

L2k−3

a X2k−4 c

X2k−1b aa
L2k−1

X2k−3b a

L2k−3

X2k−5b

L2k−5

a X2k−6 c

X2k−1b a

L2k−1

a X2k−3b a

L2k−3

X2k−5b a

L2k−5

X2k−7ba

L2k−7

...

· · ·

a X3ba

L3

c

ac

Figure 8. Factorization of L♭
2kc into Lyndon factors studied in the proof of Theorem 7. L♭

2kc has k
Lyndon factors.

6.2. Insertions at Specific Locations

According to Corollary 1, ρ is lower bounded by the number of distinct Lyndon factors.
After editing L2k at any position, we can still find consecutive Lyndon conjugates of lower
order which can merge to a higher order. For instance, L2k−1 · L2k−2 merge into L2k, which
can decrease the number of the Lyndon factor. Also, L2k−3 · L2k−2 merge into L2k−1. Our
idea is to avoid consecutive Fibonacci Lyndon conjugates so that they do not merge because
doing so avoids a decrease in a number of distinct Lyndon factors. Now, we consider
editing the specific location of Fibonacci Lyndon conjugates, also resulting in an increase
in runs. The following theorems describe the bijective BWT of L2k after some specific edit
operations are applied.

Theorem 8. We let L2k be a Fibonacci Lyndon conjugate. By inserting a at position α in L2k, ρ is
at least k.

Proof. We let α be the number of additions of odd Fibonacci numbers f2k−3 + f2k−5 +

· · ·+ f3 + f1. Recall that the Fibonacci word Fi = Xic with c ∈ {ab, ba} has the Lyndon
conjugate Li = aXib. Further, L2k = L2k−1 · L2k−2 = aX2k−1b · aX2k−2b. Thus, we start with
aX2k−1b · aX2k−2b. To obtain many distinct Lyndon factors, we aim to produce Lyndon
factors that are not consecutive. Knowing X2k−1 = X2k−3baX2k−2, aX2k−2 merges with
aX2k−3b into L2k−1, so it is best to divide X2k−2. aX2k−2 divides into aX2k−3baX2k−4. In
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this case, it is best to add aX2k−3b as a new Lyndon factor since it is smallest among
those Lyndon factors that are not consecutive with X2k−1, the same as aX2k−2; aX2k−4

divides into aX2k−5baX2k−6, and we add aX2k−5b as a Lyndon factor. aX2k−6 divides into
aX2k−7baX2k−8 as we add aX2k−7b as a Lyndon factor. The addition of Lyndon factors of
2i − 1 for i ∈ [1..k − 1] continues until aX5 = aX3baX4 appears since aX3b is the second
smallest Lyndon factor in Fibonacci. Thus, we need X1 = a as the last Lyndon factor and
it is obtained by inserting a # in aX4, dividing aX4 into a#X4. Since # is lexicographically
smaller than any words from right to #, the right words become the Lyndon factor. Thus,
we can obtain k Lyndon factors by inserting # in L2k : k − 1 factors from L2k−3 · L2k−5 · · · L1

and one from # concatenated with the remaining words. And this is shown in Figure 9. □

a X2k−1b a b

a

X2k−2

bX2k−3b a

L2k−3

a bX2k−2b a X2k−2

a X2k−3b a

L2k−3

a bX2k−3b a X2k−4ba X2k−2

a X2k−3b a

L2k−3

a

b

X2k−5b aa X2k−4b a X2k−4ba X2k−2 b

a X2k−3b a

b

X2k−5b aa X2k−5b aX2k−6ba X2k−4ba X2k−2 b

a X2k−3b a

b

X2k−5b aaX2k−7baa ... a#ababaX4b
... aX2k−4b a X2k−2 b

k − 1 Lyndon factors one Lyndon factor

Figure 9. Inserting # at position α in L2k considered in the proof in Theorem 8.

By Lemma 33 and Theorem 8, we conclude that the multiplicative sensitivity for
inserting a character into L2k is Ω(k). In the same way, we can also insert the special
character # to observe a similar behavior:

Theorem 9. We let L2k be a Fibonacci Lyndon conjugate. By inserting # at position f2k − 2 in L2k,
ρ is at least k + 1.

Proof. Unlike Theorem 8, we can obtain some Lyndon factors on the right side of aX2kb,
adding aX2k−1b = L2k−1 as a Lyndon factor. We divide aX2k−2b into aX2k−3baX2k−4b and
obtain aX2k−3b = L2k−3. Further, we divide aX2k−4b into aX2k−5baX2k−6b, making L2k−5.
We divide aX2k−6b and can obtain Lyndon factors such as L2k−7 · · · L5. Lastly, aX4b divides
into aX3baX2b, but since X2 is ε, the last Lyndon factor obtained here is L3. To make more
Lyndon factors, we can add # between a and b, turning into a#b, adding 2 Lyndon factors
which are a = L1 and #b. Thus, we can obtain k + 1 Lyndon factors here: k factors by
L2k−1, L2k−3 · · · L1 and one from #b. We visualize the Lyndon factorization in Figure 10. □
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a X2k−1b aa b

a

X2k−2

ba X2k−1b a a ba X2k−3b aa X2k−4 b

a X2k−1b a ba X2k−3b aX2k−5b aa X2k−6 b

a X2k−1b a ba X2k−3b aX2k−5b a X2k−7b a X2k−8 b

a X2k−1b aa X2k−3b aX2k−5b aX2k−7baX2k−9ba... a # b

k Lyndon factors

b

1

Figure 10. Insertion of # at position f2k − 2 in L2k increases ρ by at least the number of distinct Lyndon
factors k + 1 studied in Theorem 9.

7. Additive Sensitivity of ρ by Ω(
√

n)
Here, we study the additive sensitivity of ρ with an approach similar to Section 5.

In what follows, we establish that the additive sensitivity of ρ is at least Θ(
√

n). To
that end, we again make use of the word Wk. Recall that Wk = (∏k−1

i=2 PiEi)Qk =(
∏k−1

i=2 abiaaabiabai−2
)
abka.

Lemma 36. The Lyndon conjugate Ck of Wk is ak−2bka ·
(

∏k−2
i=2 PiEi

)
· Pk−1ab

k−1ab.

Proof. The Lyndon conjugate of Wk starts with the longest runs of a, which can be
obtained by concatenating suffix ak−3 of Ek−1 with prefix a of Qk. Therefore, Ck =

ak−2bka ·
(

∏k−2
i=2 PiEi

)
· Pk−1ab

k−1ab = ak−2bka ·
(

∏k−2
i=2 abiaaabiabai−2

)
· abk−1aaabk−1ab.

□

Lemma 37. ρ(Ck) = 6k − 12.

Proof. According to Lemma 1, all conjugates have the same BWT, thus r(Wk) = r(Ck) =

6k − 12. Also, since Ck is a Lyndon word, r(Ck) = ρ(Ck) = 6k − 12. □

Recall that the runs in the BBWT and BWT are the same if the input word is Lyndon,
cf. Lemma 1. Thus, we can leverage BWT computation if the input word is Lyndon since we
can obtain the number of runs in the same way as in Section 5 by using β(W) for word W.
In this section, we focus on three variations of the word Ck: deleting its last character and
substituting its last character b with c or #.

