
Vol.:(0123456789)

SN Computer Science           (2022) 3:193  
https://doi.org/10.1007/s42979-022-01084-2

SN Computer Science

ORIGINAL RESEARCH

Graph Compression for Adjacency‑Matrix Multiplication

Alexandre P. Francisco1 · Travis Gagie2  · Dominik Köppl3 · Susana Ladra4 · Gonzalo Navarro5,6

Received: 15 November 2021 / Accepted: 4 March 2022 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Computing the product of the (binary) adjacency matrix of a large graph with a real-valued vector is an important operation 
that lies at the heart of various graph analysis tasks, such as computing PageRank. In this paper, we show that some well-
known webgraph and social graph compression formats are computation-friendly, in the sense that they allow boosting the 
computation. We focus on the compressed representations of (a) Boldi and Vigna and (b) Hernández and Navarro, and show 
that the product computation can be conducted in time proportional to the compressed graph size. Our experimental results 
show speedups of at least 2 on graphs that were compressed at least 5 times with respect to the original.

Keywords Matrix multiplication · Webgraph · Bicliques · Data compression

Introduction

Let � ∈ {0, 1}n×n be an n × n binary matrix and 
x⃗ = (x1,… , xn) ∈ ℝ

n be a vector. Matrix-vector multi-
plication, either x⃗ ⋅ � or � ⋅ x⃗⊤ , is not only a fundamental 

operation in mathematics but also a key operation in various 
graph-analysis tasks, when � is their adjacency matrix. A 
well-known example, which we use as a motivation, is the 
computation of PageRank on large Web graphs. PageRank 
is a particular case of many network centrality measures that 
can be approximated through the power method [1, Chap-
ter 11.1]. Most real networks, and in particular webgraphs 
and social graphs, have very sparse adjacency matrices [2]. 
While it is straightforward to compute a matrix-vector prod-
uct in time proportional to the nonzero entries of � , the 
most successful Web and social graph compression meth-
ods exploit other properties that allow them to compress the 
graphs well beyond what is possible by their mere sparsity. It 
is therefore natural to ask whether those more powerful com-
pression formats allow us, as sparsity does, to compute the 
product in time proportional to the size of the compressed 
representation. This is an instance of computation-friendly 
compression, which applies compression formats that not 
only reduce the size of the representation of objects, but 
also speed up computations on them by directly operat-
ing on the compressed representations. Elgohary et al. [3] 
addressed this problem for structured matrices commonly 
found in machine learning for matrix-vector multiplication. 
However, Abboud et et. [4] have proven that with sophisti-
cated compression techniques it is difficult or even impos-
sible to compute basic linear-algebra operations like matrix-
vector multiplication in subquadratic time. Additionally, 
Chakraborty et al. [5] showed that any data structure storing 
r bits with n < r < n2 must have a query time t satisfying 
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tr ∈ Ω(n3polylog(n)) . Other examples of computation-
friendly compression are pattern matching in compressed 
strings [6], computation of edit distance between com-
pressible strings [7], speedups for multiplying sequences of 
matrices and the Viterbi algorithm [8], representing bipartite 
graphs [9], building small and shallow circuits [10], among 
other tasks [11].

Our Contribution

In this article, we exploit compressed representations of 
webgraphs and social networks and show that matrix-vector 
products can be carried out much faster than just operat-
ing on all the nonzero entries of the matrix. Although our 
approach can be extended to other compressed representa-
tions of graphs and binary matrices, we mostly consider two 
representations: one proposed by Boldi and Vigna [12], and 
the other proposed by Hernández and Navarro [13]. For the 
former, the key observation for us is that adjacency lists, 
i.e., rows in � , are compressed differentially with respect to 
other similar lists, and thus one can reuse and “correct” the 
result of the multiplication of a previous similar row with 
x⃗⊤ . The latter representation works by extracting regular sub-
structures in the matrix, on which the matrix multiplication 
becomes particularly simple.

A preliminary version of this article appeared at the Data 
Compression Conference 2018 [14]. The conference version 
did not consider Hernández and Navarro’s representations, 
and we also experiment with slicing the matrix vertically 
into sub-matrices.

