
50

Deterministic Sparse Suffix Sorting in the Restore Model

JOHANNES FISCHER, Department of Computer Science, TU Dortmund, Germany

TOMOHIRO I, Kyushu Institute of Technology, Japan

DOMINIK KÖPPL, Department of Computer Science, Kyushu University, Japan

Given a text T of length n, we propose a deterministic online algorithm computing the sparse suffix array

and the sparse longest common prefix array of T in O (c
√

lgn +m lgm lgn lg∗ n) time with O (m) words of

space under the premise that the space ofT is rewritable, wherem ≤ n is the number of suffixes to be sorted

(provided online and arbitrarily), and c is the number of characters with m ≤ c ≤ n that must be compared

for distinguishing the designated suffixes.

CCS Concepts: • Information systems → Search engine indexing; • Theory of computation → Sorting

and searching; Online algorithms; • Mathematics of computing → Combinatorics on words;

Additional Key Words and Phrases: Sparse suffix sorting, online algorithms, deterministic algorithms, alpha-

bet reduction, edit-sensitive parsing

ACM Reference format:

Johannes Fischer, Tomohiro I, and Dominik Köppl. 2020. Deterministic Sparse Suffix Sorting in the Restore

Model. ACM Trans. Algorithms 16, 4, Article 50 (July 2020), 53 pages.

https://doi.org/10.1145/3398681

1 INTRODUCTION

Sorting suffixes of a long text lexicographically is an important first step for many text processing
algorithms. The complexity of the problem is quite well understood (see Reference [36]), as for in-
teger alphabets suffix sorting can be done in optimal linear time and in-place [19, 29]. In this article,
we consider a variant of this problem: Instead of computing the order of all suffixes, we are con-
tent with sorting certain specified suffixes. This problem, called sparse suffix sorting problem, is
formally defined as follows: Given a textT [1 . . n] of length n and a set P ⊆ [1 . . n] ofm arbitrary
positions in T , the sparse suffix sorting problem asks for the (lexicographic) order of the suffixes
starting at the positions in P. The answer is encoded by a permutation of P, which is called the
sparse suffix array (SSA) of T (with respect to P) and denoted by SSA(T ,P).

Applications are found in external memory longest common prefix (LCP) array construction
algorithms [24] and in the search of maximal exact matches [27, 44], i.e., substrings found in

Parts of this work have already been presented at the 12th Latin American Symposium [12].

This work received funding by JSPS KAKENHI, grant numbers JP19K20213 (TI) and JP18F18120 (DK).

Authors’ addresses: J. Fischer, Department of Computer Science, TU Dortmund, Otto-Hahn-Str. 14, Dortmund, 44221,

Germany; email: johannes.fischer@cs.tu-dortmund.de; T. I, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, 820-8502,

Japan; email: tomohiro@ai.kyutech.ac.jp; D. Köppl, Department of Computer Science, Kyushu University, 744 Moto’oka,

Fukuoka, 819-0395, Japan; email: dominik.koeppl@inf.kyushu-u.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2020/07-ART50 $15.00

https://doi.org/10.1145/3398681

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

https://doi.org/10.1145/3398681
mailto:permissions@acm.org
https://doi.org/10.1145/3398681

50:2 J. Fischer et al.

two given strings that can be extended neither to their left nor to their right without getting a
mismatch.

Like the “full” suffix arrays, we can enhance SSA(T ,P) with the lengths of the LCPs between
adjacent suffixes in SSA(T ,P). These lengths are stored in the sparse longest common prefix
array (SLCP), which we denote by SLCP(T ,P). In combination, SSA(T ,P) and SLCP(T ,P) store
the same information as the sparse suffix tree, i.e., they implicitly represent a compacted trie over
all suffixes starting at the positions in P. The sparse suffix tree is an efficient index for pattern
matching [28].

Based on classic suffix array construction algorithms [25, 33], sparse suffix sorting is easily con-
ducted in O (n) time if O (n) words of additional working space are available. For m = o(n), how-
ever, the working space may be too large, compared to the final space requirement of SSA(T ,P).
Although some special choices of P admit space-optimal O (m)-words construction algorithms
(e.g., Reference [26], see also the related work listed in Reference [5]), the problem of sorting ar-
bitrary suffixes in small space seems to be much harder. We are aware of the following results:
As a deterministic algorithm, Kärkkäinen et al. [25] gave a trade-off using O (τm + n

√
τ) time and

O (m + n/
√
τ) words of working space, where τ is a trade-off parameter with 1 ≤ τ ≤

√
n. If ran-

domization is allowed, there is a technique based on Karp-Rabin fingerprints, first proposed by
Bille et al. [5] and later improved by I et al. [21]. Gawrychowski and Kociumaka [17] presented an

algorithm running with O (m) words of additional space in either O (n
√

lgm) expected time as a
Las Vegas algorithm, or in O (n) expected time as a Monte Carlo algorithm. Most recently, Prezza
[35] presented a Monte Carlo algorithm in the restore model [8] that runs with O (m) words of
space in O (n +m lg2 n) expected time.

1.1 Computational Model

Let lg and logx denote the logarithm to the base two and to the base x for a real number x , respec-
tively. Our computational model is the word RAM model with word size Ω(lgn). Here, characters
use �lgσ � bits, where σ is the alphabet size; hence, �logσ n	 characters can be packed into one
word. Comparing two strings X and Y therefore takes O (lcp(X ,Y)/logσn) time, where lcp(X ,Y)
denotes the length of the LCP of X and Y .

We assume that the textT of length n is loaded into RAM. We work with the restore model [8],
where algorithms are allowed to overwrite parts of T , as long as they can restore T to its original
form at termination. Apart from this space, we are only allowed to use O (m) words. The positions
in P are assumed to arrive on-line, implying in particular that they need not be sorted. We aim at
worst-case efficient deterministic algorithms.

1.2 Algorithm Outline and Our Contribution

We devise our sparse suffix sorting algorithm in the restore model [8], where algorithms are al-
lowed to overwrite parts of the input, as long as they can restore the input to its original form at
termination. In the case of sparse suffix sorting, we assume that the textT is stored as a rewritable
array of size n lgσ bits in RAM. Apart from this space, we are only allowed to use O (m) words. The
positions in P are assumed to arrive on-line, implying in particular that they need not be sorted.
We aim at worst-case efficient deterministic algorithms:

Our main algorithmic idea is to insert the suffixes starting at the positions of P into a self-
balancing binary search tree [22]; since each insertion invokes O (lgm) suffix-to-suffix compar-
isons, the time complexity isO (tSm lgm), where tS is the cost for a suffix-to-suffix comparison. If all
suffix-to-suffix comparisons are conducted naïvely by comparing the characters (tS = O (n/logσn)
in the word random-access memory or machine (RAM) model), the resulting worst-case time com-
plexity is O (nm lgm/logσn). To speed this up, our algorithm identifies large identical substrings

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:3

at different positions during different suffix-to-suffix comparisons. Instead of performing naïve
comparisons on identical parts over and over again, we build a data structure (stored in redundant
text space) to accelerate subsequent suffix-to-suffix comparisons. Informally, when two (possibly
overlapping) substrings in the text are detected to be the same, one of them can be overwritten.

To accelerate suffix-to-suffix comparisons, we devise a new data structure called hierarchical

stable parsing (HSP) tree that is based on the edit sensitive parsing (ESP) [11]. HSP trees support
longest common extension (LCE) queries and are mergeable, allowing us to build a dynamically
growing LCE index on substrings read in the process of the sparse suffix sorting. Consequently,
comparing two already indexed substrings is done by a single LCE query.

In their plain form, HSP trees need more space than the text itself; to overcome this space prob-
lem, we devise a truncated version of the HSP tree, yielding a trade-off parameter between space
consumption and LCE query time. By choosing this parameter appropriately, the truncated HSP
tree fits into the text space. With a text space management specialized on the properties of the
HSP, we achieve the result of Theorem 1.1 below.

We make the following definition that allows us to analyze the running time more accurately:
Define C :=

⋃
p,p′ ∈P,p�p′[p . . p + lcp(T [p . .],T [p ′ . .])] as the set of positions that must be com-

pared for distinguishing the suffixes starting at the positions of P. Then sparse suffix sorting is
trivially lower bounded by Ω(|C| /logσn) time. With the definition of C, we now can state the
main result of this article as follows:

Theorem 1.1. Given a textT of length n that is loaded into RAM, the sparse suffix array (SSA) and

sparse longest common prefix array (SLCP) of T for a set of m arbitrary positions can be computed

deterministically in O (|C| (
√

lgσ + lg lgn) +m lgm lgn lg∗ n) time, using O (m) words of additional

working space.

Excluding the loading cost for the text, the running time can be sublinear (when |C| =
o(n/(

√
lgσ + lg lgn)) and m lgm = o(n/ lgn lg∗ n)). To the best of our knowledge, this is the first

algorithm that refines the worst-case performance guarantee. All previously mentioned (deter-
ministic and randomized) algorithms take Ω(n) time even if we exclude the loading cost for the
text. Also, general string sorters (e.g., forward radix sort [2] or multikey quicksort [4]), which do
not take advantage of the overlapping of suffixes, suffer from the lower bound of Ω(�/logσn) time,
where � is the sum of all LCP values in the SLCP, which is always at least |C|, but can in fact be
Θ(nm).

As a result of independent interest, we uncover a flaw in the approximation bound of the algo-
rithm of Cormode and Muthukrishnan [11] computing the string edit distance with moves (SEDM)

approximatively. There, the authors postulated that they can approximate the SEDM of two strings
of length n with a factor of O (lgn lg∗ n) with edit sensitive parsing (ESP) trees. However, there is
a flaw in their analysis of the ESP trees. This flaw leads us to the discovery that the approximation
factor is Ω(lg2 n) in worst case.

1.3 Suffix Sorting and LCE Queries

The LCE problem is to preprocess a text T such that subsequent LCE queries can be answered
efficiently. Data structures for LCE and sparse suffix sorting are closely related, as shown in the
following observation:

Observation 1.2. Given a data structure that answers LCE queries in O (tLCE) time for tLCE > 0,

we can compute sparse suffix sorting form positions in O (tLCEm lgm) time by inserting suffixes into a

balanced binary search tree [22]. Conversely, given an algorithm computing the SSA and the SLCP of

a textT of length n form positions in O (f (n,m)) time with O (m) words of space for a function f , we

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:4 J. Fischer et al.

Fig. 1. Deterministic LCE data structures with trade-off parameters, where ϵ with ϵ > 0 is a constant, and
τ with 1 ≤ τ ≤ n is a trade-off parameter. The length returned by an LCE query is denoted by �. Space is
measured in words. The column Working Space lists the working space needed to construct a data structure,
whereas the column Space lists the final space needed by a data structure.

can construct a data structure in O (max(f (n,m),n/m)) time with O (m) words of space, answering

LCE queries on T in O (n2/m2) time.

Proof. The first claim follows from the time bounds of the binary search tree. For the second
claim, we use the data structure of Reference [7, Theorem 1a] that answers LCE queries in O (tLCE)
time. The data structure uses the SSA and SLCP values of those suffixes whose starting positions
are in a difference cover sampling modulo tLCE. This difference cover consists of O (n/

√
tLCE) text

positions and can be computed in O (
√
tLCE) time [9]. We obtain the claimed bounds on time and

space by setting tLCE := n2/m2. �

There has been a great interest in devising deterministic LCE data structures with trade-off
parameters (see Figure 1) or in compressed space [20, 32, 43]. One of the currently best data struc-
tures with a trade-off parameter is due to Tanimura et al. [42], using O (n/τ) words of space and
answering LCE queries in O (τ lg min(τ ,n/τ)) time, for a trade-off parameter τ with 1 ≤ τ ≤ n.
However, this data structure has a preprocessing time of O (nτ) and is thus not helpful for sparse
suffix sorting. We develop a new data structure for LCE with the following properties:

Theorem 1.3. There is a deterministic data structure using O (n/τ) words of space that answers

an LCE query � := lce(i, j) for two text positions i and j with 1 ≤ i, j ≤ n on a text of length n in

O (lg∗ n(lg(�/τ) + τ lg 3/logσn)) time, where 1 ≤ τ ≤ n. We can build the data structure inO (n(lg∗ n +
(lgn)/τ + (lgτ)/logσn)) time with additional O (max(n/ lgn,τ lg 3 lg∗ n)) words during construction.

The construction time of our data structure has an upper bound of O (n lgn), and hence it can
be constructed faster than the deterministic data structures in Reference [42] when τ = Ω(lgn).

1.4 Outline of This Article

We start with Section 2.2 introducing the ESP, where we conduct a thorough analysis on its charac-
teristics for comparing two substrings by their ESP trees. Within this analysis, we encounter some
drawbacks of the ESP in Section 2.4, among others the aforementioned flaw for approximating
the SEDM problem. These drawbacks are our motivation for presenting our novel HSP, whose de-
scription follows in Section 3. There, it is demonstrated that HSP is immune to the flaw of the ESP.
Subsequently, Section 3.3 shows the general techniques for answering LCE queries with the HSP
tree. This is followed by Section 4 introducing our algorithm for the sparse suffix sorting problem
with an abstract data type dynamic LCE data structure (dynLCE) that supports LCE queries and a
merging operation. The remainder of that section shows that the HSP tree from Section 3 fulfills
all properties of a dynLCE; in particular, HSP trees support the merging operation. The last part of
this article is dedicated to the study on how the text space can be exploited with the HSP technique

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:5

to improve the memory footprint. This leads us to truncated HSP trees with a merging operation
that is tailored to working in text space (Section 5). With the truncated HSP trees, we finally solve
the sparse suffix sorting problem in the time and space as claimed in Theorem 1.1.

1.5 Preliminaries

Let Σ be an ordered alphabet of size σ whose characters are represented by integers. For a string
X ∈ Σ∗, let |X | denote the length of X . For a position 1 ≤ i ≤ |X | in X , let X [i] denote the ith
character of X . For positions i and j with 1 ≤ i, j ≤ |X |, let X [i ..j] = X [i]X [i + 1] · · ·X [j]. Given
T = XYZ with X ,Y ,Z ∈ Σ∗, X , Y , and Z are called a prefix, substring, suffix of T , respectively.
In particular, the suffix beginning at position i is denoted by T [i ..]. A period of a string Y is a
positive integer p < |Y | such that Y [i] = Y [i + p] for all integers i with 1 ≤ i ≤ |Y | − p.