7.1. Deletions and Edits of Ck with a Character Smaller than a

Recall that Ck = ak−2bka ·
(

∏k−2
i=2 abiaaabiabai−2

)
· abk−1aaabk−1ab. Thus, C♭

k, which

is obtained by deleting the last character b, is C♭
k = ak−2bka ·

(
∏k−2

i=2 abiaaabiabai−2
)
·

abk−1aaabk−1a. Recall that the Lyndon conjugate of C♭
k is the strictly smallest conjugate

of all conjugates of C♭
k. Since we obtain the longest runs of as from a conjugate of C♭

k by
concatenating the last a with ak−2bka, C♭

k cannot be a Lyndon word. In fact, it has two
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Lyndon factors, which are ak−2bka ·
(

∏k−2
i=2 abiaaabiabai−2

)
· abk−1aaabk−1, and we refer

to both Lyndon factors as Dk (first factor) and a from now on. Figure 11 shows the Lyndon
factorization. Since r(a) is 1, the only thing left to check is r(Dk). In Dk, we made a slight
modification to the subword Ek−1. In fact, Ek−1 = abk−1abak−3 was changed to abk−1ak−3,
which we call Hk−1 in this section. Since Dk is a Lyndon word, we determine ρ(Dk) using
M(Dk) with the BWT as we did before.

ak−2bka ·
(

∏k−2
i=2 ab

iaaabiabai−2
)
· abk−1aaabk−1C♭

k =

Dk

a

Figure 11. Introducing Dk from C♭
k studied in Section 7.1. Dk is the first Lyndon factor of C♭

k.

Lemma 38. β(ak−2b, Dk) = b.

Proof. The only conjugate in M(Dk) starting with prefix ak−2b is ak−2bP2 · · · b. The first
conjugate in lexicographic order must start with the longest run of a. By the definition of
Dk, the longest run of a has length k − 2, and it is obtained by concatenating suffix ak−3

with prefix a of Qk that is preceded by b (otherwise, we could extend the sequence of
a characters). □

Lemma 39. β(aib, Dk) = bak−i−2, for all i ∈ [4..k − 3].

Proof. With integer i ∈ [3..k − 3], the conjugates in M(Dk) starting with aib are

ai−1Pi+2 · · · b < ai−1Pi+3 · · · a < · · · < ai−1Pk−1 · · · a < aibkaP2 · · · a.

For all i ∈ [4..k − 3], the factor aib can only be obtained from the concatenation of
suffix ai−1 from Ej−1,

• with the prefix ab of Pj for a j ∈ [i + 2..k − 1] or
• with the prefix ab of Qk, if j = k.

We can sort these conjugates according to the lexicographic order of
⋃k−1

j=i+2 Pj ∪ Qk.

All these conjugates end with an a, with the exception of the conjugate starting with aiPi+2,
since Dk has a unique occurrence of baib. □

Lemma 40. β(aaab, Dk) = bbbbb(ab)k−7
baa.

Proof. The conjugates in M(Dk) starting with aaab are

aaE2 · · · b < aaE3 · · · b < aaE4 · · · b < aaP5 · · · b < aaE5 · · · b
< aaP6 · · · a < aaE6 · · · b < · · · < aaPk−2 · · · a < aaEk−2 · · · b
< aaHk−1 · · · b < aaPk−1 · · · a < aaQk · · · a.

The above conjugates are obtained in the following cases.

Case 1: by concatenating the suffix aa of Ei−1 with the prefix ab of Pi, if only i ∈ [5..k− 1],

Case 2: by concatenating the suffix aa of Pi, with the prefix ab of Ei, for all i ∈ [2..k − 2]
or with Hk−1 if i = k − 1,

Case 3: by concatenating the suffix aa of Hk−1 with the prefix ab of Qk.
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All these conjugates starting with aaab are sorted according to the lexicographic order
of the words in

⋃4
i=2{aaEi} ∪

⋃k−2
j=5 {aaPj · aaEj} ∪ {aaHk−1} ∪ {aaPk−1} ∪ {aaQk}. The

conjugates starting either with aaPi, for all i ∈ [6..k − 1] in Case 1 or Case 3, end with an a.
On the other hand, conjugates of Case 2 or aaP5 in Case 1 end with a b. □

Lemma 41. β(aab, Dk) = baaba2k−8.

Proof. The conjugates in M(Dk) starting with aab are

aP2 · · · b < aE2 · · · a < aE3 · · · a < aP4 · · · b < aE4 · · · a
< aP5 · · · a < aE5 · · · a < · · · < aHk−1 · · · a < aPk−1 · · · a < aQk · · · a.

Each of the cases from Case 1 to Case 3 in Lemma 40 induces a conjugate starting with
aab, obtained by shifting on the left character a. It follows that all of these conjugates end
with a. The other two conjugates that start with an aab are obtained by

• concatenating the suffix a of Qk with the prefix ab of P2 or
• concatenating suffix a of E3 to the prefix ab of P4.

In both cases, the obtained conjugates end with b. We conclude this proof by sort-
ing lexicographically the conjugates in aP2 ∪

⋃3
i=2{aEi} ∪

⋃k−2
i′=4{aPi′ · aEi′} ∪ {aHk−1} ∪

{aPk−1} ∪ {aQk}. □

Lemma 42. β(ab, Dk) = bk−3aaba2k−6.

Proof. The conjugates in M(Dk) starting with ab are

abak−4Pk−1 · · · b < · · · < abP3 · · · b
< P2 · · · a < E2 · · · a < P3 · · · b
< E3 · · · a < P4 · · · a < E4 · · · a < · · · < Pk−2 · · · a < Ek−2 · · · a
< Hk−1 · · · a < Pk−1 · · · a < Qk · · · a.

The above conjugates are obtained in the following cases.

Case 1: Pi for all i ∈ [2..k − 1],
Case 2: prefix ab of Ei, for all i ∈ [2..k − 1],
Case 3: abai−2 from Ei, for all i ∈ [2..k − 2] or ab from Hk−1,
Case 4: ab from Qk.

For two distinct integers i, i′ with i > i′ ≥ 0, we have abai > abai′ . Thus, the first
conjugate in lexicographic order starting with ab is the one followed by the longest run
of as. The smallest of these conjugates can be found by concatenating the suffix abak−4

with the prefix ab of Pk−1 from Case 3. Then, the remaining conjugates in Case 3 which
are abai−2 of Ei for all i ∈ [2..k − 3] follow in decreasing order. By construction of Ei,
for all i ∈ [2..k − 2], these conjugates must end with a b. Note that the remaining cases are
obtained by shifting the character a from the conjugates starting with aab from Lemma 41
with the exception of the character starting with P3. It follows that the latter ends with a b,
while all the other conjugates end with a. □

Lemma 43. β(ba, Dk) = bak−6bbbabk−4abk−3a.
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Proof. The conjugates in M(Dk) starting with ab are

bak−2bkaP2 · · · b < bak−4Pk−1 · · · a < bak−5Pk−2 · · · a < · · · < baaaP6 · · · a
< baaE2 · · · b < baaE3 · · · b < baaE4 · · · b < baaP5 · · · a
< baaE5 · · · b < · · · < baaEk−2 · · · b < baaHk−1 · · · b < baP2 · · · b
< baP4 · · · a
< babak−4Pk−1 · · · b < · · · < babP3 · · · b
< bP3 · · · a.