Structure of this Article

We describe previous work in the next section (Sec-
tion “Previous Work”). The following sections describe 
PageRank and the compression format of Boldi and Vigna 
(Section “Computation on the WebGraph Format”). We 
then describe how we exploit that compression format 
to speed up matrix multiplication (Section “Computa-
tion on the WebGraph Format”), and a vertical split of 
the matrix used for PageRank to boost up the compres-
sion in Section “Vertically Slicing into Sub-Matrices”. 
Section “Experimental Evaluation” contains experimental 
results for this compression format. Subsequently, in Sec-
tion “Computation with Bicliques”, we show how to use 
the compression format of Hernández and Navarro [13]. 
We conclude this article with directions for future work. 
Compared to the conference version of this paper [14], we 
added Section “Vertically Slicing into Sub-Matrices”, a 
more thorough evaluation including variable window sizes, 
and the second compression format of Hernández and Nav-
arro in Section “Computation with Bicliques”.

Previous Work

Matrix multiplication is a fundamental problem in com-
puter science; see, e.g., a recent survey of results [15]. 
Computation-friendly matrix compression has been already 
considered by others, even if indirectly. Karande et  al. 
[16] addressed it by exploiting a structural compression 
scheme, namely by introducing virtual nodes. Although 
their results were similar to the ones presented in this paper, 
their approach was more complex and it could not be used 
directly, requiring the correction of computation results. On 
the other hand, contrary to their belief, we show in this paper 
that representational compression schemes do not always 
require the same amount of computation, providing a much 
simpler approach that can be used directly without requiring 
corrections.

Another interesting approach was proposed by Nishino 
et al. [17]. Although they did not exploit compression in the 
same way we do, they observed that intermediate compu-
tational results for the matrix multiplication of equivalent 
partial rows of a matrix are the same. Their approach is to 
use an adjacency forest representing the rows of the matrix; 
this forest achieves compression by compacting common 
suffixes of the rows. We should note that the authors con-
sider general real matrices, and not only Boolean matrices 
as we do. Nevertheless, they presented results for computing 
the PageRank over adjacency matrices as we do, achieving 
similar results. Their approach implied preprocessing the 
graph, however, while we start from an already compressed 
graph. An interesting question is how their approach could 
be exploited on top of k2-trees [18].

The question addressed here can also be of interest for 
the problem of Online Matrix-Vector (OMV) multiplication. 
Given a stream of binary vectors, x⃗1, x⃗2, x⃗3,… , the results of 
matrix-vector multiplications x⃗i ⋅ � can be computed faster 
than computing them independently, with most approaches 
making use of previous computations x⃗j ⋅ � , for j < i , to 
speed up the computation of each new product x⃗i ⋅ � [19, 
20]. Nevertheless, none of those approaches preprocess 
matrix � to exploit its redundancies. Hence, by exploiting a 
suitable compressed representation of � as we do here, an 
improvement for OMV can be easily obtained, with com-
putational time depending on the length of the compressed 
representation of � instead.

PageRank

Given G = (V ,E) , a directed graph with n = |V| vertices 
and m = |E| edges, let � be its adjacency matrix; Auv = 1 
if (u, v) ∈ E , and Auv = 0 otherwise. We assume that for 
each vertex u, there is at least one vertex v with Auv = 1 . 
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The normalized adjacency matrix of G is the matrix 
� = �−1 ⋅ � , where � is an n × n diagonal matrix with Duu 
the degree du of u ∈ V  , i.e., Duu = du =

∑
v Auv ≥ 1 . Note 

that � is the standard random-walk matrix, where a ran-
dom walker at vertex u jumps to a neighbor v of u with 
probability 1∕du . Moreover the k-power of � , �k , is the 
random-walk matrix after k steps, i.e., Mk

uv
 is the probability 

of the random walker being at vertex v after k jumps, having 
started at vertex u. PageRank is a typical random walk on 
G with transition matrix � . Given a constant 0 < 𝛼 < 1 and 
a probability vector p0 , the PageRank vector p⃗𝛼 is given by 
the following recurrence [21]:

The parameter � is called the teleport probability or jumping 
factor, and p⃗0 is the starting vector. In the original PageRank 
[22], the starting vector p⃗0 is the uniform distribution over 
the vertices of G, i.e., p⃗0 = 1⃗∕n . When p⃗0 is not the sta-
tionary distribution, p⃗𝛼 is called a personalized PageRank. 
Intuitively, p⃗𝛼 is the probability of a lazy Web visitor to be 
at each page assuming that he/she surfs the Web by either 
randomly starting at a new page or jumping through a link 
from the current page. The parameter � ensures that such 
a surfer does not get stuck at a dead end. PageRank can be 
approximated iteratively through the power iteration method 
by iterating, for t ≥ 1:

We show how to speed up these matrix-vector multiplica-
tions when the adjacency matrix � is compressible.

Computation on the WebGraph Format

Our main idea is to exploit the copy-property of adjacency 
lists observed in some graphs, such as Web graphs [12]. The 
adjacency lists of neighbor vertices tend to be very similar 
and, hence, the rows in the adjacency matrix are also very 
similar. Moreover, these networks reveal also strong cluster-
ing effects, with local groups of vertices being strongly con-
nected and/or sharing many neighbors. The copy-property 
effect can then be further amplified through clustering and 
suitable vertex reordering, an important step for achieving 
better graph compression ratios [23]. Most compressed rep-
resentations for sparse graphs rely on these properties [18, 
24, 25]. In this paper, we consider the WebGraph framework, 
a suite of codes, algorithms and tools that aims at making it 
easy to manipulate large Web graphs [12]. Among several 
compression techniques used in WebGraph, our approach 
makes use of list referencing.

Let � be an n × n binary sparse matrix,

p⃗𝛼 = 𝛼p⃗0 + (1 − 𝛼)p⃗𝛼 ⋅� .

(1)p⃗t = 𝛼p⃗0 + (1 − 𝛼)p⃗t−1 ⋅� .

where v⃗i ∈ {0, 1}n is the i-th row, for i = 1,… , n . Let 
r⃗ ∈ {0, 1,… , n}n be a referencing vector such that, for 
i ∈ {1,… , n} , ri < i and v⃗ri is some previous row used for 
representing v⃗i . Let also v⃗0 = 0⃗ and r1 = 0 . The reference ri 
is found in the WebGraph framework within a given window 
size W, i.e., ri ∈ {max(1, i −W),… , i} , and it is optimized 
to reduce the length of the representation of v⃗i . The line v⃗i 
is then represented by adding missing entries and marking 
spurious ones, with respect to v⃗ri , and encoded using several 
techniques, such as differential compression and codes for 
natural numbers [12, 26].

Proposition 1 Given an n × n matrix � , x⃗ ∈ ℝ
n , and a ref-

erencing vector r⃗ for � , let

Further let w⃗ be the vector with wi ∶= v⃗ri ⋅ x⃗
⊤ . Then we have 

that:

Proof By definition,

  ◻

Let us compute y⃗⊤ = � ⋅ x⃗⊤ by iterating over i = 1,… , n . 
Then w⃗ can be incrementally computed because ri < i and 
wi = yri , ensuring that wi is already computed when required 
to compute yi . Given inputs �′ , ⃗r and x⃗ , the algorithm to com-
pute y⃗ is as follows: 

1. Set y⃗ = 0⃗ and y0 = 0.
2. For i = 1,… , n , set yi = yri +

∑
j A

�
ij
xj.