For a binary string T ∈ {0, 1}∗, we are interested in the operation T .rank1 (j) that counts the
number of ‘1’s inT [1..j]. This operation can be performed in constant time by a data structure [23]
that takes o(|T |) extra bits of space and can be constructed in time linear in |T |.

An interval I = [b ..e] is the set of consecutive integers from b to e , for b ≤ e . For an interval I,
we use the notations b(I) and e(I) to denote the beginning and the end ofI; i.e.,I = [b(I)..e(I)].
We write |I | to denote the length of I; i.e., |I | = e(I) − b(I) + 1.

2 EDIT-SENSITIVE PARSING

The crucial technique used in this article is the alphabet reduction. The alphabet reduction is used
to partition a string deterministically into blocks. The first work introducing the alphabet reduc-
tion technique to the string context was done by Mehlhorn et al. [31], who called their approach
signature encoding. The signature encoding is derived from a tree coloring approach [18]. It sup-
ports string equality checks in the scenario where strings can be dynamically concatenated or
split. In the same context, Sahinalp and Vishkin [38] studied the maximal number of characters to
the left and to the right of a substring Z of Y such that changing one of these characters affects
how Z is parsed by the signature encoding of Y . In a later work, Alstrup et al. [1] enhanced sig-
nature encoding with additional queries like LCE. Recently, an LCE data structure using signature
encoding in compressed space was shown by Nishimoto et al. [32]. The most recent approach on
signature encoding is by Gawrychowski et al. [16] presenting a mergeable LCE data structure. A
slightly modified version of signature encoding is proposed by Sakamoto et al. [39]. They used the
alphabet reduction to build a grammar compressor that is approximating the size of the smallest
grammar by a factor of O (lg∗ n lgn).

A modified parsing was introduced by Cormode and Muthukrishnan [11]. They modified the
parsing by restricting the block size from two up to three characters and named their technique
ESP. Initially used for approximating the SEDM, the ESP technique has been found to be applicable
to building self-indexes [40]. We stick to the ESP technique, because the size of the subtree of a
node in the ESP tree is bounded. In this section, we first introduce the ESP technique and then give
a motivation for a modification of the ESP technique, which we call HSP. Before that, we recall the
alphabet reduction and the ESP trees.

2.1 Alphabet Reduction

Given a string Y in which no two adjacent characters are the same, i.e., Y [i − 1] � Y [i] for every
integer i with 2 ≤ i ≤ |Y |, we can partition Y (except at most the first lg∗ σ positions) into blocks
of size two or three with a technique called alphabet reduction [11, Section 2.1.1]. It consists of
three steps (see also Figure 2): First, it reduces the alphabet size to at most eight, in which every
character has a rank from zero to seven. Subsequently, it substitutes characters with ranks four to
seven with characters having a rank between zero and two. By doing so, it shrinks the alphabet

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:6 J. Fischer et al.

Fig. 2. Alphabet reduction applied on the string Y = tsukumogami. We represent the characters with the
five lowest bits of the ASCII encoding. Left: A single step of the alphabet reduction. The bit representation of
each character Y [i] is shown vertically in the left figure (the most significant bit is on the top). The alphabet

reduction matches the least significant bits (shaded green) of two adjacent entries and returns twice

the number of matched bits plus the mismatched bit of the right character (shaded red). The resulting
integer array Z is the last row. Middle: The second step of the alphabet reduction, where the result of the
first alphabet reduction stored inZ is put intoY . Right: Computation of the blocks. Two steps of the alphabet
reduction (seen in the left and in the middle image) yield a sequence consisting only of integers within the
domain {0, . . . , 4}. Subsequently, all ‘4’s are replaced (in this case by ‘2’, since the neighboring values are ‘0’

and ‘1’ in both cases), and the maxima and certain minima are made into landmarks (shaded orange).
Finally, the boxes in the last two rows are the computed blocks.

size to three. Finally, it identifies certain text positions as landmarks that determine the block
boundaries.

For reducing the alphabet size, we assume that σ ≥ 9, otherwise, we skip this step. The task is
to generate a surrogate string Z on the alphabet {0, 1, 2} such that the entry Z [i] depends only
on the substring Y [i . . i + lg∗ σ], for 1 ≤ i ≤ |Y | − lg∗ σ . To this end, we interpret Y as an array of
binary strings, i.e., we interpret the character Y [i] with its binary representation Y [i] ∈ {0, 1}∗. By
doing so, we have Y [i][�] ∈ {0, 1} for all integers � with 1 ≤ � ≤ ⌈lgσ ⌉. We create an array Z of
length |Y | − 1 storing integers of the domain [0 . . 2

⌈
lgσ
⌉ − 1]. For each text position i with 2 ≤ i ≤

|Y |, we compare Y [i] with Y [i − 1]: We compute � := lcp(Y [i − 1],Y [i]) and write 2� + Y [i][� + 1]
to Z [i] (remember that we treat Y [i] as a binary string). By doing so, no two adjacent integers
are the same in Z [11, Lemma 1]. Having computed Z , we recurse on Z until Z stores integers of
the domain {0, . . . , 5}. Note that the alphabet cannot be reduced further with this technique, since
2
⌈
lgx
⌉ ≥ x for every integer x with 2 ≤ x ≤ 6. To obtain the final Z , we recurse at most lg∗ σ

times. Let r be the number of recursions. Then, we have |Y | = |Z | + r .
If we skipped this step because of a small alphabet size (σ ≤ 8), then we set Z [i] to the rank of

Y [i] induced by the linear order of Σ (e.g.,Z [i] = 0 ifY [i] is the smallest character). Since |Y | = |Z |,
we set r to zero.

To reduce the domain further, we iterate over the values j = 3, . . . , 8 in ascending order, substi-
tuting each Z [i] = j with the lowest value of {0, 1, 2} that does not occur in its neighboring entries
(Z [i − 1] and Z [i + 1], if they exist). Finally, Z contains only numbers between zero and two.

In the final step, we create the landmarks that determine the block boundaries. The landmarks
obey the property that the distance between two subsequent landmarks is greater than one, but
at most three. They are determined by local maxima and minima: First, each number Z [i] that is a
local maximum is made into a landmark. Second, each local minimum that is not yet neighbored
by a landmark is made into a landmark.

Finally, we create blocks by associating each position in Z with its closest landmark. Positions
associated with the same landmark are put into the same block. As a tie-breaking rule, we favor

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:7

Fig. 3. Left: Surrounded block β with local surrounding X contained in a string Y . Right: Two occurrences
of the local surrounding X of a surrounded block β in the string Y , which is partitioned into blocks (gray
rectangles) by the edit-sensitive parsing. Although the occurrences of X can be differently blocked at their
borders, they all have a block equal to β in common.

the right landmark in case there are two closest landmarks. The last thing to do is to map each
block covering Z [i . . j] to Y [i + r . . j + r].

The tie-breaking rule can cause a problem when Z [1] and Z [3] are landmarks, i.e., the leftmost
block contains only one character. We circumvent this problem by fusing the blocks of the first
and second landmark to a single block. If this block covers four characters, we split it evenly.

Altogether, the alphabet reduction needsO (|Y | lg∗ σ) time, since we perform r ≤ lg∗ σ reduction
steps, while determining the landmarks and computing the blocks take O (|Y |) time. The steps are
summarized in the following lemma:

Lemma 2.1. Given a string Y in which no two adjacent characters are the same, the alphabet re-

duction applied on Y partitions Y into blocks, except at most
⌈
lg∗ σ
⌉

positions at the left. It runs

in O (|Y | lg∗ σ) time.

The main motivation of introducing the alphabet reduction is the following lemma that shows
that applying the alphabet reduction on a text Y and on a pattern X generates the same blocks in
X as in all occurrences of X in Y , except at the left and right borders of a specific length:

Lemma 2.2 ([11, Lemma 4]). Given a substring X of

a string Y in which no two adjacent characters are the

same, the alphabet reduction applied to X alone cre-

ates the same blocks as the blocks representing the sub-

stringX inY , except for at most ΔL :=
⌈
lg∗ σ
⌉
+ 5 char-

acters at the left border and ΔR := 5 characters at the

right border.

Given a block β , we call the substring Y [b(β) − ΔL . . e(β) + ΔR] the local surrounding of β
if it exists (i.e., b(β) − ΔL ≥ 1 and e(β) + ΔR ≤ |Y |). Blocks whose local surroundings exist are
also called surrounded. A consequence of Lemma 2.2 is the following: Given that X is the local
surrounding of a surrounded block β , then the blocking of every occurrence of X in Y is the same,
except at most ΔL and ΔR characters at the left and right borders, respectively. We conclude that the
blocking of every occurrence ofX has a blockX [1 + ΔL . . ΔL + ��β ��] that is equal to Y [b(β) . . e(β)]
(see Figure 3).

2.2 Meta-blocks

Whenever a string Y contains a repetition of a character at two adjacent positions, we cannot
parse Y with the alphabet reduction. A solution is to additionally use an auxiliary parsing
specialized on repetitions of the same character. With this auxiliary parsing, we can partition Y
into substrings, where each substring is either parsed with the alphabet reduction or with the
auxiliary parsing. It is this auxiliary parsing where the aforementioned signature encoding and
the edit sensitive parsing (ESP) technique differ. The main difference is that the ESP technique

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:8 J. Fischer et al.

Fig. 4. ESP of the stringY = ababaaaaaaabaaaaabababaaaaab. The string is divided into blocks represented
by the gray rectangular boxes at the bottom. Each block gets assigned a new character represented by the

capital letters in the rounded boxes. The white/golden () rectangular boxes on the top level represent the
meta-blocks that group the blocks. Each such box is labeled with the type of its respective meta-block. The

blocks are connected with red horizontal lines () if they belong to a repeating meta-block or by green

diagonal lines () if they belong to a Type 2 meta-block.

Fig. 5. Impact of the tie-breaking rule (Rule (M)) on emerging Type M nodes of the HSP trees built on

Y = a19ba5 (ba)2. A Type M node (like I, J on the left or K on the right) is created by fusing a single symbol
with its sibling meta-block. Remember that Rule (M) prescribes to fuse the symbol with its succeeding meta-
block. To see why this rule is advantageous, the HSP trees on the left (respectively, right) use the tie-breaking
rule Rule (M’) (respectively, Rule (M)) favoring the preceding (respectively, succeeding) meta-block. While on
the right side only the fragile nodes of the leftmost meta-blocks on each height differ after prepending a (e.g.,
the unique occurrence of a4 changes to a5), the change is more dramatic on the left side. Prepending the
character a to Y (bottom left) changes the names of the nodes with names J and P to I and Q, respectively.

restricts the lengths of the blocks: It first identifies so-called meta-blocks in Y and then further
refines these meta-blocks into blocks of length 2 or 3. The meta-blocks are created in the following
three-stage process (see also Figure 4 for an example):

(1) Identify runs with smallest period one (i.e., maximal substrings of the form c� for c ∈ Σ and
� ≥ 2). Such substrings form the Type 1 meta-blocks.

(2) Identify remaining substrings of length at least two (which must be bordered by Type 1
meta-blocks). Such substrings form the Type 2 meta-blocks.

(3) Every substring not yet covered by a meta-block consists of a single character and cannot
have Type 2 meta-blocks as its neighbors. Such characters are fused with a neighboring
meta-block. The meta-blocks emerging from this fusing are called Type M (mixed).

Meta-blocks of Type 1 and Type M are collectively called repeating meta-blocks. For (3), we are
free to choose whether a remaining character should be fused with its preceding or succeeding
meta-block (both meta-blocks are repeating). We stick to the following tie-breaking rule:

Rule (M): Fuse a remaining characterY [i] with its succeeding1 meta-block, or, if i = |Y |,
with its preceding meta-block.

1The original version [11] prefers the preceding meta-block. We comply with Rule (M), as it behaves better. See

Figure 5 for an example with the later-introduced HSP trees.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:9

Meta-blocks are further partitioned into blocks, each containing two or three characters from
Σ. Blocks inherit the type of the meta-block they are contained in. How the blocks are partitioned
depends on the type of the meta-block:

Repeating meta-blocks. A repeating meta-block is partitioned greedily: create blocks of
length three until there are at most four, but at least two characters left. If possible, create
a single block of length two or three; otherwise (there are four characters remaining),
create two blocks, each containing two characters.

Type 2 meta-blocks. A Type 2 meta-block μ is partitioned into blocks in O (��μ�� lg∗ σ) time
by the alphabet reduction (Lemma 2.1). A block β generated by the alphabet reduction
is determined by the characters Y [max(b(β) − ΔL, b(μ)) . . min(e(β) + ΔR, e(μ))] due to
Lemma 2.2. Given the number of reduction steps r in Section 2.1, the alphabet reduc-
tion does not create blocks for the first r characters of each meta-block. The ESP tech-
nique blocks the first r characters in the same way as a repeating meta-block. The border
case r = 1 (one character remaining) is treated by fusing the remaining character with
the first block created by the alphabet reduction, possibly splitting this block in the case
that its size is four.

A block is called repetitive if it contains the same characters. All blocks of a Type 1 meta-block and
all blocks except at most the left- or rightmost block (these blocks can contain a fused character)
in a Type M meta-block are repetitive.

Let esp: Σ∗ → (Σ2 ∪ Σ3)∗ denote the function that parses a string by the ESP technique. We
regard the output of esp as a string of blocks.

2.3 Edit-sensitive Parsing Trees

Applying esp recursively on its output generates a context free grammar (CFG) as follows: Let

〈Y 〉0 := Y be a string on an alphabet Σ0 := Σ. The output of 〈Y 〉h := esp(h) (Y) = esp(esp(h−1) (Y))
is a sequence of blocks, which belong to a new alphabet Σh with h ≥ 1. We call the elements
of Σh with h ≥ 1 names and use the term symbol for an element that is a name or a character. A
block β ∈ Σh contains a string of symbols with length two or three (this string is in Σ2

h−1
∪ Σ3

h−1
).