The conjugates above are obtained by following cases.

Case 1: suffix baa of Pi concatenating with Ei for all i ∈ [2..k − 2] or Hk−1 if i = k − 1,
Case 2: runs in Ei for all i ∈ [2..k − 2],
Case 3: suffix ba from Qk concatenating with P2,
Case 4: bak−3 of Hk−1 concatenating with Qk.

We have as many circular occurrences of ba as the number of maximal runs of bs in
Dk. For Case 1, we have one conjugate starting with baaEi for all i ∈ [2..k − 2] or baaHk−1.
Since each run of bs within each word from

⋃k−1
2 Pi is of length of at least 2, all conjugates

of Case 1 end with b.
For Case 2, for all i ∈ [2..k − 2], we can distinguish two subcases based on where ba

starts:

Case 2 (a): the first run of ba in Ei, which has a type of babai−2 for all i ∈ [2..k − 2],
Case 2 (b): the second run of ba in Ei, which has a type of bai−2 for all i ∈ [2..k − 2].

• For Case 2 (a), we can see that these conjugates start with babai−2Pi+1, if i ∈ [2..k − 2].
Similarly to Case 1, each conjugate for Case 2 (a) ends with a b. Each conjugate
in Case 2 (b) is obtained by shifting two characters on the right each conjugate
in Case 2 (a). Therefore, all of these conjugates end with an a and have prefixes
of the type bai−2Pi+1, if i ∈ [2..k − 2].

• For Case 3, the conjugate starting with ba in Qk has baP2 as a prefix, and it is preceded
by a b.

• Lastly, for Case 4, the conjugates start with bak−3 concatenating with Qk which ends
with a b.

• Observe that only for Case 4 and Case 2 (b) we have conjugates starting with baaaa.
Hence, the first conjugate in lexicographic order is the one from Case 4 starting with
bak−3Qk, followed by those from Case 2 (b) which are bak−4Pk−1 < bak−5Pk−2 < · · · <
baaaP6.

Among the remaining conjugates, those having prefix baaa either start with baaP5

from Case 2 (b) and from Case 1 starting with baaEi for all i ∈ [2..k − 2] or baaHk−1 if
i = k − 1. We can sort them according to the order of the words in

4⋃
i=2

{baaEi} ∪ {baaP5} ∪
k−2⋃
i=5

{baaEi} ∪ {baaHk−1} .

Then, the remaining conjugates with prefix baa are those starting with baP2 from Case 3
and baP4 from Case 2 (b). Finally, let us focus on the conjugates from Case 2 (a). These
conjugates are sorted according to the length of the run of as following the common prefix
bab. The last conjugate left is the one starting with bP3 from Case 2 (b). Since this conjugate
is greater than each conjugate considered in Case 2 (a), this is the greatest conjugate of Dk

starting with ba and the thesis follows. □
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Lemma 44. β(bja, Dk) = bab2k−2j−2a for all j ∈ [2..k − 2].

Proof. With integer i ∈ [2..k − 2], the conjugates in M(Dk) starting with the prefix bia are

biak−3Qk · · · b < biaaEi · · · a < biaaEi+1 · · · b < · · · < biaaEk−2 · · · b < biaaHk−1 · · · b
< biaP2 · · · b < biabak−4Pk−1 · · · b < · · · < biabai−1Pi+2 · · · b
< biabai−2Pi+1 · · · a.

Case 1: concatenating biaa of Pj with Ej for all j ∈ [i..k − 1] or with Hk−1 if only j = k − 1,
Case 2: concatenating biabaj−2 of Ej with Pj+1 if only j ∈ [i..k − 2],
Case 3: concatenating biak−3 of Hk−1 with Qk,
Case 4: concatenating bia with P2.

We consider these four cases separately. For all j ∈ [i..k − 2], the conjugate starting
within Pj has a prefix of biaaEj or biaaHk−1 (Case 1). For all j ∈ [i..k − 2], the conjugates
starting within Ej have a prefix of biabaj−2Pj+1 (Case 2). In addition, conjugate starting
within a word in Case 3 has a prefix of biak−3Qk. Finally, the conjugates starting with Qk

starts with biaP2 (Case 4). By construction, we can see that first we have all the conjugates
first from Case 3 and then from Case 1 sorted according to the lexicographic order into⋃k−2

j=i b
iaaEj ∪ biaaHk−1; then, we have the conjugate from Case 4, then Case 2 sorted

according to the decreasing length of the run of as following the common prefix biab.
Moreover, we note that only when the run of bs is exactly of length i, the conjugate ends
with a. Thus, only the conjugates ending with an a are those starting within biaaEi and
biabai−2Pi+1. □

Lemma 45. β(bk−1a, Dk)= aab.

Proof. There are three conjugates in M(Dk) starting with prefix bk−1a. These conjugates are

bk−1ak−3Qk · · · a < bk−1aaabk−1 · · · a < bk−1aP2 · · · b.

Observe that the only conjugates with prefix bk−1a have the prefixes, respectively,
of bk−1ak−3Qk, bk−1aaHk−1, and bk−1aP2. One can see that these conjugates taken in
this order are already sorted, and only the conjugate starting within Qk ends with b, while
the other two have a. □

Lemma 46. β(bka, Dk) = a.

Proof. The last conjugate in M(Dk) with prefix bka is bkaP2 · · · a. Finally, the only occur-
rence of bk is within Qk. Hence, the last conjugate in lexicographic order starts with bkaP2,
and since the run of b’ is maximal, it ends with an a, and the thesis follows. □

We summarize the above lemmas as follows.

Lemma 47. For integer k ≥ 10, ρ(Dk) = 8k − 18, cf. Table 14. The BWT of the word Dk is given
by BBWT(Dk) = ∏k−1

i=2 β(ak−ib) · ∏k
i=1 β(bia).

Proof. Every conjugate of β(aib) is smaller than each conjugate of β(ai′b) for every 1 ≤
i′ < i ≤ k − 2. Symmetrically, every conjugate of β(bja) is greater than any conjugate of
β(bj′a), for every 1 ≤ j′ < j ≤ k. Since we considered all the disjoint ranges of conjugates of
Dk based on their common prefix, the word ∏k−1

i=2 β(ak−ib) · ∏k
i=1 β(bia) is the BWT of Dk.

With the structure of BBWT(Dk), we can easily derive its number of runs. The word
∏k−4

i=2 β(ak−ib) has exactly 2(k− 6) runs. We start with 2 runs from β(ak−2b)β(ak−3b) = bba,
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and then, concatenating each β(aib) up to β(a4b) adds 2 new runs each. By counting, we
observe that β(aaab), β(aab), β(ab) have 2(k − 6), 4, 4. The boundaries between these
words do not yet merge. The word β(ba) has exactly 8 runs. The remaining part of the
BWT, that is, ∏k

i=2 β(bia), has 4(k − 3) + 2 runs. Concatenating each β(b2a) to β(bk−2a)

adds 4 new runs each. The word β(bka) adds only one run by b, as it contains an a

that merges with the previous one. Finally, β(bka) adds one run. Altogether, we have
2(k − 6) + 2(k − 6) + 4 + 4 + 8 + 4(k − 3) + 2 = 8k − 18, and the claim holds. □

Table 14. Classification of the number of runs obtain in Lemma 47. The total number of runs is
8k − 18.