3. Return y⃗.

Note that the number of operations to obtain y⃗⊤ = � ⋅ x⃗⊤ is 
proportional to the number of nonzeros in �′ , that is, to the 
compressed representation size. Depending on the properties 
of � discussed before, this number may be much smaller than 

� =

⎡
⎢⎢⎣

v⃗1
⋮

v⃗n

⎤
⎥⎥⎦

�
� ∶=

⎡
⎢⎢⎣

v⃗1 − v⃗r1
⋮

v⃗n − v⃗rn

⎤
⎥⎥⎦

� ⋅ x⃗⊤ = �
�
⋅ x⃗⊤ + w⃗⊤

�
�
⋅ x⃗⊤ + w⃗⊤ =

⎡
⎢⎢⎣

v⃗1 ⋅ x⃗
⊤ − v⃗r1 ⋅ x⃗

⊤

⋮

v⃗n ⋅ x⃗
⊤ − v⃗rn ⋅ x⃗

⊤

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

v⃗r1 ⋅ x⃗
⊤

⋮

v⃗rn ⋅ x⃗
⊤

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

v⃗1 ⋅ x⃗
⊤

⋮

v⃗n ⋅ x⃗
⊤

⎤
⎥⎥⎦
= � ⋅ x⃗⊤



 SN Computer Science           (2022) 3:193   193  Page 4 of 8

SN Computer Science

the number of nonzeros in � . We present in the next section 
experimental results for Web graphs, where we indeed obtain 
considerable speedups in the computation of PageRank.

Vertically Slicing into Sub‑Matrices

The quality of our approach hinges on the quality of r⃗ . The 
wider the matrix � is, the more difficult it can become to 
find a previous row adequately matching the entries. It there-
fore could make sense to vertically split � into submatri-
ces �1,… ,�� , each with n rows and Θ(n∕�) columns, in 
the hope that applying the techniques of “Computation on 
the WebGraph Format” to every submatrix gives a better 
chances of finding good references, and therefore eases the 
chances of obtaining a representation that is more compact 
than using the technique on the entire matrix � . This some-
what reflects real-world examples where a matrix does not 
usually contain complete row repetitions, but rather clus-
tered repetitions of a certain length, which are hopefully of 
length Ω(n∕�) . To see that we still can compute the matrix-
vector multiplication with the submatrices efficiently, take a 
vector x⃗ ∈ ℝ

n . We can compute the product y⃗ = � ⋅ x⃗⊤ with 
y⃗i = �i ⋅ x⃗

⊤
i
 for i ∈ [1..�] and then y⃗ =

∑𝜏

i=1
yi summing up 

all computed products. Setting � = 1 disables this technique, 
i.e., just using the technique of Section “Computation on the 
WebGraph Format”. Setting � = n gives us the school-book 
matrix-vector multiplication algorithm.

Experimental Evaluation

We computed the number of nonzero entries m′ in �′ for the 
adjacency matrix � of several graphs available at http:// law. 
di. unimi. it/ datas ets. php [12, 23, 27]. We show in Table 1 
some characteristics of the used graphs, including the num-
ber of vertices n and the number of edges m, for each graph. 

We categorize our studied graphs into the following three 
classes: 

pagegraph:   each node represents a single web page, 
and each arc is a link between two pages;

hostgraph:   each node is a (sub)domain, i.e., a host, 
and an arc between two hosts exists if one 
host has a page having a link to the page of 
the other host;

socialnetwork:   each node represents an entity such as 
a person or user, and an arc represents a 
social relation.

 We call page graphs and host graphs together web graphs 
(not to be confused with the WebGraph framework storing 
graphs in its WebGraph representation).

As a preprocessing step for our experiments, we extracted 
�′ and r⃗ from the WebGraph representation of � , and com-
pressed �′ as a WebGraph, before actually starting the 
computation of the PageRank algorithm. For each window 
size W, we first recompressed a graph with the selected W 
and compressed the references with Elias-� via the param-
eter -c REFERENCES_GAMMA. We did so because the 
WebGraph representation achieves high compression but is 
limited to storing adjacency matrices, which we needed for 
PageRank. Hence, this approach allowed us to do all of the 
computation in compressed space, which would not be pos-
sible for commodity computers to run in RAM if we had 
extracted � in its plain form. As an optimization, whenever 
|v⃗i − v⃗ri | ≥ |v⃗i| , we kept v⃗i as the row in �′ . By doing so, we 
obtained fewer nonzero entries.