We maintain an injective dictionary D : Σh → Σ2
h−1
∪ Σ3

h−1
to map a block to its symbols. The

dictionary entries are of the form β → xy or β → xyz, where β ∈ Σh and x ,y, z ∈ Σh−1. We write
D(X) := D(X [1]) · · ·D(X [|X |]) ∈ Σ∗

h−1
for X ∈ Σ∗

h
. Each block on height h is contained in a meta-

block μ on height h − 1, which is equal to a substring 〈Y 〉h−1[i . . j] ∈ Σ∗
h−1

. We call the elements
of 〈Y 〉h−1[i . . j] ∈ Σ∗

h−1
the symbols of μ. Since each application of esp reduces the string length

by at least one-half, there is an integer k with k ≤ lg |Y | such that 〈Y 〉k = esp(〈Y 〉k−1) is a single
block ρ ∈ Σk . We writeV :=

⋃
1≤h≤k Σh for the set of names in 〈Y 〉1, 〈Y 〉2, . . . , 〈Y 〉k . The CFG for

Y is represented by the non-terminals (i.e., the names)V , the terminals Σ0, the dictionaryD, and
the start symbol ρ. This grammar exactly derives Y .

Throughout this article, we comply with the convention to write symbols in typewriter font;
in particular, characters (elements of Σ0) in lowercase and names (elements of Σh with h ≥ 1) in
uppercase letters. All examples use the same dictionary such that reappearing names are identical
(see Figure 6 for the used dictionary). Names restricted to a particular figure can be written with
Greek letters (a necessity due to the limitation of having only 26 letters in the English alphabet).

The ESP tree ET(Y) of a string Y is the derivation tree of the CFG defined above. Its root node is
the start symbol ρ. The nodes on height h are 〈Y 〉h for each height h ≥ 1. In particular, the leaves
are 〈Y 〉1. Each leaf refers to a substring in Σ2

0 or Σ3
0. The generated substring of a node 〈Y 〉h[i]

is the substring of Y generated by the symbol 〈Y 〉h[i] (applying the hth iterate of D to 〈Y 〉h[i]

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:10 J. Fischer et al.

Fig. 6. Names of the ESP (Section 2.2) and HSP (Section 3) nodes stored in the global dictionary of our
examples. The common dictionary contains all names that are used by both ESP and HSP. Each name occurs
on the left side only once across all dictionaries.

Fig. 7. The ESP tree of the string Y = aaaaaaaaaaaaaaaababa. Like in Figure 4, nodes belonging to the

same meta-block are connected by red horizontal () or green diagonal lines () in case they belong to
a repeating or a Type 2 meta-block, respectively.

yields a substring of Y , i.e., D(h) (〈Y 〉h[i]) ∈ Σ∗). We denote the generated substring of 〈Y 〉h[i] by
string(〈Y 〉h[i]). For instance, in Figure 7, string((M)) = aaaababa. A node v on height h is said
to be built on 〈Y 〉h−1[b . . e] if 〈Y 〉h−1[b . . e] contains the children of v . Like with blocks, nodes
inherit the type of the meta-block on which they are built. An overview of the definitions is given
in Figure 8.

2.3.1 Shortcomings of ESP Trees. In what follows, we present two shortcomings of the ESP
trees. The first is that nodes with different names can have the same generated substring, i.e.,

D(h) : Σh → Σ∗0 is not injective for h ≥ 2 in general. The second is that it is not straight-forward
to see which nodes of ET(Y) and ET(Z) are equal when Y is a substring of Z . Both cause problems
when comparing subtrees of two nodes, which we later do for answering LCE queries.

Given two nodes u and v , it holds that string(u) = string(v) if their names are equal. However,
the other way around is not true in general. With string(u) = string(v), it is not even assured
that u and v are nodes sharing the same height. Suppose that Σ is a large alphabet with lg∗ σ = 6
and that X := resliced occurs in the text that we parse with ESP (see Figure 9). We parse an
occurrence of X either (a) with the alphabet reduction if it is within a Type 2 meta-block, or
(b) greedily if it is at the beginning of a Type 2 meta-block. In the former case (a), we apply
the alphabet reduction and end at a reduced alphabet with the characters {0, 1, 2}. Suppose this

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:11

Fig. 8. 〈Y 〉h with a highlighted node v . The subtree rooted at v is depicted by the white, rounded boxes.
The generated substring string(v) of v is the concatenation of the white rectangular blocks on the lowest

level in the picture. The meta-block μ, on which v is built, is the rounded golden () rectangle covering the

children of v and all nodes connected by a horizontal hatching () on height h − 1.

Fig. 9. Excerpts of (a) ET(· · ·X) and (b) ET(X · · ·) withX := resliced. Under the assumption that lg∗ σ = 8,
the common substring X can be blocked differently in both trees (depending on the characters preceding X
in the right figure).

occurrence of X is reduced to the string in superscript of · · ·
1 0 2 1 0 1 2 1 0 1
resliced · · · . Then ESP creates the

four blocks · · · |re|sl|ic|ed| · · · , whose boundaries are determined by the alphabet reduction.
Further suppose that an application of esp creates two nodes of these blocks, which are put into
a node u by an additional parse such that string(u) = X . In the latter case (b), ESP creates the first
two blocks of res|lic|ed| · · · greedily. Suppose that an additional parse puts these blocks in a
node v such that string(v) = X . Although string(v) = string(u), the children of both nodes have
different names, and therefore, both nodes cannot have the same name.

The second shortcoming is that it is not clear how to transfer the property of the alphabet
reduction described in Lemma 2.2 from blocks to nodes. Given a substring Y of a string Z , the
task is to analyze whether a node 〈Y 〉h[i] in ET(Y) is also present in the tree ET(Z), i.e., we
analyze changes of a node 〈Y 〉h[i] when prepending or appending (pre-/appending) characters
to Y . For the sake of analysis, we distinguish the two terminologies block and node, although a
node is represented by a block: When we analyze a block in esp(X) ∈ Σ∗

h
for a string X ∈ Σ∗

h−1
,

we let X to be subject to pre-/appending characters of Σh−1, whereas when we analyze a node
〈Y 〉h[i] on a height h of ET(Y) of a string Y ∈ Σ∗, we let Y to be subject to pre-/appending char-
acters of Σ. In this terminology, a block in esp(X) is only determined by X , whereas 〈Y 〉h[i]
is not only determined by esp(h−1) (Y) ∈ Σ∗

h−1
, but also by Y itself. The difference is that a sur-

rounded Type 2 block of esp(X) cannot be changed by pre-/appending characters to X due to
Lemma 2.2, whereas we fail to find integers ΔL,h and ΔR,h such that a Type 2 node on height h
built on 〈Y 〉h−1[ΔL,h . . ΔR,h] cannot be changed by pre-/appending characters toY ; that is because
the names inside 〈Y 〉h−1 and 〈aY 〉h−1 for h ≥ 2 can differ at arbitrary positions. This can be seen
in the following example: When parsing the string Y := a9k+4 (ba)3k−1 with the names defined in

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:12 J. Fischer et al.

Fig. 10. Excerpt of ET(Y) and ET(aY) (higher nodes omitted), whereY = a9k+4 (ba)3k−1 = a22 (ba)5 for k = 2.
For all k ≥ 2, there is a unique node in 〈Y 〉2 with the name C. This name does not appear in ET(aY).

Fig. 11. Local surrounding
of a node v at height h + 1.

Figure 6, we obtain esp(esp(Y)) = esp(B3kAAN3k−1) = EkCHk−1G. Let us focus on the unique oc-
currence of the name C, which is depicted in Figure 10 for k = 2. On the one hand, there is a
block in 〈Y 〉1 with the name C on height two. This block is surrounded for a sufficiently large k .
Even for k ≥ 1, it is easy to see that there is no way to change the name of this block by pre-/
appending characters to the string B3kAAN3k−1. On the other hand, there is a unique node in ET(Y)
with name C on height two. Regardless of the value of k , prepending a to Y changes the name ofv :
esp(esp(aY)) = esp(B3k+1AN3k−1) = Ek−1DDUHk−1.

In the following, we introduce the notion of surrounded nodes, since they are helpful to find
rules that determine nodes that cannot be changed by pre-/appending characters.

2.3.2 Surrounded Nodes. Analogously to blocks, we classify nodes as surrounded when they
are neighbored by sufficiently many nodes: A leaf is called surrounded if its generated substring
is surrounded. The local surrounding of a leaf is the local surrounding of the block represented
by the leaf. Given an internal node v on height h + 1 (h ≥ 1) whose children are 〈Y 〉h[β], the
local surrounding of v is the union of the nodes 〈Y 〉h[b(β) − ΔL . . e(β) + ΔR] and the local sur-
rounding of each node in 〈Y 〉h[b(β) − ΔL . . e(β) + ΔR]. If all nodes in the local surrounding of v
are surrounded, we say that v is surrounded. Otherwise, we say that v is non-surrounded. See
Figure 11 for an illustration.

Lemma 2.3. There are at most ΔL + ΔR many non-surrounded nodes on each height, summing up

to O (lg∗ n lgn) non-surrounded nodes in total.

Proof. We show the following claim: A node v on height h is

surrounded if it has ΔL preceding and ΔR succeeding nodes. This
is clear on height one by definition. Under the assumption that the
claim holds for height h − 1,v’s preceding (respectively, succeeding)
nodes have at least 2ΔL (respectively, 2ΔR) children in total, where
at least the ΔL rightmost nodes (respectively, ΔR leftmost nodes) are
surrounded by the assumption. Hence, v is surrounded. �

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:13

Fig. 12. ET(Y) of Figure 10 with fragile, semi-stable, and stable nodes highlighted. The fragile nodes are

cross-hatched (), the semi-stable nodes are dotted (), and the stable nodes have stars attached ().
The leftmost nodes of the tree change their names when prepending one b. When prepending a’s, we observe
that the children of the node with name C change. Assuming that Σ = {a, b} (and hence |Σ| = 2), only the
rightmost node of the meta-block containing nodes with name N is fragile.

The examples of Section 2.3.1 shedding a light on the difference between blocks and nodes reveal
that the property for surrounded blocks as shown on the right side of Figure 3 cannot be transferred
to surrounded nodes directly, since a surrounded node depends not only on its local surrounding,
but also on the nodes on which it is built. Despite this discovery, we show that surrounded nodes
can help us to create rules that are similar to Lemma 2.2.

2.4 Fragile and Stable Nodes in ESP Trees

We now analyze which nodes of ET(Y) are still present in ET(XYZ) for all strings X and Z . A
node 〈Y 〉h[j] in ET(Y) at a height h is said to be stable if, for all strings X and Z , there exists

a node 〈XYZ〉h[k] in ET(XYZ) with the same name as 〈Y 〉h[j] and |X | +∑j−1
i=1

��string(〈Y 〉h[i])�� =∑k−1
i=1

��string(〈XYZ〉h[i])��. We also consider repeating nodes that are present with slight shifts;
a non-stable repeating node 〈Y 〉h[j] in ET(Y) is said to be semi-stable if, for all strings
X and Z , there exists a node 〈XYZ〉h[k] in ET(XYZ) with the same name as 〈Y 〉h[j]
and
∑k−1

i=1
��string(〈XYZ〉h[i])�� − |S | < |X | +∑j−1

i=1
��string(〈Y 〉h[i])�� < ∑k−1

i=1
��string(〈XYZ〉h[i])�� + |S |,

where S = string(〈Y 〉h[j]) = string(〈XYZ〉h[k]).
Nodes that are neither stable nor semi-stable are called fragile. By definition, the children of

the (semi-)stable nodes (respectively, fragile nodes) are also (semi-)stable (respectively, fragile).
Figure 12 shows an example, where all three types of nodes are highlighted. The rest of this section
studies how many fragile nodes exist in ET(Y).

As a warm-up, we first restrict the ESP tree construction on strings that are square-free. Since
a name of the ESP tree is determined by its generating substring, ET(Y) cannot contain two con-
secutive occurrences of the same name on any height. We conclude that ET(Y) has no repeating
nodes, i.e., it consists only of Type 2 nodes.

Remembering Section 2.2, the ESP parsing differs from the signature encoding in the auxiliary
parsing used for the repeating meta-blocks and the first O (lg∗ n) symbols of a Type 2 meta-block.
The signature encoding introduces an intermediate step where it replaces all runs with smallest
period one with a new symbol such that no symbol occurs at two adjacent positions in the re-
sulting string. This means that the signature encoding can apply the alphabet reduction on the
entire string after applying this intermediate step. By doing so, the signature encoding introduces
at most O (lg∗ n) fragile nodes on each height [32, Lemma 9]. In the case of a square-free string,
the auxiliary parsing is only required for the O (lg∗ n) leftmost symbols on each height of both
parsings (signature encoding and ESP): (a) the intermediate step of the signature encoding does
not introduce any new symbols, and (b) the ESP creates only a single Type 2 meta-block. Hence,
in this case, the maximal numbers of fragile nodes (a) in the signature encoding parse trees and
(b) in the ESP tree have the same asymptotic upper bound. For completeness, we prove this state-
ment explicitly, as the techniques will be used later to devise an upper bound in the general case.
We start with the following lemma:

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:14 J. Fischer et al.

Fig. 13. Division of an ESP tree in
surrounded and fragile nodes. The
surrounded nodes form an inner
cone. Neighboring fragile nodes can
appear in the non-surrounded ar-
eas (e.g., the lowest leftmost nodes).
On each height, the ESP tree can
have a constant number of fragile
surrounded nodes that do not have
fragile nodes in their subtrees.

Lemma 2.4 ([11, Lemma 8]). A Type 2 node is stable if (a) it is surrounded and (b) its local sur-

rounding does not contain a fragile node.

With Lemma 2.4, we immediately obtain:

Lemma 2.5. Given a square-free string Y , a fragile node of ET(Y) is a non-surrounded node.

Proof. According to Lemma 2.4, we can bound the number of fragile nodes by the number
of those nodes that do not satisfy the conditions in Lemma 2.4. Since ET(Y) only contains Type 2
nodes, we can inductively show that a fragile node is non-surrounded for all heights of the ESP tree:
Surrounded leaves are stable due to Lemma 2.2. Therefore, the claim holds for h = 1. By definition,
a node v on height h is surrounded if its local surrounding S on height h − 1 is surrounded. Given
that the claim holds for h − 1, a node in S can only be fragile if it is not surrounded. This concludes
that v can be fragile only if it is not surrounded. �

Combining Lemma 2.5 with Lemma 2.3 yields the following corollary:

Corollary 2.6. The number of fragile nodes of an ESP tree built on a square-free string of length n
is O (lg∗ n lgn). On each height, it contains O (lg∗ n) fragile nodes.

In Appendix A, we show that Corollary 2.6 cannot be generalized for arbitrary strings. There,
we show that the ESP technique changes Ω(lg2 n) nodes when changing a single character of a
specific example string.