BBWT of W♭
kc Runs

β(ak−2b) = b 1

β(aib) = bak−i−2, for all i ∈ [4..k − 3] 2k − 12 but, when merged, 2k − 13

β(aaab) = bbbbb(ab)k−7
baa 2k − 12

β(aab)=baaba2k−8 4

β(ab)= bk−3aaba2k−6 4

β(ba) = bak−6bbbabk−4abk−3a 8

β(bja) = bab2k−2j−2a for all j ∈ [2..k − 2] 4k − 12

β(bk−1a)= aab 2 but, when merged, 1

β(bka)= a 1

Using Lemma 47 above, we can finally obtain the runs of C♭
k = Dka.

Theorem 10. ρ(C♭
k) = 8k − 17.

Proof. C♭
k = ak−2bka ·

(
∏k−2

i=2 abiaaabiabai−2
)
· abk−1aaabk−1a. The Lyndon conjugate of

C♭
k is the smallest conjugate starting with the longest runs of a, thus it is the one starting with

ak−1. Therefore, it is obvious that C♭
k is not a Lyndon word, then it is Lyndon factorized by

an a and the residual which is Dk. Figure 12 depicts the Lyndon factorization of C♭
k. Since the

lexicographic order between a and Dk is a< Dk, the runs of C♭
k add one run because the first

conjugate of Dk from Lemma 38 ends with a b. Therefore, ρ(C♭
k) = ρ(a) + ρ(Dk) = 8k − 17.

□

ak−2bka ·
(

∏k−2
i=2 ab

iaaabiabai−2
)
· abk−1aaabk−1C♭

k= a

r(Dk)=8k − 18

1

Figure 12. Lyndon factorization of C♭
k. We obtain ρ(C♭

k) by knowing the number of runs of both its
Lyndon factors and where these conjugates are sorted in the BBWT. The analysis is in the proof of
Theorem 10.

With Lemma 37 and Theorem 10, we determine that the additive sensitivity of ρ for Ck

is Θ(log n) when deleting the last character.

Theorem 11. ρ(C♭
k#)= 8k − 16.
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Proof. C♭
k# = ak−2bka ·

(
∏k−2

i=2 abiaaabiabai−2
)
· abk−1aaabk−1a#. C♭

k# is Lyndon factorized
into three parts, which are Dk, a and #, because the lexicographic order of a is lower than
Dk, and moreover # is smaller than both Dk and a. Therefore, the ρ(C♭

k#) = ρ(#) + ρ(a) +

ρ(Dk) = 8k − 16. We show a sketch in Figure 13. □

ak−2bka ·
(

∏k−2
i=2 ab

iaaabiabai−2
)
· abk−1aaabk−1C♭

k#= a #

ρ(Dk)=8k − 18

1 1

Figure 13. Lyndon factorization of C♭
k#. Compared to Figure 12, we have one additional Lyndon

factor. The analysis is in proof of Theorem 11.

With Lemma 37 and Theorem 11, we obtain that the additive sensitivity of ρ for Ck is
Θ(log n) when substituting the last character.

7.2. Editing Ck with a Character Larger than b

Now, we consider the editing operation Ck with a character c that is lexicographically
larger than any character in Ck. In this part, we consider two edit operations that add c in
the last part of Ck, and substitute the last character of Ck into c.

7.2.1. Appending c to Ck

Now, we prove that adding c to Ck, i.e., Ck becomes Ckc, also adds Θ(
√

n) in runs
in BBWT. Ckc = ak−2bka ·

(
∏k−2

i=2 abiaaabiabai−2
)
· abk−1aaabk−1abc. We illustrate Ck in

Figure 14. Similar to Section 7.1, we slightly modify Ek−1 to abk−1abcak−3. In this section,
we call this modified subword Sk−1. The lexicographic order of c is larger than any words
in Ck. Thus, Ckc is a Lyndon word itself. Recall that the runs of a Lyndon word are the
same in both the BWT or the BBWT, so we obtain ρ(Ckc) by using BWT with M(Ckc) the
same way we did in previous lemmas.

ak−2bka ·
(

∏k−2
i=2 ab

iaaabiabai−2
)
· abk−1aaabk−1 a bCkc= c

Ck

Figure 14. Introducing the Lyndon word Ckc studied in Section 7.2

Lemma 48. β(ak−2b, Ckc) = c.

Proof. The first conjugate in M(Ckc) is ak−2baP2 · · · c. The first conjugate must start with
the longest run of as. In Ckc, the longest run of a has a length of k − 2 which is a prefix of
itself, and it is obtained by concatenating the suffix ak−3 of Sk−1 with Qk, and it is preceded
by a c. □

Lemma 49. β(aib, Ckc) = bak−i−2 for all i ∈ [4..k − 3].

Proof. In M(Ckc), the conjugates starting with aib for i ∈ [4..k − 3] are

ai−1Pi+2 · · · b < ai−1Pi+3 · · · a < · · · < ai−1Pk−1 · · · a < ai−1Qk · · · a.



Mathematics 2025, 13, 1070 36 of 46

For all i ∈ [4..k − 3], the factor aib can only be obtained, for all j ∈ [i + 2..k], from the
concatenation of the suffix ai−1 of Ej−1 with prefix ab of Pj, if j ∈ [i + 2..k − 1] or from
the concatenation with ai−1 of Sk−1 with prefix ab of Qk. We can sort these conjugates
according to the lexicographic order of

⋃k−1
j=i a

i−1Pj ∪ ai−1Qk. Note that all these conjugates

end with an a, with the exception of the conjugate starting with ai−1Pi+2, since it is here the
only occurrence of baib can be found. □

Lemma 50. β(aaab, Ckc) = bbbbb(ab)k−6
a.

Proof. In M(Ckc), the conjugates starting with aaab are
aaE2 · · · b < aaE3 · · · b < aaE4 · · · b < aaP5 · · · b < aaE5 · · · b

< aaP6 · · · a < aaE6 · · · b < · · · < aaPk−2 · · · a
< aaEk−2b < aaPk−1 · · · a < aaSk−1 · · · b
< aaQk · · · a.

Similarly to Lemma 49, aaab can be obtained from concatenation of the suffix aa of Ej−1,
with the prefix ab of Pj, if j ∈ [5..k − 1], or concatenating aa of Sk−1 with prefix ab of Qk.
On the other hand, there are more conjugates from concatenating suffix aa of Pj′ to the prefix
ab of Ej′ , for all j′ ∈ [2..k − 2], or with Sk−1 if j′ = k − 1. All the conjugates starting with
aaab are sorted according to the lexicographic order of the words in

⋃4
j=2 {aaEj} ∪ {aaP5 ·

aaE5} ∪
⋃k−2

j′=6 {aaPj′ · aaEj′} ∪ {aaPk−1 · aaSk−1} ∪ {aaQk}. Note that all the conjugates
starting either with aaPj , for all j ∈ [6..k − 1], or with aaQk, end with a. On the other hand,
the conjugates starting either with aaP5 or with aaEj, for all j ∈ [2..k − 2] or aaSk−1, end
with b. □

Lemma 51. β(aab, Ckc) = baaba2k−8.