We implemented PageRank using the algorithm described 
in Sect. 2 computing matrix-vector products. Since Eq. (1) 
uses left products and our representation is row-oriented, 
we use the transposed adjacency matrix and right products. 
The implementation is in Java and based on the WebGraph 
representation, where �′ is represented as two graphs: a 
positive one for edges with weight 1, and a negative one for 
edges with weight −1 . All tests were conducted on a machine 
running Linux, with an Intel CPU i3-9100 (4 cores, cache 
256 KB/6144 KB) and with 128 GB of RAM. Java code 
was compiled and executed with OpenJDK 11.0.9.1 and the 
parameters -Xmx100G -Xss100M to access 100 GB of 
RAM and keeping an execution stack of size at most 100 
MB. We ran each PageRank computation for ten iterations, 
starting with the initial vector p⃗0 representing the uniform 
distribution.

We have the benchmark results of the PageRank evalu-
ation in the last columns of Table 2 for different window 
sizes. As expected, our approach works well for web graphs, 
with the number of nonzeros in �′ being less than 20% for 
page graphs and less than 30% for host graphs. Note that 
web graphs are known to verify the copy-property among 

Table 1  Datasets used in the experimental evaluation, where n is the 
number of vertices and m is the number of edges (i.e., nonzeros in � ). 
All datasets are available at http:// law. di. unimi. it/ datas ets. php

Graph Type n [M] m [M]

amazon-2008-hc Social network 0.74 5.16
enwiki-2021-hc Social network 6.26 150.12
eu-2015-hc Page graph 1070.56 91792.26
eu-2015-host-hc Host graph 11.26 386.92
gsh-2015-hc Page graph 988.49 33877.40
it-2004-hc Page graph 41.29 1150.73
twitter-2010-hc Social network 41.65 1468.37
uk-2014-hc Page graph 787.80 47614.53

http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
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adjacencies. Other networks we tested, instead, seem not 
to verify this property in the same degree, and, therefore, 
our approach is not beneficial. This was expected, as social 
networks are not as compressible as Web graphs [28]. There 
may exist, however, other representations for these networks 
that may benefit from other compression approaches (see the 
next section). In general, large reductions in the numbers 
of nonzero entries tend to give bigger speed-ups, although 
the relationship may be complicated by algorithmic details, 
system characteristics and the interaction between the two.

Let us now consider the graphs eu-2015-host-hc 
and it-2004-hc. Observed speedups are lower than we 
would expect given that �′ has roughly 3 times fewer nonze-
ros than � for eu-2015-host-hc, and roughly 4 times 

fewer for it-2004-hc. After profiling, we could observe 
that, although �′ had much fewer nonzero entries than � , 
the nonzero entries in �′ are more dispersed than those in � , 
with � benefiting from contiguous memory accesses. The 
speedups are nevertheless significant, especially when we 
are dealing with larger graphs like uk-2014-hc.

In a subsequent experiment, we vertically split the matrix 
�⊤ into c submatrices as described in Sect. 4, and evaluated 
the compression gain in light of the compression technique 
of the WebGraph framework, which can find more suitable 
references as the matrices become slimmer. We present our 
evaluation in Table 3, where we can observe a slight reduc-
tion in the number of nonzero entries when comparing the 
sums of the submatrices with the original matrix �⊤ . We 

Table 2  Evaluation of different 
window sizes W on the datasets 
of Table 1, where m′ is the 
number of nonzero entries in �′ , 
t is the average time in seconds 
to compute a matrix-vector 
product with � , t′ is the average 
time in seconds to compute a 
matrix-vector product with �′ , 
and t∕t� is the speedup observed 
in the computation of PageRank