A new upper bound. With the examples in the Appendix, we conclude that the O (lg∗ n lgn)-
bound on the number of fragile nodes for square-free strings (Lemma 2.5) does not hold for general
strings. To obtain a general upper bound (we stick again to Rule (M)), we include the repeating
meta-blocks in our study of fragile nodes. Fragile nodes can now be surrounded (trees of square-
free strings do not have fragile surrounded nodes according to Lemma 2.5). Remembering that a
node is fragile if it has a fragile child, a fragile Type 2 node can also be surrounded (e.g., one of its
children can be a fragile surrounded repeating node). Figure 13 sketches the possible occurrences
of fragile surrounded nodes. A first result on a special case is given in the following lemma:

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:15

Fig. 14. Prepending the string aab to the

text ak character by character. Each step
is given as a row, in which we addi-
tionally computed the ESP of the cur-
rent text. The last row shows an exam-
ple, where a former Type 1 meta-block
changes to Type M, although it is right of
a Type 2 meta-block. Here, k mod 3 = 2.

Lemma 2.7. A surrounded node v is contained in the local surroundings of O (lg∗ n lgn) nodes. If

all those nodes are of Type 2, then a change of v causes O (lg∗ n lgn) name changes.

Proof. We follow Reference [11, Proof of Lemma 9]: We count the number of nodes that con-
tain v in its local surrounding.
Given that v is a node
on height i and u is v’s
parent, then there are at
most ΔR/2 ≤ ΔR nodes
precedingu and ΔL/2 ≤
ΔL nodes succeeding u that have v in its local surrounding. We count one on height i and
(ΔL + ΔR + 1)/2 on height i + 1. Since the counted nodes on height i + 1 are consecutive, there
are at most (ΔL + ΔR + 1)/2 nodes that are all parents of the counted nodes on height i + 1. Con-
sequently, there are at most (ΔL + ΔR + 1)/2 + ΔL + ΔR nodes on height i + 2 that have v in their

local surroundings. Iterating over all heights gives an upper bound of (ΔL + ΔR + 1)
∑lg n−i

h=0
1/2h ≤

2(ΔL + ΔR + 1) nodes on each height. �

Second, we narrow down the fragile blocks in repeating meta-blocks. The first block
(cf. Figure 14) and the two rightmost blocks (cf. Figure 15) of a repeating meta-block can be fragile.
Due to the greedy parsing, all other blocks of a repeating meta-block are (semi-)stable. A repeating
meta-block containing fragile surrounded blocks needs to cover one of the leftmost or rightmost
symbols, as can be seen by the following lemma:

Lemma 2.8. A repeating meta-block μ of esp(Y) with b(μ) ≥ 4 and e(μ) ≤ |Y | − 2 cannot contain

a fragile block.

Proof. Since b(μ) ≥ 4, there are at least three symbols before μ that are assigned to one or more
other meta-blocks. When prepending symbols, those meta-blocks can change, absorbing the new
symbols or giving the leftmost symbol away to form a Type 2 meta-block. In neither case, they

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:16 J. Fischer et al.

Fig. 15. Greedy blocking of a Type 1 meta-
block. The greedy blocking is related to the
Euclidean division by three. The remain-
der k mod 3 is determined by the num-
ber of symbols in the last two blocks (here,
k mod 3 = 0). In this example, the ESP
technique creates a single, repeating meta-
block on each input.

Fig. 16. Setting of Lemma 2.8. According to Lemma 2.8, a meta-block μ in esp(Y) of a stringY cannot contain
a surrounded fragile block if b(μ) ≥ 4 and e(μ) ≤ |Y | − 2.

can affect the parsing of μ, since μ is parsed greedily. Similarly, the succeeding meta-blocks of μ
keep μ’s blocks from changing when appending symbols. See Figure 16 for a sketch. �

Corollary 2.9. The edit-sensitive parsing introduces at most two fragile surrounded blocks. These

blocks are the two rightmost blocks of a repeating meta-block whose leftmost block is not surrounded.

Lemma 2.10. Changing the symbol in a substring of 〈Y 〉h−1 on which a repeating node on height h
is built changes O (1) names on height h.

Proof. Letu be a repeating node on height h. Since it is repeating, it is built on a substringX :=
〈Y 〉h−1[b(X) . . e(X)] of a repeating meta-block μ = 〈Y 〉h−1[b(μ) . . e(μ)] with D(u) = X . Now
change a symbol inX , say, 〈Y 〉h−1[iu] with b(X) ≤ iu ≤ e(X). This causes the name ofu to change.
Additionally, it causes the meta-block μ to split into a repeating meta-block 〈Y 〉h−1[b(μ) . . iu − 1]
and a Type M meta-block 〈Y 〉h−1[iu . . e(μ)], causing the names of the two rightmost nodes built
on the new meta-blocks to change. Altogether, there are O (1) name changes on height h. �

An easy generalization of Lemma 2.10 is that changing k consecutive nodes on height h − 1 that
are children of repeating nodes on height h changes O (k) names on height h. With Lemma 2.10,
the following lemma translates the result of Corollary 2.9 for blocks to nodes:

Lemma 2.11. The ESP tree ET(Y) of a string Y of length n has O (lg2 n lg∗ n) fragile nodes and

O (h lg∗ n) fragile nodes on height h.

Proof. While computing 〈Y 〉h+1 from 〈Y 〉h , the ESP technique introduces O (1) fragile sur-
rounded blocks according to Corollary 2.9. Each fragile surrounded block corresponds to a fragile
surrounded node.

Similar to the proof of Lemma 2.5, we count all surrounded nodes as fragile whose local sur-
rounding contains a fragile node. Lemma 2.7 shows that each introduced fragile surrounded block
makes O (lg∗ n lgn) nodes fragile. Although we considered only Type 2 nodes in Lemma 2.7, we
can generalize this result for all fragile nodes with Lemma 2.10.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:17

Fig. 17. Hierarchical stable parsing. The repeating meta-blocks are determined by the surnames.

To sum up, there are O (h lg∗ n) fragile nodes on height h. Because ET(X) has a height of at most

lgn, there are O (lg∗ n
∑lg n

h=1
h) = O (lg∗ n lg2 n) fragile nodes in total. �

Showing that the number of fragile nodes is indeed larger than assumed makes ESP trees a more
unfavorable data structure, since fragile nodes are cumbersome when comparing strings with ESP
trees as done in Reference [11]. Fortunately, we can restore the claimed number of O (lgn lg∗ n)
fragile nodes for a string of length n with a slight modification of the parsing, as shown in the
following section.

3 HIERARCHICAL STABLE PARSING TREES

Our modification, which we call hierarchical stable parsing (HSP), augments each name with
a surname and a surname-length, whose definitions follow: Given a name Z ∈ Σh , let h′ with

0 ≤ h′ ≤ h be the largest integer such thatD(h′) (Z) consists of the same symbol, say,D(h′) (Z) = Y�

for a symbol Y ∈ Σh−h′ and an integer � ≥ 1. Then the surname and surname-length of Z are the
symbol Y and the integer �, respectively.2 For convenience, we define the surname of a character

to be the character itself. Then all symbols in D(j) (Z) for every j with 1 ≤ j ≤ h′ share the same
surname with Z.

Having the surnames of the nodes at hand, we present the HSP. It differs from ESP in how a
string of names is partitioned into meta-blocks, whose boundaries now depend on the surnames:
When factorizing a string of names into meta-blocks, we relax the check whether two names are
equal; instead of comparing names, we compare by surnames.3 As a consequence, we allow meta-
blocks of Type 1 to contain different symbols as long as all symbols share the same surname. The
other parts of the edit-sensitive parsing defined in Section 2.2 are left untouched; in particular,
the alphabet reduction uses the symbols as before. We write HT(Y) for the resulting parse tree,
called HSP tree, when the HSP technique is applied to a string Y . Figure 17 shows HT(a11 (ba)5).
In the rest of this article (and as shown in Figure 17), we give a repetitive node with surname Z
and surname-length � the name Z� . We omit the surname-length if it is one (and thus, the label of
a non-repetitive node is equal to its name). For the other nodes, we use the names of Figure 6. We
can do that, because the name of a node can be identified by its surname and surname-length, as
can be seen by the following lemma:

Lemma 3.1. The name of a node is uniquely determined by its surname and surname-length.

Proof. A node with surname-length one is not repetitive, and therefore, its name is equal to
its surname. Given a repetitive node v with surname Z and surname-length �, there is a height h
such thatD(h) (v) = Z� . For every height h′ with 1 ≤ h′ ≤ h,D(h′) (v) consists of the same symbol,

and hence D(h′) (v) is parsed greedily by HSP. Consequently, the iterated greedy parsing of the
string Z� determines the name of v . �

2By definition, the surname of Z is Z itself if � = 1.
3The check is relaxed, since names with different surnames cannot have the same name.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:18 J. Fischer et al.

Fig. 18. Excerpt of HT(Y) (upper part) and HT(aY) (lower part), where Y = ak(ba)k ′ with k = 18 + 9i + 7

for an integer i ≥ 0 and k ′ ≥ 2 (cf. Figure 10). The parsing of Y creates a repeating meta-block consisting of

ak and a Type 2 meta-block consisting of (ba)2. For k ≥ 2 it is impossible to modify the latter meta-block
by prepending characters, since the parsing always groups adjacent nodes with the same surname into one
repeating meta-block.

Fig. 19. Comparison of HT(Y) and HT(abY), where Y = (ab)8. The node v with name J3 is semi-stable.

3.1 Upper Bound on the Number of Fragile Nodes

The motivation of introducing the HSP technique becomes apparent with the three following facts:

Fact 1: Given that the surnames of the repetitive nodes in a repeating meta-block μ arew , the
generated substring of each such repetitive node is a repetition of the form Xk with the
same X = string(w) ∈ Σ∗ (or X = w in case w ∈ Σ), but with possibly different surname-
lengths k (e.g., string(N3) = (ba)3 and string(N2) = (ba)2 in Figure 17). Due to the greedy
parsing of the repeating meta-blocks, the surname-lengths of the last two nodes in μ
cannot be larger than the surname-lengths of the generated substrings of the other nodes
(with the same surname) contained in μ. See Figure 18 for an example when prepending
a character to the input (observe that a7 changes to a8, whose generated substring is still
a prefix of string(a9)).

Fact 2: The shift of a semi-stable node is always a multiple of the length of its surname (recall
that semi-stable nodes are defined like stable nodes, but with slight shifts, cf. Section 2.4):
Let J be the surname of a semi-stable node v ∈ 〈Y 〉h on height h. Given J ∈ Σh′ for a

height h′ with h′ ≥ 0, D(h−h′) (v) is a repetition of the symbol J on height h′. A shift of v
can only be caused by adding one or more Js to 〈Y 〉h′ . In other words, the shift is always

a multiple of D(h′) (J). Figure 19 shows an example of a semi-stable node v .

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:19

Fig. 20. Top: ET(Y) (left) and HT(Y) (right) of the string Y defined in Figure 7. Bottom: ET(aY) (left) and
HT(aY) (right). Unlike the two ESP trees at the left, the two HSP trees at the right share the same tree
topology.

Fact 3: A non-repetitive Type M block can be fragile only if it is non-surrounded. By definition,
a repeating meta-block μ contains a non-repetitive block β if and only if μ is Type M. The
block β can only be located at the beginning or ending of μ. Remembering Rule (M), β ’s
non-repetitiveness is caused by

• fusing a symbol with its succeeding meta-block, or
• fusing the last symbol with its preceding meta-block.

In both cases, it is impossible that β is a surrounded block if b(μ) ≤ ΔL. If β is surrounded,
it is (semi-)stable due to Lemma 2.8. With Rule (M), we also experience a more stable
behavior like in Figure 5.

These facts make the HSP technique more stable than the ESP technique, as can be seen in
Figure 20, for instance. In the following, we study the number of fragile surrounded nodes (like in
Section 2.4 for the ESP trees) and show the invariant (Claim 3 in Lemma 3.4) that the generated
substring of a fragile surrounded node is always the prefix of the generated substring of a name
that is already stored inD. On block level, this is an easy conclusion of Lemma 2.8 and Facts 1 and 3.

Corollary 3.2. Given n > 4 and a repeating meta-block μ having a fragile surrounded block β , μ
has at least one block preceding β that contains three symbols with the same surname. In particular,

the leftmost of these preceding blocks is non-surrounded.

Proof. Since β is surrounded and fragile, b(μ) ≤ 2 according to Lemma 2.8 and Corollary 2.9.
Hence, ��μ�� ≥ ΔL − 2 (otherwise, β would not be surrounded). By the definition of ΔL in Lemma 2.2,
ΔL − 2 ≥ 5 for n > 4. Assuming that the repetitive blocks in μ have the surname Z, there is at
least one repetitive block γ with surname Z preceding β that contains three symbols of μ. But
the fragile surrounded block β is also a repetitive block according to Fact 3. Due to Fact 1, the
surname-length of β is at most as long as the surname-length of γ , i.e., the generated substring
of the node corresponding to β is a prefix of the generated substring of the node corresponding
to γ . Let γ be the leftmost such block. Remembering that μ can start with a non-repetitive node
in case that μ is of Type M, it is not obvious that γ is non-surrounded. However, we know that
b(μ) ≤ 2. Hence, b(γ) ≤ 5 ≤ ΔL, yielding thatγ is non-surrounded. See Figure 21 for a sketch (with
Z = a). �

In general, the aforementioned invariant does not hold for ESP trees, but is essential for the
sparse suffix sorting in text space. There, our idea is to create an HSP or ESP tree on a newly found
re-occurring substring. We would like to store the ESP tree in the space of one of those substrings,

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:20 J. Fischer et al.

Fig. 21. Setting of Corollary 3.2. According to Lemma 2.8, a meta-block μ can contain a surrounded fragile
block if b(μ) ≤ 3 (cf. Figure 16). In the figure, the node v is fragile, since prepending L changes its name.
According to Corollary 3.2, there is a non-surrounded node u whose generated substring has the generated
substring of v as a prefix.