Proof. The conjugates starting with aab in M(Ckc) are

aP2 · · · b < aE2 · · · a < aE3 · · · a < aP4 · · · b
< aE4 · · · a < aP5 · · · a < aE4 · · · a < · · · < aPk−1 · · · a < aSk−1 · · · a < aQk · · · a.

Each of the conjugates starting with aaab from Lemma 50 induces a conjugate starting
with aab, obtained by shifting one character on the left a. It follows that all of these
conjugates end with a. The other conjugates starting with aab are the ones obtained
by concatenating the suffix a of E3 and the prefix ab of P4, and the one obtained by
concatenating the suffix a of Qk and the prefix ab of P2. Moreover, both conjugates end
with a b. We conclude this proof by sorting lexicographically the conjugates in {aP2} ∪⋃3

i=2{aEi} ∪
⋃k−2

i=4 {aPi · aEi} ∪ {aPk−1 · aSk−1} ∪ {aQk}. □

Lemma 52. β(ab, Ckc) = bk−3aaba2k−6b.

Proof. The conjugates in M(Ckc) starting with ab are

abk−4Pk−1 · · · b < abk−5Pk−2 · · · b < · · · < abP3 · · · b
< P2 · · · a < E2 · · · a < P3 · · · b
< E3 · · · a < P4 · · · a < E4 · · · a < · · · < Pk−1 · · · a < Sk−1 · · · a < Qk · · · a
< abc · · · b.
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For all two distinct integers i, i′ with i > i′ ≥ 0, we have abiab < abiab. Thus, the first
conjugate in lexicographic order starting with ab is the one followed by the longest run of
as. The smallest of these conjugates can be found by concatenating the suffix abak−4 of Ek−2

with Pk−1, followed by the suffix abai−3 of Ei−1 concatenated with Pi, for all i ∈ [3..k − 2],
taken in decreasing order. By construction of Ei, for all i ∈ [2..k − 2], these conjugates all
end with a b. The remaining conjugates starting with ab are exactly those conjugates that
have as prefix either Pi or Ei, for all i ∈ [2..k − 2], Pk−1, Sk−1 or Qk. Note that all of these
conjugates are obtained by shifting one character on the left a from the conjugates starting
with aab from Lemma 51, with the exception of one starting with P3. It follows that the
latter ends with a b, while all the other conjugates end with a. Finally, the conjugate starting
with the prefix abc follows, which ends with b. □

Lemma 53. β(ba, Ckc) = ak−6bbbabk−4abk−3ab.

Proof. In M(Ckc), the conjugates starting with ba are
bak−4Pk−1 · · · a < bak−5Pk−2 · · · a < · · · < baaaP6 · · · a < baaE2 · · · b

< baaE3 · · · b < baaE4 · · · b < baaP5 · · · a
< baaE5 · · · b < baaE6 · · · b < · · · < baaEk−2 · · · b < baaSk−1 · · · b
< baP2 · · · b < baP4 · · · a < babak−4Pk−1 · · · b < · · · < babaP4 · · · b
< babP3 · · · b < bP3 · · · a < babcak−3Qk · · · b.

We have as many circular occurrences of ba as the number of maximal runs of b in Ckc. We
have four cases.

Case 1: one run of bs in Pi, for all i ∈ [2..k − 1],
Case 2: two runs in Ei for all i ∈ [2..k − 2],
Case 3: one run of ba in Qk,
Case 4: one run of ba in Sk−1.

For Case 1, we have one conjugate starting with baaEi, for each i ∈ [2..k − 2],
or baaSk−1. Since each run of bs within each word from

⋃k−1
i=2 {Pi} is of length of at least 2,

all conjugates in Case 1 end with a b.
For Case 2 and all i ∈ [2..k − 2], we can distinguish between two subcases based on

where ba starts:

Case 2 (a): a first run of ba in Ei, which has a type of babai−2 for all i ∈ [2..k − 2],
Case 2 (b): a second run of ba in Ei, which has a type of bai−2 for all i ∈ [2..k − 2].

• For Case 2 (a), we can see that these conjugates are of the type babai−2Pi+1, for i ∈
[2..k − 2]. Analogously to Case 1, each conjugates for Case 2 (a) end with a b. Each
conjugate in Case 2 (b) is obtained by shifting two characters on the right each conju-
gate in Case 2 (a). Therefore, all of these conjugates end with an a and have prefixes of
the type bai−2Pi+1, for all i ∈ [2..k − 2].

• For Case 3, the conjugate starting with ba in Qk has baP2 as prefix, and it is preceded
by a b.

• Finally, in Case 4, there is one run of ba, having a prefix of babcak−3Qk, ending with b.
• Only for Case 2 (b) we have conjugates starting with baaaa. Hence, the first con-

jugate in lexicographic order is the one starting with bak−4Pk−1, followed by those
bak−5Pk−2 < · · · < baaaP6.

Among the remaining conjugates, those having prefix baaa either start with baaP5

from Case 2 (b) or baaEi from Case 1, for all i ∈ [2..k − 2] or baaSk−1 if i = k − 1. We can
sort these conjugates by following the order of

⋃4
i=2{baaEi} ∪ {baaP5} ∪

⋃k−2
i=5 {baaEi} ∪

{baaSk−1}. Then, the remaining conjugates with prefix baa are those starting with baP2
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from Case 3 and baP4 from Case 2 (b). Finally, we focus on the conjugates from Case 2 (a).
These conjugates are sorted according to the length of the run of as following the common
prefix bab. The last two conjugates left are one starting with bP3 from Case 2 (b), and the
one from Case 4, which is babcak−3Qk. These two conjugates are already sorted. Since
these conjugates are greater than other conjugates, these are the greatest conjugates of
M(Ckc) starting with ba. □

Lemma 54. β(bia, Ckc) = ab2k−2i−2ab for all i ∈ [2..k − 2].

Proof. With integer i ∈ [2..k − 2], conjugates in M(Ckc) with prefix bia are
biaaEi · · · a < biaaEi+1 · · · b < · · · < biaaEk−2 · · · b < biaaSk−1 · · · b

< biaP2 · · · b < biabak−4Pk−1 · · · b
< biabak−5Pk−2 · · · b < · · · < biabai−1Pi+2 · · · b
< biabai−2Pi+1 · · · a < biabcak−3Qk · · · b.

With integer i ∈ [2..k − 2], these conjugates are obtained in the following cases.

Case 1: concatenating biaa of Pj with Ej, for all j ∈ [i..k − 2] or with Sk−1 if j = k − 1,
Case 2: concatenating biabaj−2 of Ej with Pj+1 for all i ∈ [2..k − 2],
Case 3: concatenating bia of Qk with P2,
Case 4: concatenating biabcak−3 of Sk−1 with Qk.

