
Interactive Toolbox for Spatial-Textual
Preference Queries

Florian Wenzel, Dominik Köppl, Werner Kießling

Department of Computer Science, University of Augsburg
D-86135 Augsburg, Germany

{wenzel,koeppl,kiessling}@informatik.uni-augsburg.de

Abstract. Spatial-textual data is ubiquitous on websites such as Open-
StreetMap or Wikipedia and is published progressively by Open Gov-
ernment Data Initiatives. Those data sources provide the base for novel
mashup applications for Location-Based Services. We present a mobile
prototype for the San Francisco area based on Preference SQL that allows
an intuitive expression of spatial keyword queries. Search can further be
extended towards temporal, categorical, and numerical attributes. Our
demo provides a fully flexible toolbox for generating extended spatial-
textual queries in non-metric spaces which are evaluated using a Best-
Matches-Only query model. Spatial relevance is defined by an asymmet-
ric routing distance supporting complex geometries. Textual relevance is
determined using the Apache Lucene library.

1 Introduction

Websites such as Tripadvisor or Wikipedia provide spatial-textual data in the
form of geo-tagged content. Additionally, Open Government Data Initiatives
lead to the publication of large amounts of public spatial data by cities such as
San Francisco or Berlin. All these data sources are a base for up-and-coming
mobile mashup applications that combine base information to provide novel
Location-Based Services (LBS). These integrated applications require a dynamic
combination of different data sources in form of temporary relations. Addition-
ally, numerical, categorical, and temporal attributes are of importance. Spatial
Keyword (SK) Queries have to be extended towards this end to combine all
these attributes in a semantically intuitive fashion in order to provide high qual-
ity personalized search results. These preconditions render the use of current
index-based approaches inapplicable. Furthermore, the heterogeneity of spatial
and textual data among data sources demands a flexible query and data model.
The representation of spatial resources as a mix of points and complex geome-
tries asks for a flexible spatial relevance definition. As asymmetric distances
occur through one-way streets and terrain topology, distance axioms have to
be relaxed towards non-metric spaces to allow queries based on net distances.
Semi-structured and unstructured text pose additional demands on textual rel-
evance determination. The Preference SQL System [2] provides a rich toolbox
for developers that meets these new challenges. Base preference constructors can



2

be combined in a flexible fashion via complex preference constructors to form
personalized Preference SQL queries. Spatial relevance is evaluated using an
asymmetric routing distance. Textual relevance is determined using the Apache
Lucene library. We illustrate how developers can employ Preference SQL for
innovative LBS by presenting a mobile LBS application for the San Francisco
area. This research prototype illustrates how base preferences can be defined
and combined without knowledge of any query syntax based on three provided
use cases. Movie scenes, restaurants, or landmarks can be retrieved according
to their spatial, textual, temporal, numerical, and categorical attributes. Fur-
thermore, the individual importance of base preferences can be modified to form
complex Preference SQL queries. To the best of our knowledge, there is no other
framework to treat this kind of extended SK queries on non-metric spaces.

2 Preference SQL Overview

The presented demo application relies on the Preference SQL system as under-
lying representation of preferences as strict partial orders [1]. Preference SQL
enhances the SQL standard by a PREFERRING clause that specifies preferences
by means of preference constructors given in [2]. These preferences are evaluated
as soft constraints on base of the results generated by SQL hard constraints.
The syntax allows for further post-filtering.

Preference evaluation follows a Best-Matches-Only query model , that
defines for a preference P = (A,<P ) on a relation R = (A1, · · · , An) ⊇ A the
preference selection operator by

σ[P ] (R) := {t ∈ R| 6 ∃t′ ∈ R : t.A <P t′.A} .

The Preference SQL system is implemented as Java-middleware on top of conven-
tional database systems such as Oracle or Postgres and provides a JDBC driver
for seamless integration into applications. The system implements a parser,
heuristic and cost based optimizer, and efficient evaluation algorithms such as
BNL, BNL++, LESS, SFS, and Hexagon [2].

2.1 Constructor-Based Approach

The system follows a constructor based approach by dividing preferences into
base preferences operating on attributes, and complex preferences that combine
multiple preferences. For an overview of the corresponding query syntax we
refer to [2]. Base preference constructors displayed in a ’is-a’-hierarchical view
in Figure 1 provide a flexible toolbox for the expression of base preferences
on spatial, textual, temporal, numerical, and categorical domains. All displayed
base preferences are sub-constructors of the SCOREd preference, which generates
a preference order using a scoring function f(x) as follows:

x <P y iff fd(x) > fd(y) with fd(x) =

{⌈
f(x)
d

⌉
if d > 0

f(x) else



3

The optional d-parameter can be used to form equivalence classes of equally
important f(x) values. Numerical preferences define f(x) based on deviation
from a desired input value. In the case of BETWEEN, numerical values within
a user-defined interval are preferred. Categorical preferences such as LAYERED

define f(x) based on sets of preferred domain values.

Fig. 1: Taxonomy of base preference constructors

Complex preference constructors provide the ability to either combine multi-
ple preferences or to fine-tune the behavior of a preference. The dual operator δ is
such a complex preference. It reverses a preference order, i.e. a <P δ b :⇔ b <P a.
Equal importance is achieved by applying a Pareto constructor that performs
Skyline evaluation. The Prioritization constructor determines the first mentioned
preference as more important. Only in cases of equality or indifference consider-
ing the first preference, the second preference is evaluated. Ranked importance
can be implied by using the RANKF constructor which performs ranking according
to a ranking function F .