Fig. 22. Problem with dynamic updates of ESP trees stored in text space. Suppose that we truncate ESP trees
at a certain height. Truncated nodes are grayed out. Each leaf of the truncated trees is assigned a pointer to
its generated substring, which is a substring of the textT (left). Suppose that we have built ET(Y) (top right)
on a substring Y of T (Y defined as in Figure 20) and that the names D, C, and G are already present in the
dictionary (hence, they have different generated substrings). Further suppose that the space of Y in T has
been overwritten. When prepending an a to ET(Y) to form ET(aY) (bottom right), the node G changes to U,
for which we need to search its generated substring (assuming that U is not yet stored in the dictionary). The

example can be elaborated such that G and U become surrounded nodes (prepend a9k and append b9k for a
sufficiently large k ≥ 1).

which we can do by truncating the tree at a certain height (removing the lower nodes) and chang-
ing the pointer of each (new) leaf such that the name of a leaf refers to its generated substring that
is found in the remaining text. Unfortunately, there is a problem when pre-/appending characters
to enlarge the ESP tree, since a leaf could change its name such that its generated substring needs
to be updated—which can be non-trivial if its generated substring refers to an already overwrit-
ten part of the text that is not present in the remaining text as a (complete) substring. Figure 22
demonstrates the problem when truncating ESP trees at height 2. Fortunately, the following lem-
mas restrict the problem of updating the generated substring when an HSP node is surrounded
and fragile. We start with appending characters:

Lemma 3.3. There is no surrounded HSP node v whose name changes when appending characters.

Proof. Assume that v’s name changes on appending characters. Moreover, assume that v’s lo-
cal surrounding does not contain a fragile node (otherwise, swapv with this node). First, since there
is no fragile node in v’s local surrounding, it has to be a repeating node according to Lemma 2.4.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:21

Second, according to Corollary 2.9, it has to be one of the last two nodes built on a repeating
meta-block μ. But there is no way to change the names of the last two blocks of μ by appending
characters unless these blocks are non-surrounded. So, a surrounded node cannot have a node in
its surrounding whose name changes when appending characters. �

Lemma 3.4. Let v be a fragile surrounded node of an HSP tree. Then

Claim 1: v is a repetitive node,

Claim 2: pre-/appending characters cannot change v’s surname, and

Claim 3: the generated substring of v is always a prefix of the generated substring of an already

existing node belonging to the same meta-block as v .

Proof. To show the lemma, let n > ΔL + ΔR, otherwise, there are no surrounded nodes. There
are two (non-exclusive) possibilities for a node to be fragile and surrounded:

• it belongs to the last two nodes built on a repeating meta-block (due to Corollary 2.9), or
• its subtree contains a fragile surrounded node, since by definition,

—a node is fragile if it contains a fragile node in its subtree, and
—all nodes in the subtree of a surrounded node are surrounded.

We iteratively show the claim for all heights, starting at the bottom: Let v be one of the lowest

fragile surrounded nodes in HT(Y) (lowest meaning that there is no fragile node in v’s subtree).
Suppose that v is a node on height h + 1 with h ≥ 0. Since there is no fragile surrounded node
in v’s subtree, v is one of the last two nodes built on a repeating meta-block 〈Y 〉h[μ] (i.e., Y [μ]
for h = 0). Due to Fact 3, Claim 1 holds for v ; let Z be its surname. Since v is fragile, b(μ) ≤ 3
must hold (otherwise, we get a contradiction to Lemma 2.8). But, since v is surrounded, there is a
repetitive node u with surname Z preceding v that is built on three symbols (D(u) ∈ Σ3

h
) of μ due

to Corollary 3.2. In particular, the leftmost repetitive node s of μ is not surrounded.
We only consider prepending a character (appending is already considered in Lemma 3.3). As-

sume that v’s name changes when prepending a specific character. By Fact 1, the HSP technique
assigns a new name to v , but it does not change its surname (so Claim 2 holds for v). Addition-
ally, string(v) is a substring of string(u), where u is one of v’s preceding nodes having the sur-
name Z, and therefore Claim 3 holds forv . For example, letv be the node with name a7 in HT(Y) of
Figure 18, then string(v) = a7, which is a prefix of string(a9) = a9. After prepending the character
a, v’s name becomes a8 with string(v) = a8. Still, string(v) is a prefix of string(a9).

Due to this behavior, the node v is always assigned to μ, regardless of what character is
prepended. It is only possible to extend or shorten μ on its left side, or equivalently, μ’s right
end is fixed; the parsing of a meta-block succeeding μ cannot change. Put differently, the parsing
assures that every surrounded node located to the right of 〈Y 〉h[μ] is (semi-)stable. We conclude
that the claim holds for the heights 1, . . . ,h + 1.

Next, we show that the claim holds for all height h + 2, . . . ,h′, where h′ + 1 is the height of
the lowest common ancestor (LCA) w of s and v . Figure 23 gives a visual representation of the
following observations: When following the nodes from v up to w , there is a path of ancestor
nodes with surname Z. Except for w , each such ancestor node u ′ has a neighbor with surname Z.
On changing the name of v , all nodes on the height of u ′ are unaffected, except u ′; that is because
the ancestor of s on the same height as u ′ is put with u ′ in the same repeating meta-block, which
comprises all neighboring nodes with surname Z. By the analysis above, changing the name of u ′

cannot change the parsing of the other nodes on the same height. We conclude that the claim holds
for the heights h + 2, . . . ,h′.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:22 J. Fischer et al.

Fig. 23. Sketch of the HSP tree used to show Lemma 3.4. In the sketch, we give the repetitive nodes of
the meta-block ν the surname Y. Repetitive nodes are labeled with their surnames, which are put into
parentheses.

Let us focus on the nodes on height h′ + 1: The node w is not surrounded, because it contains
the non-surrounded node s in its subtree. Having neighbors with different surnames, w is either
blocked in a Type 2 or Type M meta-block.

• In the former case (Type 2), the analysis of Lemma 2.7 shows thatw only affects the parsing
of the non-surrounded nodes. There can be a non-surrounded meta-block on a height h′′ >
h′ + 1 having a fragile surrounded node v ′. But then v ′ cannot contain a fragile node (the
descendants of w are the last fragile surrounded nodes, and w is non-surrounded). Hence,
we can apply the same analysis to v ′ as for v .

• In the latter case (Type M), w is fused with a repeating meta-block to form a Type M meta-
block ν , changing the names of the leftmost and two rightmost nodes of ν , where the left-
most node isw . Assume that the two rightmost nodes of ν are fragile and surrounded (oth-
erwise, we conclude with the previous case that there are no fragile surrounded nodes on
height h′ + 1). Under this assumption, the rightmost nodes of ν are repeating nodes due to
Fact 3. Hence, we can apply the same analysis as forv and conclude the claim for all heights
above h′. �

A direct consequence is that there are O (1) fragile surrounded nodes on each height. We can
adapt the result of Lemma 2.11 to HSP trees and obtain the following theorem:

Theorem 3.5. The HSP tree HT(Y) of a stringY of length n contains at most O (lg∗ n) fragile nodes

on each height.

Having a bound on the number of fragile nodes, we start to study the algorithmic operations of
an HSP tree. The first operation is how to actually build an HSP tree. For that, we have to think
about its representation:

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:23

3.2 Tree Representation

Unlike Cormode and Muthukrishnan, who use hash tables to represent the dictionaryD, we follow
a deterministic approach. In our approach, we represent D by storing the HSP tree as a CFG. A
name (i.e., a non-terminal of the CFG) is represented by a pointer to a data field (an allocated
memory area), which is composed differently for leaves and internal nodes:

Leaves. A leaf stores a position i and a length � ∈ {2, 3} such that Y [i . . i + � − 1] is the gen-
erated substring.

Internal nodes. An internal node stores the length of its generated substring and the names
of its children. If it has only two children, we use a special, invalid name ⊥ for the non-
existing third child such that all data fields are of the same length.

This information helps us to navigate from a node to its children or its generated substring in
constant time and to navigate top-down in the HSP tree by traversing the tree from the root in
time linear in the height of the tree.

To accelerate substring comparisons, we want to give nodes with the same children (with respect
to their order and names) the same name, such that the dictionary D is injective. To keep the
dictionary injective, we do the following: Before creating a new name for the rule b → xyz (we
set z = ⊥ if the rule is b → xy), we check whether there already exists a name for xyz. To perform
this lookup efficiently, we need also the reverse dictionary of D, with the right-hand side of the
rules as search keys. We want the reverse dictionary to be of size O (|Y |), supporting lookup and
insert in O (tlook) (deterministic) time for a tlook = tlook (n) depending on n. For instance, a balanced
binary search tree has tlook = O (lgn).

With this tree representation, we can build HSP trees within the following time and space
bounds:

Lemma 3.6. The HSP tree HT(Y) of a string Y of length n can be built in O (n(lg∗ n + tlook)) time.

It takes O (n) words of space.

Proof. A name is inserted or looked up in tlook time. Due to the alphabet reduction technique
(see Lemma 2.1), applying esp on a substring of length � takes O (� lg∗ n) time, returning a sequence
of blocks of length at most �/2. �

3.3 LCE Queries with HSP Trees

The idea of devising LCE data structures based on the alphabet reduction is not new. Alstrup et al.
[1, Theorem 2] considered building signature encoding parse trees on a set of strings such that the
LCP of two strings of this set can be computed efficiently. Nishimoto et al. [32, Lemma 10] enhanced
these parse trees with an algorithm computing LCE queries. Similar to these two approaches,
we show that HSP trees are also good at answering LCE queries. The common idea of all LCE
algorithms is to compare the names of two nodes to test whether the generated substrings of
both nodes are the same. Remembering that two nodes with the same generated substring can
have different names (cf. Section 2.3.1 and Figure 9), we want to have a rule at hand saying when
two nodes with different names must have different generated substrings. It is easy to provide
such a rule when the input string is square-free: In this case, all fragile nodes are non-surrounded
according to Lemma 2.5, and thus, we know that the surrounded nodes are stable. Since each
height consists of exactly one Type 2 meta-block, the equality of two substrings X and Y can be
checked by comparing the names of two surrounded nodes whose generated substrings are X
and Y , respectively. For general strings, we need to enhance this rule for repeating nodes; that is
because the names of two repeating nodes at the same height already differ when the generated
substring of one node is a proper prefix of the generated substring of the other node. Our idea (and

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:24 J. Fischer et al.

Fig. 24. Conception of the proof of Lemma 3.7. To compute the LCP of X [iX . .] and Y [iY . .] (arrow in the
center), we walk down the trees HT(X) and HT(Y) (depicted by the upper and the lower triangle, respectively)
on the paths towards the leaves containing X [iX] and Y [iY], respectively, by simultaneously visiting two
nodes on the same height of both trees. In this figure, each of these paths is depicted by a sequence of
green arrows. The nodes u and v are on these paths. Suppose they are on the same height and have the
same surname. On visiting both nodes, we know that the LCP is at least min(��string(u)�� , ��string(v)��) long.
We update the destination of our traversal accordingly, such that we follow the paths from u and v to the
leaves covering the not-yet checked parts of the LCP that we want to compute.

here our approach differs from References [1, 32]) is to compare two nodes not by their names but
by their surnames and surname-lengths (we use the property described in Fact 2 of Section 3.1).
With that idea, we explain how HSP trees can answer LCE queries efficiently. For that, we assume
that all HSP trees have a common dictionary D that additionally stores the length of the string

D(h) (Z) for each name Z ∈ Σh ,

Lemma 3.7. Given HT(X) and HT(Y) built on two stringsX andY with |X | ≤ |Y | ≤ n and two text

positions 1 ≤ iX ≤ |X | , 1 ≤ iY ≤ |Y |, we can compute lcp(X [iX . .],Y [iY . .]) in O (lgn lg∗ n) time.

Proof. We use the following property: If two nodes have the same surname Z, then the gener-
ated substrings of both nodes are Z i and Z j , respectively, with the respective surname-lengths i
and j, where Z = string(Z). In such a case, the generated substring of one node is a prefix of the
generated substring of the other. In the particular case i = j, both nodes share the same subtree
and consequently have the same name according to Lemma 3.1. In summary, this property allows
us to omit the comparison of the subtrees of two nodes with the same surname, and thus speeds
up the LCE computation, which is done in the following way (cf. Figure 24):

(1) We start with traversing the two paths from the roots of HT(X) and HT(Y) to the leaves λX

and λY whose generated substrings contain 〈X 〉0[iX] and 〈Y 〉0[iY], respectively:
(2) We traverse the two paths leading to the leaves λX and λY , respectively, in a simultaneous

manner such that we always visit a pair (u,v) of nodes on the same height belonging to
HT(X) and HT(Y), respectively.

(3) Given that u andv share the same surname Z ∈ Σh , we know the lengths of their generated

substrings (�u |D(h) (Z) | and �v |D(h) (Z) |) by having their surname-lengths �u and �v at hand.
Given that iu and iv are the starting positions of string(u) and string(v), we know that
X [iX . .] and Y [iY . .] have a common prefix of at least

min
(
�u |D(h) (Z) | − (iu − iX), �v |D(h) (Z) | − (iv − iY)

)
. (1)

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:25

We update the variables λX and λY to be the leaves whose generated substrings contain

〈X 〉0[iu + �u |D(h) (Z) |] and 〈Y 〉0[iv + �v |D(h) (Z) |], respectively.4 Subsequently, we continue
our tree traversals from u and v to the updated destinations λX and λY , respectively. Since
λX and λY are no longer in the respective subtrees of u and v , we climb up the tree to the
LCA of u (respectively, v) and λX (respectively, λY), and recurse on (2).

(4) If we end up at a pair of leaves (i.e., u = λX and v = λY), we compare their generated sub-
strings naïvely. If we find a mismatching character in both generated substrings, we can
determine the value of � and terminate. We also terminate if there is no mismatch, but λX

or λY is the rightmost leaf of HT(X) or HT(Y), respectively. In all other cases, we set λX and
λY to their, respectively, succeeding leaves, climb up to the parents of u and v , and recurse
on (2).

During the traversals of both trees, we spend constant time for each navigational operation, i.e.,
(a) selecting a child, and (b) climbing up to the parent of a node: On the one hand, we select a child
of a node v in constant time by following the pointer of the name of v (defined in Section 3.2).
On the other hand, we maintain, for each tree, a stack storing all ancestors of the currently visited
node during the traversal of the respective tree: Each stack uses O (lgn) words and can return the
parent of the currently visited node in constant time.

To upper bound the running time of the traversals, we examine the nodes visited during the
traversals. Starting at both root nodes, we follow the path from the root of HT(X) (respectively,
HT(Y)) down to the roots of the minimal subtree TX of HT(X) (respectively, TY of HT(Y)) covering
X [iX . . iX + �] (respectively,Y [iY . . iY + �]).