Graph W m
′ [M] m∕m�

t
′ [s] t [s] t∕t�

amazon-2008-hc 16 4.60 1.12 0.21 0.22 1.03
32 4.60 1.12 0.22 0.22 1.03
64 4.60 1.12 0.22 0.22 1.04
128 4.60 1.12 0.21 0.22 1.02
256 4.60 1.12 0.21 0.23 1.09

enwiki-2021-hc 16 146.23 1.03 5.00 5.17 1.03
32 146.33 1.03 4.96 5.09 1.03
64 146.22 1.03 5.01 5.15 1.03
128 146.20 1.03 5.06 5.26 1.04
256 145.98 1.03 4.93 5.26 1.07

eu-2015-host-hc 16 126.51 3.06 4.43 6.18 1.40
32 120.78 3.20 4.30 6.10 1.42
64 117.16 3.30 4.39 6.20 1.41
128 115.89 3.34 4.32 6.30 1.46
256 115.76 3.34 4.19 6.10 1.46

eu-2015-hc 16 16485.44 5.57 353.13 874.14 2.48
32 15488.57 5.93 338.03 849.88 2.51
64 15657.24 5.86 336.23 875.60 2.60
128 16674.24 5.51 355.38 903.18 2.54
256 18299.52 5.02 360.11 935.32 2.60

gsh-2015-hc 16 8912.54 3.80 249.04 419.86 1.69
it-2004-hc 16 283.83 4.05 7.04 12.89 1.83

32 276.65 4.16 6.74 12.92 1.92
64 281.34 4.09 6.73 12.90 1.92
128 291.50 3.95 6.82 13.06 1.91
256 306.03 3.76 6.86 13.12 1.91

twitter-2010-hc 16 1435.10 1.02 56.80 58.43 1.03
32 1434.16 1.02 56.49 53.00 0.94
64 1432.90 1.02 57.83 57.01 0.99
128 1431.42 1.03 56.80 58.38 1.03
256 1431.36 1.03 57.11 57.06 1.00

uk-2014-hc 16 8791.33 5.42 203.39 462.63 2.27
32 8193.65 5.81 196.07 463.49 2.36
64 8106.13 5.87 196.71 473.10 2.41
128 8467.23 5.62 198.09 469.76 2.37
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can observe that scaling up c reduces the sum of all nonzero 
entries in the submatrices, while scaling up W can have a 
beneficial effect on large graphs. This effect is minor com-
pared to some of the reductions in Table 2, however, so we 
did not evaluate whether it further sped up matrix-vector 
multiplications. Moreover, the WebGraph framework seems 
not to take particular advantage of this special structured set 
of submatrices, since the sum of the file sizes of the subma-
trices grows considerably with the number of submatrices c.

The main bottleneck of the whole computation was the 
recompression of the graphs or the compression of the sub-
matrices. A larger graph instance can take several hours of 
pre-computation, or even longer on large graphs such as 
eu-2015-hc or gsh-2015-hc, where we omitted some 
parameter choices in Tables 2 and 3 because they would take 
too long to compute.

Computation with Bicliques

Another suitable format is the biclique extraction method of 
Hernández and Navarro [13]. They decompose the edges of G 
into a list of bicliques and a residual set of edges. A biclique 
is a pair of sets of nodes of the form (Sr, Tr) , where every 
node of Sr has an edge to every node of Tr . We represent the 
|Sr| ⋅ |Tr| edges of each biclique (Sr, Tr) by listing both sets, 
which gives us |Sr| + |Tr| integers, i.e., the identifiers of the 
nodes. These can be compressed by differential encoding with 
a universal coder. It has been shown that this format is com-
petitive in compressing both webgraphs and social graphs.

Let �′ denote the adjacency matrix representing the 
residual set of edges. To compute � ⋅ x⃗⊤ , we compute for 
each biclique (Sr, Tr) the value cr =

∑
j∈Tr

xj . We then allo-
cate the vector y⃗ whose entries are initially set to zero. 
Subsequently, for each biclique (Sr, Tr) and each node iden-
tifier i ∈ Sr , we add cr to yi . Finally, for each residual edge 
A�
ij
= 1 , we add xj to yi . By doing so, the resulting vector 

y⃗⊤ is equal to the product � ⋅ x⃗⊤ , and we obtained y⃗ in time 
proportional to the size of the compressed matrix.