We consider the four cases separately. For all j ∈ [i..k − 1], the conjugate starting
within Pj (Case 1) has as prefix biaaEj if j ∈ [i..k − 2] or biaaSk−1 if j = k − 1. Also, when
j ∈ [i..k − 2], the conjugate starting within Ej (Case 2) has the prefix of biabaj−2Pj+1. In ad-
dition, the conjugate starting within Qk(Case 3) has as prefix biaP2. Finally, the conjugate
that begins within Sk−1 (Case 4) has a prefix of biabcak−3. By construction, we can see that
all the conjugates from Case 1 are sorted according to the lexicographic order of the words
in
⋃k−2

j=i {b
iaaEj} ∪ {biaaSk−1}; then, we have the conjugate from Case 3. Following, we

have the conjugate from Case 2, sorted according to the decreasing length of the run of
as following the common prefix biab. Finally, the conjugate of Case 4 follows. Moreover,
we note that only when the run of bs is exactly of length i ends the conjugate with an a.
Thus, only conjugates ending with an a are those starting within Pi and Ei, i.e., those with
prefixes biaaEi and biabai−2Pi+1. □

Lemma 55. β(bk−1a, Ckc)=aba.

Proof. In M(Ckc), the conjugates with prefix bk−1a are

bk−1aaSk−1 · · · a < bk−1aP2 · · · b < bk−1abcak−3Qk · · · a.

Observe that the only conjugates with prefix bk−1a start within Pk−1, Qk and Sk−1. These
conjugates have prefixes of, respectively, bk−1aaSk−1, bk−1aP2, bk−1abcak−3Qk. One can see
that these conjugates taken in this order are already sorted, and only the conjugate starting
within Qk ends with b, while the other two have a. □

Lemma 56. β(bka, Ckc)=a.

Proof. In M(Ckc), the conjugate with prefix bka is bkaP2 · · · a. The only occurrence of bka

is within Qk. Since the run of bs is maximal, it ends with a. □

Lemma 57. β(bc, Ckc) = a.
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Proof. In M(Ckc), the conjugate starting with bc is bcak−3Qk · · · a. The only occurrence of
bc is in Sk−1, preceded by an a. □

Lemma 58. β(c, Ckc) = b.

Proof. In M(Ckc), the last conjugate is cak−3Qk · · · b since c is biggest character in Ckc.
The only occurrence of c is in the last character of Ckc. Hence, the last conjugate in
lexicographic order starts with cak−3Qk. Since c is preceded by b, the conjugate Ckc

contributes a b to the BWT. □

The following theorem puts the above lemmas together.

Theorem 12. ρ(Ckc) = 8k − 12, cf. Table 15. It holds that BBWT(Ckc) = BWT(Ckc) =

∏k−1
i=2 β(ak−ib) · ∏k

i=1 β(bia) · β(bc) · β(c).

Table 15. Classification of the number of runs obtain in Theorem 12. The total number of runs is
8k − 12.

BWT of Ckc Runs

β(ak−2b) = c 1

β(aib) = bak−i−2 for all i ∈ [4..k − 3] 2k − 12

β(aaab) = bbbbb(ab)k−6
a 2k − 10

β(aab) = baaba2k−8 4

β(ab) = bk−3aaba2k−6b 5

β(ba) =ak−6bbbabk−4abk−3ab 8

β(bia)=ab2k−2i−2ab for all i ∈ [2..k − 2] 4k − 12

β(bk−1a) = aba 3

β(bka) = a 1 but when merged 0

β(bc) = a 1 but when merged 0

β(c) = b 1

Proof. Every conjugate of β(aib) is smaller than any conjugate of β(ai′b), for all 1 ≤ i′ ≤
i ≤ k − 2. Symmetrically, every conjugate of β(bja) is greater than any conjugate of β(bj′a),
for every 1 ≤ j′ ≤ j ≤ k. Since we considered all the disjoint ranges of conjugates of Ckc

based on their common prefix, ∏k−1
i=2 β(ak−ib) · ∏k

i=1 β(bia) · β(bc) · β(c) is the BBWT and
BWT of Ckc.

With the structure of BWT(Ckc), we can easily derive its number of runs. The word
∏k−4

i=2 β(ak−ib) has exactly 2k − 11 runs: we start with 1 run from β(ak−2b) = c, and then
concatenating each from β(ak−3b) to β(aaaab) adds 2 runs each. By counting, we observe
that β(aaab), β(aab), β(ab), have 2k − 10, 4, 5 runs, respectively. The boundaries between
these words do not merge. The word β(ba) has exactly 8 runs. The remaining parts of the
BWT ∏k

i=2 β(bia) have 4(k − 3) + 4 runs: we start adding 4 runs each by concatenating
each β(bba) to β(bk−2a). And β(bk−1a) adds 3 runs. On the other hand, the words β(bka)

and β(bc) do not add new runs, as they consist only of an a that merges with the previous
one. For the last element, β(c) adds one run. Altogether, we have 2k − 11 + 2k − 10 + 8 +
4 + 5 + 4k − 12 + 3 + 1 = 8k − 12, and the claim holds. □

With Lemma 37 and Theorem 12, we obtain that the additive sensitivity of ρ for Ck is
Θ(log n) when appending a character.
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7.2.2. Substituting the Last Position of Ck with c

Here, we focus on the word C♭
kc that we obtain by substituting the last character of

Ck with c, which is lexicographically larger than any character in Ck. See Figure 15 for
a visualization. The same as Section 7.2.1, Ek−1 changes to abk−1acak−3, and we refer
to it as Rk−1 below. According to its definition, C♭

kc = ak−2bka ·
(

∏k−2
i=2 abiaaabiabai−2

)
·

abk−1aaabk−1ac. Recall from the proof of Theorem 10 that C♭
k is not a Lyndon factor. The

Lyndon factors of C♭
k are Dk and a. There, we prove that the run of C♭

k is 8k − 17. We start
with the first observation that C♭

kc is a Lyndon word.

ak−2bka ·
(

∏k−2
i=2 ab

iaaabiabai−2
)
· abk−1aaabk−1 aC♭

kc= c

C♭
k

Figure 15. Introducing the Lyndon word C♭
kc studied in Section 7.2.2.

Lemma 59. C♭
kc is a Lyndon word.

Proof. The longest run of a has a length of k − 2, which is a prefix of C♭
kc itself having prefix

ak−2b. Thus, C♭
kc is a Lyndon word. □

Thus, we prove ρ(C♭
kc) using the M(C♭

kc) as we did above.

Lemma 60. β(ak−2b, C♭
kc) = c.

Proof. The first conjugate in M(C♭
kc) is ak−2bkaP2 · · · c. The first conjugate in lexicographic

order must start with the longest run of as. By the definition of C♭
k, the longest run of a has

length k − 2, and it is obtained by concatenating the suffix ak−3 of Rk−1 with Qk, which is
preceded by a c. □

Lemma 61. β(aib, C♭
kc) = bak−2−i for all i ∈ [4..k − 3].

Proof. All conjugates in M(C♭
kc) starting with the prefix aib for any i ∈ [4..k − 3] are given

below.

ai−1Pi+2 · · · b < ai−1Pi+3 · · · a < · · · < ai−1Pk−1 · · · a < ai−1Qk · · · a.