5 After entering the subtrees TX and TY , we will never
visit nodes outside of TX and TY . The question is how many nodes of TX and TY differ. This can be
answered by studying the tree HT(Z) built with the same dictionary D, where Z := X [iX . . iX +
� − 1] = Y [iY . . iY + � − 1]. On the one hand, HT(Z) has O (lg∗ n) fragile nodes on each height
according to Theorem 3.5. On the other hand, each (semi-)stable node in HT(Z) is found in both TX
andTY with the same name and surname. Consequently, when traversing HT(X) and HT(Y) within
their respective subtrees TX and TY , we only visit O (lg∗ n) pairs of nodes per height (remember
that we follow the two paths to the leaves λX and λY , respectively, up to the point where the
surnames of the visited pair of nodes match).

To sum up, we (a) compute paths from the roots to 〈X 〉0[iX] and 〈Y 〉0[iY], respectively, in
O (lg |Y |) time, and (b) we compare the children of at most O (lg∗ n) nodes per height. Since both
trees have a height of O (lg |Y |), we obtain our claimed running time. �

The following corollary is a small refinement of Lemma 3.7, which already shows the result of
Theorem 1.3 for τ = 1:

Corollary 3.8. We can endow an HSP tree of a string of length n in O (n) time with an O (n)
words data structure that has the following properties: Given two HSP trees HT(X) and HT(Y) built on

two strings X and Y with |X | ≤ |Y | ≤ n, we can compute � := lcp(X [iX . .],Y [iY . .]) in O (lg � lg∗ n)
time if both trees are endowed with this data structure, where iX and iY are two text positions with

1 ≤ iX ≤ |X | and 1 ≤ iY ≤ |Y |.
Proof. Our idea is to endow an HSP tree with a data structure such that climbing up from a

child to its parent can be performed in constant time. This can be achieved when we represent the

4Instead of selecting the leaves whose generated substrings start at the end of the common prefix calculated in Equation (1),

we bookkeep the difference between �u |D(h) (Z) | − (iu − iX) and �v |D(h) (Z) | − (iv − iY).
5We assume that iX + � ≤ |X | and iY + � ≤ |Y | such that TX and TY cover the mismatching pair of characters X [iX +

�] � Y [iY + �]. Otherwise, (iX + � − 1 = |X | or iY + � − 1 = |Y |), let TX and TY cover X [iX . . iX + � − 1] and Y [iY . .

iY + � − 1], respectively.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:26 J. Fischer et al.

tree topology of an HSP tree with a pointer-based tree, in which each node stores its name and
the pointer to its parent. The leaves are stored sequentially in a list. A bit vector with the same
length as the input string is used to mark the borders of the generated substrings of the leaves.
Given a text position i , we can access the leaf whose generated substring contains i in constant
time with a rank-support on the bit vector. The bit vector with rank-support takes n + o(n) bits.
The pointer-based tree can be built in O (n) time and takes O (n) words of space. �

In the next section, we describe a preliminary version of our sparse suffix sorting algorithm that
does not exploit the text space yet.

4 SPARSE SUFFIX SORTING

The sparse suffix sorting problem asks for the order of suffixes starting at certain positions in a
text T . In our case, these positions only need be given online, i.e., sequentially and in an arbitrary
order. We collect them conceptually in a dynamic set P with m := |P |. The online sparse suffix
sorting problem is to keep the suffixes starting at the positions stored in P in sorted order. Due to
the online setting, we represent the order of Suf (P) by a dynamic, self-balancing binary search
tree (e.g., an AVL tree). Each node of the tree is associated with a distinct suffix in Suf (P); the
lexicographic order is used as the sorting criterion.

The technique of Irving and Love [22] augments an AVL tree on a set of strings S with the
lengths of LCPs so �Y := max{lcp(X ,Y) | X ∈ S} can be computed in O (�Y /logσn + lg |S|) time
for a string Y , where the division by logσ n is due to the word-packing technique. Inserting a new
string Y into the tree is supported in the same time complexity (�Y is defined as before). Irving and
Love called this data structure the suffix AVL tree on S; we denote it by SAVL(S).

Remembering Section 1.2, our goal is to build SAVL(Suf (P)) efficiently. However, inserting
m suffixes naïvely takes Ω(|C|m/logσn +m lgm) time. How to speed up the comparisons by ex-
ploiting a data structure for LCE queries is the topic of this section.

4.1 Abstract Algorithm

Starting with an empty set of positions P = ∅, our algorithm incrementally updates SAVL(Suf (P))
on the input of every new text position, involving LCE computations between the new suffix and
suffixes already stored in SAVL(Suf (P)). A crucial part of the algorithm is performed by these
LCE computations, for which an LCE data structure is advantageous to have. In particular, we
are interested in a mergeable LCE data structure that is mergeable in such a way that the merged
instance answers queries faster than performing a query on both former instances separately. We
call this a dynamic LCE data structure (dynLCE); it supports the following operations:

• dynLCE(I) constructs a dynLCE data structure M on the substringT [I]. Let M .ival denote
the interval I, which is the interval in the text T on which dynLCE(I) can answer LCE
queries:

• lce(M1,M2,p1,p2) computes lce(p1,p2), where pi ∈ Mi .ival for i = 1, 2.
• merge(M1,M2) merges two dynLCEs M1 and M2 such that the output is a dynLCE built on

the string concatenation of T [M1.ival] and T [M2.ival].

We use the expression tC (|I |) to denote the construction time of such a data structure on the
substringT [I]. We assume that the construction of dynLCE(I) takes at least as long as scanning
all characters on Y , i.e.,

Property 1: tC (|I |) = Ω(|I | / logσ n).

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:27

We use the expressions tQ (|X | + |Y |) and tM (|X | + |Y |) to denote the time for querying and
the time for merging two such data structures built on two given strings X and Y , respectively.
Querying two dynLCEs for a length � is at least as fast as the word-packed character comparison
if and only if � = Ω(tQ (�) logσ n).6 Hence, we obtain the following property:

Property 2: A dynLCE on a text smaller than д � Θ(tQ (д) logσ n) is always slower
than the word-packed character comparison.

In the following, we build dynLCEs on substrings of the text. Each interval of the text that
is covered by a dynLCE is called an LCE interval. The LCE intervals are maintained in a self-
balancing binary search treeL of sizeO (m). The treeL stores the starting and the ending positions
of each LCE intervaland uses the starting positions as keys to answer the queries

(1) whether a position is covered by a dynLCE, and
(2) where the next text position starts that is covered by a dynLCE,

in O (lgm) time. Additionally, each LCE interval is assigned to one dynLCE data structure (a
dynLCE can be assigned to multiple LCE intervals) such that L also returns a dynLCE that covers
the position returned by query (2) above. This is done by augmenting an LCE interval I with
a pointer to its dynLCE data structure M , and with an integer i such that T [M .ival ∩ [i . . i +
|I | − 1]] = T [I] (since M could be built on a text interval M .ival � I that contains an occurrence
of T [I]).

Given a new position p̂ � P with 1 ≤ p̂ ≤ |T |, updating SAVL(Suf (P)) to SAVL(Suf (P ∪ {p̂}))
involves two parts: first locating the insertion node for p̂ in SAVL(Suf (P)) and then updating the
set of LCE intervals.

Locating. Finding the insertion point of p̂ involves an LCE computation for each node encoun-
tered in SAVL(Suf (P)). Suppose that the task is to compare the suffixesT [i . .] andT [j . .] for two
text positions i and j with 1 ≤ i, j ≤ |T |. We perform the following steps to compute lce(i, j):

(1) Check whether the positions i and j are contained in an LCE intervalin O (lgm) time with
the search tree L.
• If both positions are covered by LCE intervals, then query the respective dynLCEs for

the length � of the LCE starting at i and j. Increment i and j by �. Return the number of
compared characters on finding a mismatch while computing the LCE.

• Otherwise (if i or j are not contained in an LCE interval), find
the smallest length � such that i + � and j + � are covered by
LCE intervals. Increment i and j by � and naïvely compare �
characters. Return the number of compared characters on a
mismatch.

(2) Return the total number of matched positions if a mismatch is found in (1). Otherwise,
repeat the above check again (with the incremented values of i and j).

After locating the insertion point of p̂ in SAVL(Suf (P)), we obtain

p̄ := mlcparg(p̂) and � := mlcp(p̂)

6We assume that tQ (�) is sub-linear in �.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:28 J. Fischer et al.

Fig. 25. Sketch of two LCE intervals with Properties 3 to 5.

as a byproduct, where

mlcparg(p) := argmax
p′ ∈P,p�p′

lcp(T [p . .],T [p ′ . .])

and

mlcp(p) := lcp(T [p . .],T [mlcparg(p) . .])

for each text position p with 1 ≤ p ≤ |T |. We insert p̂ into SAVL(Suf (P)) and use the position p̄
and the length � to update the LCE intervals.

Updating. The LCE intervals are updated dynamically, subject to the following properties (see
Figure 25):

Property 3: The length of each LCE interval is at least д (defined in Property 2).
Property 4: For every p ∈ P, the interval [p . . p +mlcp(p) − 1] is covered by an LCE

interval, except at most д positions at its left and right ends.
Property 5: There is a gap of at least д positions between every pair of LCE intervals.

After adding p̂ toP, we perform the following instructions to satisfy the properties: If � ≤ 2д, we
do nothing, because all properties are still valid (in particular, Property 4 still holds). Otherwise, we
need to restore Property 4. There are at most two positions in P that possibly invalidate Property 4
after adding p̂, and these are p̂ and p̄ (otherwise, by transitivity, we would have created a longer
LCE interval previously).

We introduce an algorithm that does not restore Property 4 directly, but first ensures that

Property 4+: the intervals~[p̂ . . p̂ + � − 1] and [p̄ . . p̄ + � − 1] are covered by one or
multiple LCE intervals.

In the following, we first process the LCE intervals to satisfy Property 4+ and then subsequently
to satisfy Property 5. When Property 4+ and Property 5 are satisfied, then Property 4 is also satis-
fied. We can satisfy Property 4+ with the following steps: LetU ⊂ [1 . . n] be the set of all positions
that belong to an LCE interval. The set [p̂ . . p̂ + � − 1] \U can be represented as a set of disjoint in-
tervals of maximal length. For each interval I := [p̂ + i . . p̂ + j] ⊂ [p̂ . . p̂ + � − 1] of that set, apply
the following rules with J := [p̄ + i . . p̄ + j] (for integers i, j with 0 ≤ i ≤ j ≤ � − 1, see Figure 26):

Rule 1: If J is a sub-interval of an LCE interval K ,then declare I as an LCE interval
and let it refer to the dynLCE of K .

Rule 2: If J intersects with an LCE interval K ,enlarge the dynLCE on T [K] to
coverT [K ∪ J] (create a dynLCE onT [J \ K] and merge it with the dynLCE
on T [K]). Then apply Rule 1.

Rule 3: Otherwise (there is no LCE interval K with J ∩K � ∅), create dynLCE(J),
and make I and J to LCE intervals referring to dynLCE(J).

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:29

Fig. 26. Application of Rules 1 to 4 for preserving the properties. The interval I := [p̂ + i . . p̂ + j] is not yet
covered by an LCE interval, but is contained in [p̂ . . p̂ + � − 1]—a conflict with Property 4. The conflict is
resolved based on the LCE intervals covering the positions of J := [p̄ + i . . p̄ + j]. The intervals with the

blue horizontal lines () are the LCE intervals, and the intervals with the diagonal red lines () are the
intervals of [p̂ . . p̂ + � − 1] \U . Here, J intersects with an LCE interval K . This case is treated in Rule 2.

We repeat the application of the rules above until we finally satisfy Property 4+. However, Rule 1
or Rule 3 can create LCE intervals shorter than д, violating Property 3. By construction, such short
LCE intervals are adjacent to other LCE intervals (the rules compute a cover of [p̂ . . p̂ + � − 1]
and [p̄ . . p̄ + � − 1] with LCE intervals). This means that we can restore Property 3 by restoring
Property 5. We do that by applying the following rule after the above process:

Rule 4: Merge a newly created or merged LCE interval violating Property 3 with its
nearest LCE interval (ties can be broken arbitrarily). Recurse until no
merge occurs.

This finally restores Property 4 (since Property 4+ and Property 5 hold). As a result, we have
introduced at most two7 new LCE intervals that cover the intervals [p̂ + д . . p̂ + � − 1 − д] and [p̄ +
д . . p̄ + � − 1 − д], respectively, to satisfy Properties 3 to 5. The running time of this algorithm is
analyzed in the following lemma:

Lemma 4.1. Given a textT of length n and a set ofm arbitrary positions P inT , the suffix AVL tree

SAVL(Suf (P)) with the suffixes ofT starting at the positions P can be computed deterministically in

O (tC (|C|) + tQ (|C|)m lgm + tM (|C|)m) time.

Proof. The analysis is split into managing the dynLCEs and the LCE queries:

• We build dynLCEs on substrings covering at most |C| characters of the text, taking at most
tC (|C|) time for constructing all dynLCEs. During the construction of the dynLCEs, we
spend O (|C| /logσn) = O (tC (|C|)) time on character comparisons due to Property 1.

• The number of merge operations on the LCE intervals is upper bounded by 2m in total,
since we create at most two new LCE intervals for every position in P. In total, we spend
at most 2 tM (|C|)m time for the merging.

• The algorithm performs O (m lgm) LCE queries. LCE queries involve either (a) character
comparisons or (b) querying a dynLCE.

(a) On the one hand, the overall time for the character comparisons is bounded by
O (tC (|C|) + tQ (|C|)m lgm):

7The number of new LCE intervals could be indeed two: Although p̄ ∈ P, we would not have created an LCE interval

covering [p̄ + д . . p̄ + �̄ − 1 − д] if mlcp(p̄) was smaller than д at the time when we inserted p̄ in P with �̄ := mlcp(p̄).

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:30 J. Fischer et al.

—By Property 4, all substrings T [p . . p +mlcp(p) − 1] are covered by an LCE inter-
val, except at most at 2д positions.8 This means that all substrings that are not
covered by an LCE interval, but have been subject to a character comparison, are
shorter than 2д. For a character comparison with one of those substrings, we spend
at most O (дm lgm/logσn) = O (tQ (д)m lgm) = O (tQ (|C|)m lgm) time. In the case that
д > |C|, we do not create any LCE interval, and we spend O (дm lgm/logσn) =
O (tQ (|C|)m lgm) overall time due to Property 2.