Table 3  Impact of vertically 
slicing �⊤ into c submatrices 
�

⊤
1
,… ,�⊤

c
 as described in 

Sect. 4. We parameterize each 
instance additionally with a 
window size W ∈ {16, 128} . 
For i ∈ [1..c] , m

i
 is the number 

of non-zero entries in �⊤
i
 , and 

m
′
i
 is the number of non-zero 

entries in �′⊤
i
 . ∅m

i
 and ∅m

�
i
 

denote the average over all m
i
 

and m′
i
 values, respectively. The 

last column denotes the fraction ∑c

i=1
m

�
i
∕m�

Graph W c ∅m
i
 [M] ∅m

�
i
 [M] ∑c

i=1
m

�
i
 [M] Frac

amazon-2008-hc 16 32 0.16 0.14 4.38 0.95
16 128 0.04 0.03 4.37 0.95
128 32 0.16 0.14 4.37 0.95
128 128 0.04 0.03 4.36 0.95

enwiki-2021-hc 16 32 4.69 4.49 143.75 0.98
16 128 1.17 1.12 143.01 0.98
128 32 4.69 4.48 143.28 0.98
128 128 1.17 1.11 142.43 0.97

eu-2015-host-hc 16 32 12.09 3.81 122.04 0.96
16 128 3.02 0.94 120.70 0.95
128 32 12.09 3.43 109.80 0.95
128 128 3.02 0.85 108.34 0.93

eu-2015-hc 16 32 2868.51 503.17 16101.48 0.98
16 128 717.13 125.53 16067.36 0.97

gsh-2015-hc 16 32 1058.67 265.42 8493.31 0.95
16 128 264.67 66.15 8466.91 0.95

it-2004-hc 16 32 35.96 8.75 280.12 0.99
16 128 8.99 2.18 279.59 0.99
128 32 35.96 8.87 283.87 0.97
128 128 8.99 2.21 283.18 0.97

twitter-2010-hc 16 32 45.89 44.21 1414.84 0.98
16 128 11.47 11.00 1408.06 0.99
128 32 45.89 43.96 1406.74 0.98
128 128 11.47 10.93 1399.00 0.98

uk-2014-hc 16 32 1487.95 272.21 8710.79 0.99
16 128 371.99 67.99 8702.81 0.99
128 32 1487.95 255.97 8191.02 0.97
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We carry out a proof-of-concept implementation of 
this idea by building on top of the current biclique extrac-
tion software [13]. This software has some limitations 
that carry over our implementation. The most crucial one 
is that the number of total edges is expected to fit into 
32 bits, which limits complete graphs to small sizes of 
n ≤ 216 . This was also the knock-out criteria for several 
aforementioned graph instances. We present the evaluation 
of the graphs that could be successfully processed by the 
software in Table 4. There, instances with names having a 
-t suffix represent the adjugate matrix A⊤.

Another limitation we managed to overcome is that 
the biclique extraction software implicitly assumes that 
all nodes have self-loops. To compute the later PageRank 
evaluation based on the compressed representation with 
bicliques correctly, we perform two post-processing steps: 
First, we filter out those nodes that are simultaneously in 
both Sr and Tr for some r, but originally did not have a self-
loop. Secondly, we add self-loops to each node that origi-
nally had a self-loop, but not in both Sr and Tr simultane-
ously for any r. We denote these erroneously added edges 
or erroneously removed edges by Δ+ and Δ− , respectively.

In the table, we additionally measure the sizes of the 
extracted bicliques with bS =

∑
r �Sr� , and bT =

∑
r �Tr� . We 

can see that the biclique sizes have a super-linear impact on the 
number of remaining edges m′ . This is good for the PageRank 
computation since the relatively small overhead of the addi-
tional computation for the bicliques dwarfs the computation 
with the adjacency matrix �′ , which has much fewer entries 
than the original matrix � . Especially for large graphs with 
many bicliques such as it-2004-hc, we have a speed-up 
of 2.36. However, if the ratio m∕m� between original edges 
and remaining edges is roughly at 1, our proposed technique 
is slightly slower. For these experiments, we used the same 
machine as in Sect. 5, but devised an implementation in Rust, 
which is available at https:// github. com/ koeppl/ matri xbicl ique.