2.2 Toolbox of Spatial-Textual Preference Constructors

The presented system provides full flexibility for developers to generate intuitive
Preference SQL queries. Within this toolbox, spatial and textual constructors
are key components and are thus highlighted consecutively. In contrast to query
engines using an exact query model, spatial-textual preference queries are eval-
uated as soft constraints following the Best-Matches-Only query model.

. Spatial Preferences: Given a query geometry gq preferred by the user, spa-
tial preferences determine those data geometries di of a database relation that
are best matches according to the spatial relevance defined by the preference
constructor. The query model uses Keyhole Markup Language (KML) to define
gq. The data model supports geometry types of underlying PostGIS or Oracle
Spatial database extensions. As shown in Figure 1, NEARBY, WITHIN, ONROUTE

and BUFFER can be used to express spatial preferences which define relevance
based on distance. WITHIN describes a preference on an attribute A 3 di fa-
voring geometric objects that are within or close to a region gq. A geometric
object di is better than dj if dist(gq, di) < dist(gq, dj). Applicable distances are
described below. In the given query model, relevance can be expressed by using



4

a point, a region, or a line as query geometries gq. Hence, the preferences NEARBY
and ONROUTE follow the concept of WITHIN, but differ in the fact that NEARBY

accepts a point and ONROUTE a linestring instead of a region for gq. A more
comprehensive intention can be expressed with the BUFFER constructor which
also accepts a region and treats geometries closer to gq as more favorable, but
geometries within gq are considered as least favorable.

As sub-constructors of SCORE, the preference order is induced by a scoring
function fdist(x) := dist(gq, x). dist can be substituted with ST MaxDistance,

ST Distance and net dist. ST Distance calculates the minimal distance be-
tween two geometries, whereas ST MaxDistance computes the maximal distance:

ST Distance(A,B) := min
a∈A,b∈B

‖a− b‖2

ST MaxDistance(A,B) := max
a∈A,b∈B

‖a− b‖2

Here, ‖·‖2 is the classic Euclidean norm and A,B are geometric objects re-
garded as a set of points. Both functions correspond to the SQL/MM standard
and are executed by the database system. Alternatively, net dist is a distance
proprietary to Preference SQL as it employs a distance calculated using PgRout-
ing, based on a road network from OpenStreetMap. In contrast to Euclidean
distance, the routing result is inherently asymmetric. In urban environments,
one-way streets lead to asymmetric results. Using costs such as duration, asym-
metry gets even more apparent in mountainous areas where terrain topology
becomes of importance. Preference SQL further accounts for transport modality
by letting users define routing to be performed for cars or pedestrians.

. Textual Preferences: The CONTAINS constructor is provided for textual do-
mains. Apache Lucene is used for evaluation by using Lucene’s Score as scor-
ing function, consequently the query model provides full Lucene functionality
with respect to search keywords, including wildcards and fuzzy search. These
scores can be customized by using implemented similarity distances like tf–idf
or by defining new ones. Considering the data model, language stemmer and
tokenizer for semi-structured data like Wikipedia entries can be specified. This
functionality provides a powerful means to state preferences on unstructured or
semi-structured text presented on websites in the form of reviews or descriptions.
Furthermore, text-search functionality can be combined with any other kind of
base preference constructors with the help of complex preference constructors.

3 Showcase Application

We present a dynamic HTML5 application based on the jQuery Mobile frame-
work which communicates with Preference SQL via JDBC. Based on use cases
in the San Francisco area, we demonstrate how Preference SQL can be used by
developers to provide users with an intuitive preference based LBS. Spatial pref-
erences can be defined by drawing query geometries on a map. Additional icons
allow to express those preferences with the dual operator applied. In a drop-
down list, preferred city districts can be selected which are also visualized on



5

a map. The top of the screen defines the three consecutively described operations.

(a) Spatial Preference Selection (b) Complex Preference Composition

. Define: A pop-up lets users select one of the following use cases: (U1) com-
bines movie locations listed by the SF Data Project 1 with movie data from
the IMDB database 2. (U2) combines restaurant inspection results from the SF
Data Project with reviews from Tripadvisor 3. (U3) joins geometry data and
tags of Points and Regions of Interest (POI/ROI) from OpenStreetMap 4 with
geo-tagged content from Wikipedia 5. For each use case, a form pop-up provides
input for individual base preferences on attributes of the joined data sources. A
text-search functionality further allows input of complex search terms. Aliases
are assigned to each base preference which are displayed in an overview overlay.
. Compose: A pop-up allows users to compose complex preferences. Initially,
three levels are displayed in which base preferences can be dragged from the
overview. Levels are arranged in order of importance, with the most important
level at the top of the list. As soon as a preference is placed in the lowest level, an
additional level is created underneath. Levels are combined using the Prioritiza-
tion constructor. Preferences within a level are interpreted as equally important
by the use of the Pareto constructor. Ranking and further Prioritization can be
applied to each level. The generated Preference SQL query is displayed instantly.
. Search: After clicking the search button, the generated query is evaluated by
the Preference SQL system and best-matching results are shown.

Bibliography

[1] Kießling, W.: Foundations of Preferences in Database Systems. In: Proceed-
ings of 28th Int. VLDB conference. pp. 311–322. Morgan Kaufmann (2002)

[2] Kießling, W., Endres, M., Wenzel, F.: The Preference SQL System - An
Overview. IEEE Data Engineering Bulletin 34(2), 11–18 (2011)

1 http://www.datasf.org
2 http://www.imdb.com/interfaces
3 http://www.tripadvisor.com
4 http://www.openstreetmap.org
5 http://www.wikipedia.org