For all i ∈ [4..k − 3], the factor aib can only be obtained, for all j ∈ [i + 2..k − 1], by concate-
nating the suffix ai−1 of Ej−1, with the prefix ab of Pj, or by concatenating suffix ak−3 of
Rk−1 with the prefix ab of Qk. We can sort these conjugates according to the lexicographic
order of

⋃k−3
j=i {a

i−1Pj+2} ∪ {ai−1Qk}. Note that all these conjugates end with an a, with the

exception of the conjugate starting with ai−1Pi+2, since it is here the only occurrence of baib

can be found. □

Lemma 62. β(aaab, C♭
kc) = bbbbb(ab)k−6

a.

Proof. The conjugates in M(C♭
kc) starting with the prefix aaab are

aaE2 · · · b < aaE3 · · · b < aaE4 · · · b < aaP5 · · · b < aaE5 · · · b
< aaP6 · · · a < aaE6 · · · b < · · · < aaPk−2 · · · a < aaRk−1 · · · b < aaQk · · · a.

These conjugates are obtained from the following cases.
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Case 1: concatenating suffix aa of Pi with prefix ab of Ei, for all i ∈ [2..k − 2] or with
Rk−1 if i = k − 1,

Case 2: concatenating suffix aa of Ei−1 with prefix ab of Pi for all i ∈ [5..k − 1],
Case 3: concatenating suffix aa of Rk−1 with prefix ab of Qk.

All these conjugates starting with aaab are sorted according to the lexicographic order
of the words in

⋃4
i=2{aaEi} ∪ {aaP5 · aaE5} ∪ ⋃k−2

i=6 {aaPi · aaEi} ∪ {aaPk−1 · aaRk−1} ∪
{aaQk}. Note that all the conjugates starting either with aaPi , for all i ∈ [6..k − 1] of Case 2,
or Case 3 end with a. On the other hand, the conjugates starting either with aaP5 of Case 2
or Case 1 end with a b. □

Lemma 63. β(aab, C♭
kc) = baaba2k−8.

Proof. The conjugates in M(C♭
kc) that starts with the prefix aab are

aP2 · · · b < aE2 · · · a < aE3 · · · a < aP4 · · · b < aE4 · · · a < aP5 · · · a
< aE5 · · · a < · · · < aPk−2 · · · a < aEk−2 · · · a < aPk−1 · · · a < aRk−1 · · · a
< aQk · · · a.

Each of the conjugates starting with aaab from Lemma 62 induces a conjugate starting
with aab, obtained by shifting one character on the left a. It follows that all of these
conjugates end with a. The other conjugates starting with aab are the ones obtained
by concatenating suffix a of Qk with ab of P2, and another is obtained by concatenating
suffix a of E3 with ab of P4. Moreover, both conjugates end with a b. We prove our
claim by sorting the conjugates according to the lexicographic order of the words in
{aP2 · aE2 · aE3} ∪

⋃k−2
i=4 {aPi · aEi} ∪ {aPk−1 · aRk−1} ∪ {aQk}. □

Lemma 64. β(ab, C♭
kc) = bk−3aaba2k−6.

Proof. In M(C♭
kc), the conjugates which start with prefix ab are

abak−4Pk−1 · · · b < abak−5Pk−2 · · · b < · · · < abP3 · · · b
< P2 · · · a < E2 · · · a < P3 · · · b < E3 · · · a
< P4 · · · a < E4 · · · a < · · · < Pk−2 · · · a < Ek−2 · · · a
< Pk−1 · · · a < Rk−1 · · · a < Qk · · · a.

For all two distinct integers i, i′ with i > i′ ≥ 0, we have abaib < abai′b. Thus, the first
conjugate in lexicographic order starting with ab is the one which is followed by the longest
run of as. The smallest of these conjugates can be found by concatenating the suffix abak−4

of Ek−2 with the prefix ab of Pk−1, followed by the suffix abai−3 of Ei−1 concatenated with
the prefix ab of Pi, for all i ∈ [3..k − 2] all taken in decreasing order. By construction of Ei,
for all i ∈ [2..k − 2], these conjugates must end with a b. The remaining conjugates starting
with ab are exactly those conjugates having as prefix either Pi for all i ∈ [2..k − 1] and Ei′ for
all i′ ∈ [2..k − 2] or Rk−1 and Qk. Note that all of these conjugates are obtained by shifting
one character on the left a from the conjugates starting with aab from Lemma 63, with the
exception of one starting with P3. It follows that the latter ends with a b, while all the other
conjugates end with an a. □

Lemma 65. β(ac, C♭
kc) = b.
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Proof. In M(C♭
kc), the conjugate that starts with prefix ac is acak−3Qk · · · b. The lexico-

graphic order of c is larger than b or a, so the prefix ac is also larger than the prefix ab. ac
is obtained from Rk−1, preceded by a b. □

Lemma 66. β(ba, C♭
kc) = ak−6bbbabk−4abk−3ab.

Proof. In M(C♭
kc), the conjugates starting with the prefix ba are

bak−4Pk−1 · · · a < bak−5Pk−2 · · · a < · · · < baaaP6 · · · a
< baaE2 · · · b < baaE3 · · · b < baaE4 · · · b < baaP5 · · · a
< baaE5 · · · b < baaE6 · · · b < · · · < baaRk−1 · · · b
< baP2 · · · b < baP4 · · · a
< babak−4Pk−1 · · · b < babak−5Pk−2 · · · b < · · · < babP3 · · · b
< bP3 · · · a < bacak−3Qk · · · b.

One can notice that we have as many circular occurrences of ba as the number of
maximal runs of bs in M(C♭

kc). The conjugates are obtained from the cases below.

Case 1: one run of bs in Pi, for all i ∈ [2..k − 1],
Case 2: two runs in Ei for all i ∈ [2..k − 2],
Case 3: one run in Qk,
Case 4: one run in Rk−1.

For Case 1, we have one conjugate starting with baaEi for each i ∈ [2..k − 1]. Since
each run of bs within each word from

⋃k−1
i=2 {Pi} is of length of at least 2, all conjugates

in Case 1 end with a b.
For Case 2, with integer i ∈ [2..k − 2], we can distinguish between two subcases based

on where ba starts:

Case 2 (a): a first run of ba in Ei, which has a prefix of babai−2Pi+1 for all i ∈ [2..k − 2] ,
Case 2 (b): a second run of ba in Ei, which has a prefix of bai−2Pi+1 for all i ∈ [2..k − 2].

• Similarly to Case 1, all the conjugates in Case 2 (a) end with a b.
• Each conjugate in Case 2 (b) is obtained by shifting two characters on the right each

conjugate in Case 2 (a). Therefore, all of these conjugates end with an a.
• For Case 3, the conjugate starting with ba in Qk has baP2 as a prefix, and it is preceded

by a b.
• For Case 4, ba in Rk−1 has bacak−3 as a prefix, and it is preceded by a b.
• Observe that only for Case 2 (b) we have conjugates starting with baaaa. Hence,

the first conjugate in lexicographic order is the one starting with bak−4Pk−1 followed
by bak−5Pk−2 < · · · < baaaP6.