—If we compare more than д characters for an LCE query, we create at most two LCE
intervals, possibly involving the construction of dynLCEs on the compared substrings.
The construction of a dynLCE on an interval I takes tC (|I |) = Ω(|I | /logσn) time due
to Property 1. Hence, the time needed for character comparisons is O (|I | /logσn) =
O (tC (|I |)). This sums up to O (tC (|C|)) total time spent on character comparisons of
substrings longer than д characters.

(b) However, querying the dynLCEs takes at most O (tQ (|C|)m lgm) overall time. Suppose
that we look up d < δ LCE intervals for an LCE query, where δ < 2m is the total number
of LCE intervals. Since we look up an LCE interval in O (lgm) time with L, we spend
O (d lgm) time on the lookups during this LCE query. However, we subsequently merge
all d looked-up LCE intervals, reducing the number of LCE intervals δ by d − 1. Conse-
quently, we perform a lookup of an LCE interval at most 2m times in total. �

The last step is to compute SSA := SSA(T ,P) and SLCP := SLCP(T ,P) from SAVL(Suf (P))
by traversing SAVL(Suf (P)) and performing LCE queries on the already computed dynLCEs:
The SAVL(Suf (P)) is a binary search tree storing all elements of Suf (P) in lexicographically
sorted order. Consequently, we can compute SSA with an in-order traversal of SAVL(Suf (P)). Af-
terwards, we compute SLCP[i] = lce(SSA[i], SSA[i − 1]). If the text positions [SSA[i] . . SSA[i] +
SLCP[i] − 1]] and [SSA[i − 1] . . SSA[i − 1] + SLCP[i] − 1]] are not covered by an LCE inter-
val, then SLCP[i] = O (д) due to Property 3, and we spend at most O (д/logσn) time on com-
puting SLCP[i] by character comparisons. Otherwise, we spend O (д/logσn + tQ (SLCP[i])) =
O (tQ (SLCP[i])) time by querying a single dynLCE due to Property 4. Querying whether both text
intervals are covered by a dynLCE costs O (lgm) time with L. In total, we can compute SLCP[i]
for each integer i with 2 ≤ i ≤ m in O (tQ (|C|)m lgm) time, since O (д/logσn) = O (tQ (д)) due to
Property 2. The following corollary of Lemma 4.1 summarizes the achievements of this section:

Corollary 4.2. Given a textT of length n that is loaded into RAM, the SSA and SLCP ofT for a set

ofm arbitrary positions can be computed deterministically in O (tC (|C|) + tQ (|C|)m lgm + tM (|C|)m)
time. We need O (m) words of space and the space to store instances of dynLCE on |C| positions.

4.2 Sparse Suffix Sorting with HSP Trees

We show that the HSP tree is a dynLCE data structure. Remembering that the algorithm from Sec-
tion 4.1 depends on the merging operation of dynLCE, we now introduce the merging of HSP
trees. A naïve way to merge two HSP trees HT(X) and HT(Y) is to build HT(XY) completely
from scratch. Since only the fragile nodes of HT(X) and HT(Y) can change when merging both
trees, a more sophisticated approach would reparse only the fragile nodes of both trees. Using the
properties studied in Section 2.4, we show such an approach in the following lemma:

8If mlcp(p) < 2д, there is no need to cover T [p . . p +mlcp(p) − 1] by an LCE interval due to Property 4. Otherwise, we

do not need to cover its first and last д positions.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:31

Fig. 27. Merging HT(X) and HT(Y).
Given that both trees contain only
Type 2 nodes, it suffices to apply the
parsing on the ΔR rightmost nodes
and ΔL leftmost nodes of HT(X)
and HT(Y), respectively, to obtain
HT(XY).

Lemma 4.3. Merging HT(X) and HT(Y) of two strings X ,Y ∈ Σ∗ into HT(XY) takes

O (tlook (ΔR lg |X | + ΔL lg |Y |)) time, where tlook is the lookup and insertion time for the reverse dictio-

nary defined in Section 3.2.

Proof. First assume that HT(X) and HT(Y) only contain Type 2 nodes. In this case, we examine
the rightmost nodes of HT(X) and the leftmost nodes of HT(Y) from the bottom up to the root: At
each height h, we merge the nodes 〈X 〉h and 〈Y 〉h to 〈XY 〉h by reparsing the ΔR rightmost nodes of
〈X 〉h and the ΔL leftmost nodes of 〈Y 〉h (see Figure 27). By doing so, we reparse all nodes of HT(X)
(respectively, HT(Y)) whose local surrounding on the right (respectively, left) side does not exist.
Nodes of HT(X) (respectively, HT(Y)) that have a local surrounding on the right (respectively,
left) side are not changed by the parsing. In total, we spend O (tlook (ΔR lg |X | + ΔL lg |Y |)) time on
merging two trees consisting of Type 2 nodes.

Next, we allow repeating nodes. Lemma 3.3 shows that there are no fragile surrounded nodes
in HT(X) that need to be fixed. The remaining problem is to find and recompute the surrounded
nodes in HT(Y) whose names change on merging both trees. The lowest of these nodes belong to
a repeating meta-block due to Lemma 2.4 and Corollary 2.9. To find this meta-block, we adapt the
strategy of the first paragraph considering only Type 2 meta-blocks. On each height h, we reparse
the ΔL leftmost nodes of 〈Y 〉h . If the rightmost of these ΔL nodes are contained in a repeating
meta-block μ that does not end within those ΔL leftmost nodes, chances are that the names of
some nodes in μ change. Due to Corollary 2.9, it is sufficient to reparse the two rightmost nodes
of μ. This is done as follows (cf. Figure 28):

(1) Take the leftmost repetitive node s of μ (which exists due to Corollary 3.2 and is one of the
ΔL + 1 leftmost nodes on height h).

(2) Given that s has the surname Z, climb up the tree to find the highest ancestor u with sur-
name Z. The ancestor u is the LCA of s and the rightmost repetitive node of μ.

(3) Walk down from u to the rightmost nodes of μ.
(4) Reparse μ’s two rightmost nodes.
(5) Reparse all ancestors of these two nodes that are surrounded.
(6) Check whether the reparsed ancestors invalidate the parsing of their meta-blocks; fix the

parsing for those meta-blocks recursively.

Climbing up to find u and walking down to the rightmost nodes of μ takes O (tlook lg ��μ��) =
O (tlook lg(n/2h)) time, reparsing the surrounded ancestor nodes of the two rightmost nodes of μ
takes O (tlook lg(n/2h)) time. Given that the highest nodes of this reparsing are on a height h′ > h,
Lemma 3.4 states that up to the height h′ + 1, there is no need to reparse a fragile surrounded node
(we follow the paths of fragile nodes as depicted in Figure 23). Given that there are μ1, . . . , μk such

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:32 J. Fischer et al.

Fig. 28. Reparsing of fragile surrounded nodes during a merging operation. The lowest fragile surrounded
nodes that need to be reparsed belong to a meta-block μ whose leftmost nodes are non-surrounded. Given
that the repetitive nodes of μ have the surname Z, we can access all fragile nodes of μ by climbing up from
the leftmost repetitive node s of μ to the highest node u with surname Z and subsequently descending down
to the rightmost repetitive nodes of μ in O (lg ��μ��) time.

meta-blocks (for which we apply Steps 1 to 6), we have O (tlook
∑k

i=1 lg ��μi
��) = O (tlook lgn) due to∑k

i=1 lg ��μi
�� ≤ lgn. Hence, we spend O ((ΔL + ΔR)tlook lg |Y |) time overall. �

The following theorem combines the results of Corollary 4.2 and Lemma 4.3.

Theorem 4.4. Given a textT of lengthn and a set ofm text positionsP, SSA(T ,P) and SLCP(T ,P)
can be computed in O (|C| (lg∗ n + tlook) +m lgm lgn lg∗ n) time, using O (n +m) words of space.

Proof. We have

• tC (|C|) = O (|C| (lg∗ n + tlook)) due to Lemma 3.6,
• tQ (|C|) = O (lg∗ n lgn) due to Lemma 3.7, and
• tM (|C|) = O (tlook lgn lg∗ n) due to Lemma 4.3.

Actually, the time cost for merging is already upper bounded by the cost for the tree creation.
To see this, let δ ≤ 2m be the number of LCE intervals. Since each LCE interval covers at least д
characters, δ is at most |C| /д, and we obtain δ tM (|C|) = O (|C| tM (|C|)/д) = O (|C| tlook) overall
time for merging, where д = Θ(tQ (|C|) lgn/ lgσ) = Θ(lg∗ n lg2 n/ lgσ). Plugging the times tC (|C|),
tQ (|C|), and the refined analysis of the merging time cost in Corollary 4.2 yields the claimed time
bounds. �

5 SPARSE SUFFIX SORTING IN TEXT SPACE

Remembering the outline in the introduction, the key idea to solve the limited space problem is
storing dynLCEs in text space. Taking two LCE intervals of the text containing the same substring,
we free up the space of one part while marking the other part as a reference. The freed space could
be used to store an HSP tree whose leaves refer to substrings of the other LCE interval. By doing
so, we could use the text space for storing the HSP trees while using only O (m) additional words
for storing SAVL(Suf (P)) and the search tree L of the LCE intervals. However, an HSP tree built
on a string of length n takes O (n lgn) bits, while the string itself provides only n lgσ bits. Our
solution is to truncate the HSP tree at a fixed height η, discarding the nodes in the lower part. The
truncated version tHTη (Y) stores just the upper part, while its new leaves refer to (possibly long)

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:33

Fig. 29. Theη-truncated HSP tree tHTη (Y) of the substringY defined in Figure 7 withη = 2. Like in Figure 22,
the lower nodes are grayed out. An η-node is a leaf in tHTη (Y) and has a generated substring with a length
between four and nine.

substrings of Y . The resulting tree is called the η-truncated HSP tree (tHTη), whose definition
follows:

5.1 Truncated HSP Trees

We define a height η and delete all nodes at heights less than η, which we call lower nodes. A node
higher than η is called an upper node. The nodes at height η form the new leaves and are called
η-nodes. Similar to the former leaves, their names are pointers to their generated substrings ap-
pearing inY . Remembering that each internal node has two or three children, an η-node generates
a string of length at least 2η and at most 3η . The maximum number of nodes in an η-truncated
HSP tree of a string of length n is n/2η . Figure 29 shows an example with η = 2.

Similar to leaves in untruncated HSP trees, we use the generated substring X of an η-node v
for storing and looking up v : While the leaves of the HSP tree have a generated substring of
constant size (two or three characters), the generated substring of an η-node can be as long as
3η . Storing such long strings in a binary search tree representing the reverse dictionary of D is
inefficient; it would need O (� lgσ) time for a lookup or insertion of a key of length �. Instead, we
want a dictionary data structure storing O (|Y |) elements in O (|Y |) words of space,9 supporting
lookup and insert in O (tlook + �/logσn) time for a key of length �. For instance, Franceschini and
Grossi’s data structure [13] with word-packing supports the desired time and space bounds with
tlook = O (lgn).

Lemma 5.1. We can build an η-truncated HSP tree tHTη (Y) of a stringY of length n in O (n(lg∗ n +
η/logσn + tlook/2

η)) time using O (3η lg∗ n) words of working space. The tree takes O (n/2η) words of

space.

Proof. Instead of building the HSP tree level-by-level, we compute the η-nodes one after an-
other, from left to right. We can split the parsing of the whole string into several parts. Each part
computes one η-node.

First assume that tHTη (Y) only contains Type 2 nodes. Then the name of an η-node v is deter-
mined by v’s local surrounding (as far as it exists) due to Lemma 2.4. Thus, it is sufficient to keep
v’s local surrounding at height η − 1, which we denote by Xv , in memory. Xv is a string of lower
nodes. To parse a string of lower nodes by HSP, we have to give each lower node a name. Unfor-
tunately, storing the names of all lower nodes in a dictionary would take too much space. Instead,

9The data structure is not necessarily stored in consecutive space like an array.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:34 J. Fischer et al.

we create the name of a lower node temporarily by setting the name of a lower node to its gener-
ated substring. A drawback is that we cannot retrieve their names later. Luckily, we only need the
names of the lower nodes for constructing Xv . We construct Xv as follows: Given that we parsed
the local surrounding ofv at height h (0 ≤ h ≤ η − 3) with HSP, we store the borders of the blocks
on height h + 1 in an integer array such that we can access the name (i.e., the generated substring)
of the ith block on height h + 1. With this integer array, we can parse the blocks on height h + 1
to obtain the blocks on height h + 2, whose borders are again stored in an integer array. Having
the borders of the blocks on height h + 2, we can remove the integer array on height h + 1. The
blocks on height η − 1 are the nodes of Xv .

In the general case (when tHTη (Y) contains repeating nodes), it can happen that the name of a
greedily parsed node (i.e., a repeating node or one of the ΔL leftmost nodes of a Type 2 meta-block)
depends not necessarily on its local surrounding, but on the length of its repeating meta-block, its
surname, and its children (in case of a Type M node). This means that when computing Xv of
an η-node v , we additionally have to consider the case when nodes in the local surrounding of v
are contained in a meta-block μ on height h < η that extends over the nodes in v’s surrounding
at height h. It is sufficient to use a counting variable that tracks the position of the last block
of μ belonging to the subtree of the preceding η-node of v (remember that the greedy parsing
determines the blocks by an arithmetic progression, cf. Figure 15). Another necessity is to maintain
the surnames of the lower nodes. In our approach, each array storing the borders of the blocks on
the heights below η is accompanied with two arrays. The first array stores the length of the prefix
of the generated substring of each block β that is equal to β ’s surname; the second array stores the
surname-length of each block.

Working Space. We construct v after constructing Xv . To construct Xv , we apply the HSP tech-
nique (η − 1) times on the generated substring of the nodes in Xv . Since the nodes of Xv cover
at most 3η (ΔL + ΔR) characters, we need O (3η (ΔL + ΔR)) words of working space to maintain the
integer arrays storing the borders of the blocks at two consecutive heights. To cope with the meta-
blocks extending over the border of the subtrees of two η-nodes, we store the last position of each
such meta-block belonging to the local surrounding of the previous η-node. These positions take
O (η) words, since such a meta-block can exist on every height below η.