Conclusion

We have shown that the adjacency matrix compression 
scheme of Boldi and Vigna [12] as well as the biclique 
extraction of Hernández and Navarro [13] are suitable rep-
resentations for computing matrix-vector products in time 
proportional to the compressed matrix sizes. We therefore 
can conclude that these compression formats not only save 
space but also speed up an operation that is crucial for graph 
analysis tasks. We plan to consider other formats where it 
is less clear how to translate the reduction in space into a 
reduction in computation time [18, 24, 25], and study which 
other relevant matrix operations can be boosted by which 
compression formats.

We also plan to investigate whether there is a better way 
to speed up matrix-matrix multiplications via compression, 
than by treating them as repeated matrix-vector multipli-
cations. For example, suppose we have compressed two 
matrices

according to the Webgraph framework, with referencing vec-
tors r⃗ and c⃗ , and now we want to compute � = �� . Calcula-
tion shows

In standard matrix-matrix multiplication, when we want to 
compute �i,j , we have already computed �i,c⃗j

 , �r⃗i,j
 and �r⃗i,c⃗j

 , 
so we need only compute the product (v⃗i − v⃗r⃗i)(w⃗j − w⃗c⃗j

) of 
two vectors each of which — as the differences between a 
vector and its reference — is likely to be sparse.

If we compute that product by always scanning the 
nonzero entries of v⃗i − v⃗r⃗i and checking the corresponding 

� =

⎡
⎢⎢⎣

v⃗1

⋮

v⃗
n

⎤
⎥⎥⎦

�⊤ =

⎡
⎢⎢⎣

w⃗1

⋮

w⃗
n

⎤
⎥⎥⎦

�
i,j = v⃗

i
⋅ w⃗

j

=�
i,c⃗j

+ �
r⃗i,j

− �
r⃗i,c⃗j

+ (v⃗
i
− v⃗

r⃗i
)(w⃗

j
− w⃗

c⃗j
) .

Table 4  Evaluation of PageRank with either the plain matrix or with 
the adjacency matrix of the remaining nodes after biclique extraction. 
m

′ is the number of nonzero entries in �′ . bS and bT denote the total 
sizes of the left hands and the right hands of all bicliques. Δ+ and 
Δ− denote the number of spurious self-loops that have been added 
by bicliques or have been erroneously omitted in the set of remain-

ing edges, respectively. t and t′ denote the time for computing Pag-
eRank on the original adjacency matrix and on the adjacency matrix 
of the remaining nodes with the bicliques, respectively. Finally, t∕t� 
is the speedup (or slowdown if < 1 ) observed in the computation of 
PageRank

Graph m
′ [M] m∕m�

bS [K] bT [K] Δ+ [M] Δ−[M] t
′ [ms] t [ms] t∕t�

amazon-2008-hc 5.14 1.00 1.56 1.41 0.00 0.00 16.89 16.82 1.00

amazon-2008-hc-t 5.15 1.00 0.68 0.88 0.00 0.00 17.59 17.44 0.99

enwiki-2021-hc 119.13 1.26 8919.64 5241.63 0.05 0.05 532.39 517.51 0.97

eu-2015-host-hc-t 79.53 4.86 5539.82 10852.81 0.01 6.89 532.71 1022.59 1.92

it-2004-hc 154.28 7.46 30875.40 28862.12 0.65 11.66 996.45 2354.58 2.36

https://github.com/koeppl/matrixbiclique
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entries of w⃗j − w⃗c⃗j
 (or vice versa) and performing a multipli-

cation whenever one of those corresponding entries is also 
nonzero, then we are essentially computing � by repeated 
matrix-vector multiplications. If we always choose which-
ever of v⃗i − v⃗r⃗i and w⃗j − w⃗c⃗j

 has the smaller support, then we 
may obtain an additional speedup. Finally, it may be even 
faster to compute adaptively the intersection of the sets of 
positions of nonzero entries (see, e.g., [29]).
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