• Among the remaining conjugates, those having prefix baaa either start with baaP5

from Case 2 (b) or baaEi from Case 1 for all i ∈ [2..k − 1]. Thus, we can sort them
according to the order of the words in

⋃4
i=2{baaEi} ∪ {baaP5} ∪

⋃k−2
i=5 {baaEi}. Then,

the remaining conjugates with prefix baa are those starting with baP2 from Case 3
and baP4 from Case 2 (b).

Finally, we focus on the conjugates from Case 2 (a). These conjugates are sorted accord-
ing to the length of the run of as following the common prefix bab. The last conjugates left
are the one starting with bP3 from Case 2 (b) and the one starting with bacak−3 from Case 4.
These conjugates are lexicographically organized and are greater than any other cases,
and therefore we analyzed all conjugates. □
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Lemma 67. β(bia, C♭
kc) = ab2k−2i−2ab for all i ∈ [2..k − 2].

Proof. In M(C♭
kc), the conjugates starting with bia for all i ∈ [2..k − 2] are

biaaEi · · · a < biaaEi+1 · · · b < biaaEi+2 · · · b < · · · < biaaRk−1 · · · b
< biaP2 · · · b < biabak−4Pk−1 · · · b < · · · < biabai−1Pi+2 · · · b
< biabai−2Pi+1 · · · a < biacak−3Qk · · · b.

All runs of bs of length of at least i ∈ [2..k − 2] are obtained from the cases below.

Case 1: suffix biaa in Pj, for all j ∈ [i..k − 1]
Case 2: biabaj−2 in Ej for all j ∈ [i..k − 2],
Case 3: bia in Qk,
Case 4: biacak−3 in Rk−1.

• Consider the four cases separately. The conjugate starting within Pj (Case 1) has as
prefix biaaEj if only j ∈ [i..k − 2] or biaaRk−1 if j = k − 1.

• And for all j ∈ [i..k − 2], the conjugate starting within Ej (Case 2) has as prefix
biabaj−2Pj+1.

• In addition, the conjugate starting within Qk (Case 3) has as prefix biaP2.
• Finally, the conjugate that begins within Rk−1 (Case 4) has as prefix biacak−3.

By construction, we have all the conjugates from Case 1 sorted according to the lexi-
cographic order of the words in

⋃k−2
j=i {b

iaaEj} ∪ {biaaRk−1}; then, we have the conjugate
from Case 3. Then, the conjugates of Case 2 are sorted according to the decreasing length
of the run of as following the common prefix biab. Finally, the conjugate of Case 4 follows.
Moreover, note that only when the run of bs is exactly of length i the conjugate ends with an
a. Thus, only the conjugates ending with an a are those starting within Pi and Ei, i.e., those
with prefix biaaEi and biabai−2Pi+1. □

Lemma 68. β(bk−1a, C♭
kc) = aba.

Proof. In M(C♭
kc), there are exactly three conjugates that start with prefix bk−1a. These are

bk−1aaabk−1acak−3Qk · · · a < bk−1aP2 · · · b < bk−1acak−3Qk · · · a.

Observe that the only conjugates with prefix bk−1a start within Pk−1, Qk, and Rk−1. These
conjugates have prefixes of, respectively, bk−1Rk−1, bk−1aP2, bk−1acak−3Qk. One can see
that these conjugates taken in this order are already sorted, and only the conjugate starting
within Qk ends with b, while the other two end with a. □

Lemma 69. β(bka, C♭
kc) = a.

Proof. In M(C♭
kc), only one conjugate starts with a prefix of bka and it is bkaP2 · · · a. The

only occurrence of bka is within Qk, preceded by a. □

Lemma 70. β(c, C♭
kc) = a.

Proof. The last conjugate in M(C♭
kc) that starts with prefix c is cak−3Qk · · · a. The last

conjugate in lexicographic order that starts with c occurs in Rk−1. Since c is preceded by an
a, it ends with a. □

The following theorem puts the above lemmas together.
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Theorem 13. ρ(C♭
kc) = 8k− 13, cf. Table 16. The BBWT of C♭

kc is BBWT(C♭
kc) = ∏k−1

i=2 β(ak−ib) ·
β(ac) · ∏k

i=1 β(bia) · β(c).

Table 16. Classification of the number of runs obtained in Theorem 13. The total number of runs is
8k − 13.

BWT of C♭
kc Runs

β(ak−2b) = c 1

β(aib) = bak−2−i for all i ∈ [4..k − 3] 2k − 12

β(aaab) = bbbbb(ab)k−6
a 2k − 10

β(aab) = baaba2k−8 4

β(ab) = bk−3aaba2k−6 4

β(ac) = b 1

β(ba) = ak−6bbbabk−4abk−3ab 8

β(bia) = ab2k−2i−2ab for all i ∈ [2..k − 2] 4k − 12

β(bk−1a) = aba 3

β(bka) = a 1 but, when merged, 0

β(c) = a 1 but, when merged, 0

Proof. Every conjugate contributing a character to β(aib) is smaller than any conjugate
of β(ai′b), for all 1 ≤ i′ ≤ i ≤ k − 2. Symmetrically, every conjugate contributing a
character to β(bja) is greater than any conjugate of β(bj′a), for every 1 ≤ j′ ≤ j ≤ k. Since
we considered all the disjoint ranges of conjugates of Ckc based on their common prefix,
∏k−1

i=2 β(ak−ib) · β(ac) · ∏k
i=1 β(bia) · β(c) is the BBWT and BWT of C♭

kc.
With the structure of BWT(C♭

kc), we can easily derive its number of runs. The word
∏k−4

i=2 β(ak−ib) has exactly 2k − 11 runs: we start with 1 run from β(ak−2b) = c, and then
concatenating each from β(ak−3b) to β(a4b) adds 2 runs each. By counting, we observe that
β(aaab), β(aab), and β(ab) contribute 2k − 10, 4, and 4 runs, respectively. The boundaries
between these words do not merge. The conjugates in β(ac) and β(ba) contribute with
1 and 8 runs each. The remaining parts of the BWT ∏k

i=2 β(bia) contribute 4(k − 3) + 3
runs: we start adding 4 runs each by concatenating each β(bba) to β(bk−2a). And β(bk−1a)

adds 3 runs. β(bka) and β(c) do not add new runs, as they consist only of an a that
merges with the previous one. The last part β(c) contributes one run. In total, we have
2k − 11 + 2k − 10 + 4 + 4 + 1 + 8 + 4k − 12 + 3 = 8k − 13, and the claim holds. □

8. Conclusions
In this article, we analyzed the sensitivity of the Burrows–Wheeler Transform (BWT)

and its bijective variant (BBWT) to single-character edits. We extended previous work on
the BWT by a four-character alphabet setting and an alphabet reordering. Our findings
reveal that BWT and BBWT exhibit similar sensitivity characteristics, with compression size
changes that can follow a multiplicative logarithmic or additive square-root growth. These
insights clarify that the BWT and BBWT are not robust repetitiveness measures, which is a
crucial property for data compression applications. As future work, we would like to find
positions in a word for which we can predict the compression size changes when editing
that position. That would allow us to design algorithms to improve the compression power
of BWT/BBWT by editing the word in a way that minimizes the compression size changes.
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