Time. The time bound O (n lg∗ n) for the repeated application of the alphabet reduction is the
same as in Lemma 3.6. The new part is the construction of an η-node by constructing Xv : To
construct the lower nodes Xv , we apply the HSP technique (η − 1) times on string(v). The HSP
technique compares lower nodes by their generated substrings (instead of comparing by a name
stored inD). It always compares two adjacent lower nodes during the construction ofXv . To bound
the number of comparisons of the lower nodes, we focus on all lower nodes on a fixed height h
with 1 ≤ h ≤ η − 1: Since the sum of the lengths of the generated substrings of the lower nodes
on height h is always n, the comparisons of the lower nodes on height h take O (n/logσn) time,
independent of the number of nodes on height h. Summing over all heights, these comparisons
take O (nη/logσn) time in total. By the same argument, maintaining the names of all η-nodes takes
O (n/logσn + tlookn/2

η) time.
A name is looked up in O (tlook) time for an upper node. Since the number of upper nodes is

at most n/2η , maintaining the names of the upper nodes takes O (tlookn/2
η) time. This time is

subsumed by the lookup time for the η-nodes.

Surnames. Augmenting the (remaining) nodes of theη-truncated HSP tree with surnames cannot
be done as simplly as in the standard HSP tree construction, since a repetitive node can have
a surname equal to the name of a lower node (remember that lower nodes are generated only

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:35

temporarily, and hence are not maintained in the reverse dictionary). To maintain the surnames
pointing to lower nodes, we need to save the names of certain lower nodes in a supplementary
reverse dictionaryD′ ofD. This is only necessary when one of the remaining nodes (i.e., the upper
nodes and the η-nodes) in the η-truncated HSP tree has a surname that is the name of a lower node.
If such a remaining node v is an upper node having a surname equal to the name of a lower node,
the η-nodes in the subtree rooted at v have also the same surname. Hence, the number of entries
inD′ is upper bounded by the number of η-nodes. The dictionaryD′ is filled with the surnames of
the children of all η-nodes, whose number is at most 3n/2η . Filling or queryingD′ takes the same
time as maintaining the η-nodes. �

Similar to the standard HSP trees, we can conduct LCE queries on two η-truncated HSP trees in
the following way:

Lemma 5.2. LetX andY be two strings, each of length at most n. Given that tHTη (X) and tHTη (Y)
are built with the same dictionary, and given two text positions iX and iY with 1 ≤ iX ≤ |X | and

1 ≤ iY ≤ |Y |, we can compute lcp(X [iX . .],Y [iY . .]) in O (lg∗ n(lg(n/2η) + 3η/logσn)) time using

O (lg(n/2η)) words of working space.

Proof. Lemma 3.7 gives the time bounds for computing the LCP with two HSP trees. The lemma
describes an LCE algorithm that uses the surnames to compare the generated substring of two
nodes. By doing so, it accelerates the search for the first pair of mismatching characters inX [iX . .]
and Y [iY . .]. To find this mismatching pair, it examines the subtrees of the two nodes if both
nodes mismatch. Since we cannot access a child of an η-node in our η-truncated HSP trees without
rebuilding its subtree (as we do not store the lower nodes inD), we treat the η-nodes as the leaves
of the tree. This means that we compare two η-nodes (given their surnames are different) with a
naïve comparison of their generated substrings in O (3η/logσn) time, remembering that the length
of the generated substring of an η-node is at most 3η . For the upper nodes, the algorithm works
identically to the original version such that it takes O (lg∗ n(lg(�/2η)) time for traversing those. �

Applying the idea of Corollary 3.8 to Lemma 5.2 gives the following corollary:

Corollary 5.3. Let X and Y be two strings with |X | , |Y | ≤ n. Given that tHTη (X) and tHTη (Y)
are built with the same dictionary, we can augment both trees with data structures such that

given two text positions 1 ≤ iX ≤ |X | , 1 ≤ iY ≤ |Y |, we can compute � := lcp(X [iX . .],Y [iY . .]) in

O (lg∗ n(lg(�/2η) + 3η/logσn)) time using O (lg(n/2η)) words of working space. The additional data

structures can be constructed in O (n) time with O (n/ lgn) words of space. Their space bounds are

within the space bounds of the HSP trees.

Proof. To support accessing the parent of a node in constant time, we construct a pointer-based
tree structure of the truncated tree during its construction. Since tHTη (Y) contains at most n/2η

nodes, the pointer-based tree structure takes O (n/2η) words. In this sense, η has a direct impact
on the size of the tree, and solutions using O (n) bits become larger than the space bounds of the
tree when η = ω (lg lgn). Here, we focus on three approaches for different values of η:

Given that η ≤ lg lgn, we augment the tree structure with a bit vector to jump from a text
position to an η-node like in Corollary 3.8: We create a bit vector of length n marking the bor-
ders of the generated substrings of the η-nodes such that a rank-support on this bit vector al-

lows us to jump from a position Y [i] to the η-node 〈Y 〉η[j] with 1 +
∑j−1

k=1
string(〈Y 〉η[k]) ≤ i ≤∑j

k=1
string(〈Y 〉η[k]) in constant time. The bit vector with its rank-support takes O (n/ lgn) words,

which is too much to obtain the space bounds of O (n/2η) words when η = Ω(lg lgn).
Instead, we compute a sorted list of pairs if η ≥ log3 (lg2 n). During the construction of a trun-

cated tree, we collect pairs of constructed η-nodes and their starting positions in a list. This list is

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:36 J. Fischer et al.

automatically sorted by the starting positions as we construct the tree from left to right. The list
takes O (n/2η) words, and we can find the η-node whose generated substring covers a given posi-
tion in O (lg(n/2η)) = O (lgn) time by binary searching the starting positions. This time is bounded
by the time O (lg∗ n 3η/ logσ n) for scanning the generated substrings of all η-nodes during an LCE

query, which is O (lg∗ n lgn lgσ) time when η ≥ log3 (lg2 n).
It is left to consider the case that lg lgn < η < log3 lg2 n. Let k be the number of η-nodes such

that n/3η ≤ k ≤ n/2η . We build the above bit vector in the representation of Pagh [34]. In this
representation, the rank-support answers rank queries in constant time. The bit vector together
with its rank-support takes O (k lg(n/k) + k2/n + k (lg lgk)2/ lgk) = O (kη) bits (which are O (n/2η)
words) when k = n/ lgc n for a constant c > 0 [37, Theorem 4(b)]. The constant c exists, be-
cause n/ lg2 n < n/3η ≤ k ≤ n/2η < n/ lgn. However, the construction needs O (n/ lgn) words of
space. �

With τ := 2η , we obtain the claim of Theorem 1.3.

Remark 5.4. In the following, we stick to the result obtained in Lemma 5.2 instead of Corol-
lary 5.3. Although Lemma 5.2 has a slower running time for LCPs that are short, the additional
rank-support of Corollary 5.3 makes it difficult to achieve our aimed running time for merging
two trees (and therefore would restrain us from achieving our final goal stated in Theorem 1.1). To
merge two trees, where each tree is augmented with the bit vector and its rank-support, the task
would be to build a rank-support for the concatenation of the bit vectors (preferably in logarith-
mic time). Unfortunately, we are not aware of a rank-support that is efficiently mergeable (a naïve
solution is to build the rank-support of the large bit vector from scratch in linear time).

5.2 Sparse Suffix Sorting with Truncated HSP Trees

To use the η-truncated HSP trees as dynLCEs in the situation where they are stored in text space,
we need an adapted merge operation. Like with HSP trees, merging two η-truncated HSP trees
involves a reparsing of the nodes at the facing borders (cf. Figure 31). However, the reparsing of
the η-nodes on those borders is especially problematic, as can be seen in Figure 30: Suppose that
we rename an η-node v from N2 to N3 with ��string(N2)�� < ��string(N3)��. If the name N3 is not yet
maintained in the dictionary, we have to create N3, i.e., a pointer to a substring X of the text with
X = string((N3)). The critical part is to findX in the not-yet-overwritten parts of the text: Although
we can create a suitably long string containingX by concatenating the generated substrings ofv’s
preceding and succeeding siblings, these η-nodes may point to text intervals that are not consec-
utive. Since the name of an η-node is the representation of a single substring, we would have to
search X in the entire remaining text. In the case that v is surrounded, Lemma 3.4 shows that X is
a prefix of the generated substring of a sibling η-node (unlike in Figure 22, where the generated
substring of the ESP node with name U cannot be easily determined). With this insight, we finally
show an approach that proves Theorem 1.1. For that, it remains to implement Rule 3 and Rule 4
from Section 4.1 in the context that we maintain η-truncated HSP trees in text space: We explain

Goal 1: how the parameter η has to be chosen such that tHTη (Y) fits into |Y | lgσ bits (needed
when creating new trees in Rule 3), and

Goal 2: how to merge two η-truncated HSP trees without the need of extra working space
(needed in Rule 4).

5.2.1 Storing Truncated HSP Trees in Text Space. Our first goal is to store tHTη (T [I]) in a text
interval I. Since tHTη (T [I]) can contain nodes with |I | /2η distinct names, it requires O (|I | /2η)
words, i.e., O (|I | lgn/2η) bits of space that might not fit in the |I | lgσ bits of T [I]. Declaring a
constant α (independent of n and σ , but dependent on the size of a single node), we can solve this

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:37

Fig. 30. Problem with generated substrings when merging tHTη (X) and tHTη (Y). Assume that we want to
merge tHTη (X) and tHTη (Y), and thus compute the η-nodes (like u) between both trees. On the one hand,
we cannot easily find a surrogate substring for the generated substring of a non-surrounded η-node like v
or of a newly created η-node like u. Although there is a second occurrence of string(v) to the right, string(v)

can be extended or shortened when prepending characters (e.g., suppose that string(v) = ak and that there
is an a to the left of the left occurrence of string(v), but not to the left of the right occurrence). Hence, it is
a problem to overwrite string(u) or the left occurrence of string(v). On the other hand, we can find suitable
surrogate substrings for the generated substrings of the η-nodes like for w that are not near the borders of
an LCE interval.

Fig. 31. Merging HT((ab)4a6) with HT(a24) (both at the top) to HT((ab)4a30) (bottom tree). Reparsing the
repeating meta-block μ on height one of the right tree is done by recomputing μ’s fragile nodes.

space issue by setting

η := log3 (α lg2 n/ lgσ).

Lemma 5.5. The number of nodes of an η-truncated HSP tree on a substring of length � is bounded

by O (�(lgσ)log3 2/(lgn)2 lg3 2) = O (�(lgσ)0.7/(lgn)1.2) with η = log3 (α lg2 n/ lgσ).

Proof. To obtain the upper bound on the number of nodes, we first compute a lower bound on
the number of bits taken by the generated substring of an η-node, which is already lower bounded
by 2η lgσ bits. We begin with changing the base of the logarithm from 3 to 2/3 and reformulate

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:38 J. Fischer et al.

η = log3 (α lg2 n/ lgσ) = (log3 2 − 1) log2/3 (α lg2 n/ lgσ) = log2/3 (α lg2 n/ lgσ)log3 2−1. This gives

2η lgσ = 3η (2/3)η lgσ

= α (α lg2 n/ lgσ)log3 2−1 lg2 n

= (α log3 2) (lgn)2 log3 2 (lgσ)1−log3 2.

With the estimate 0.6 < log3 2 < 0.7, we simplify this to

(α log3 2) (lgn)2 log3 2 (lgσ)1−log3 2 > α0.6 (lgn)1.2 (lgσ)0.3.

Hence, the generated substring of an η-node takes at least 2η lgσ ≥ α0.6 (lgn)1.2 (lgσ)0.3 bits.
Finally, the number of nodes is bounded by

�/2η ≤ � lgσ/(α0.6 (lgn)1.2 (lgσ)0.3) = �(lgσ)0.7/(α0.6 (lgn)1.2). �

Hence, an η-node with η = log3 (α lg2 n/ lgσ) generates a substring containing at most 3η =

α lg2 n/ lgσ characters.
Plugging this value of η into Lemma 5.1 and Lemma 5.2 yields two corollaries for theη-truncated

HSP trees:

Corollary 5.6. We can compute an η-truncated HSP tree on a substring of length � in O (� lg∗ n +
tlook�/2

η + � lg lgn) time. The tree takes O (�/2η) words of space. We need a working space of

O (lg2 n lg∗ n/ lgσ) characters.

Proof. The tree has at most �/2η nodes, and thus takes O (�/2η) words of space. According to
Lemma 5.1, constructing an η-node uses O (3η lg∗ n) = O (lg2 n lg∗ n/ lgσ) characters as working
space. �

Corollary 5.7. An LCE query on two η-truncated HSP trees can be answered in O (lg∗ n lgn) time.

Proof. LCE queries are answered as in Lemma 5.2, where the time bound depends onη. Since an
η-node generates a substring of at most 3η = α lg2 n/ lgσ characters, we can compare the generated
substrings of two η-nodes in O (α lgn) time. Overall, we compare O (lg∗ n) η-nodes, such that these
additional costs are bounded by O (lg∗ n lgn) time overall, and do not slow down the running time
O (lg∗ n lg(n/2η) + lg∗ n lgn) = O (lg∗ n lgn). �

5.2.2 Merging of Truncated HSP Trees. Our second and final goal is to adapt the merging used
in the sparse suffix sorting algorithm (Section 4.1). Suppose that our algorithm finds two intervals
[i . . i + � − 1] and [j . . j + � − 1] with T [i . . i + � − 1] = T [j . . j + � − 1]. Ideally, we want to con-
struct tHTη (T [i . . i + � − 1]) in the text space [j . . j + � − 1], leaving T [i . . i + � − 1] untouched
so parts of this substring can be referenced by the η-nodes. Unfortunately, Rules 1 to 4 cannot be
applied directly due to our working space limitation. Since we additionally use the text space as
working space, we have to be careful about what to overwrite. In particular, we focus on how to

(a) partition the LCE intervals such that the generated substrings of the fragile non-surrounded
η-nodes are protected from becoming overwritten,

(b) keep enough working space in text space available for merging two trees,
(c) construct tHTη (T [i . . i + � − 1]) in the text space [j . . j + � − 1] when the intervals [i . . i +
� − 1] and [j . . j + � − 1] overlap, and how to

(d) bridge the gap T [e(I) + 1 . . b(J) − 1] when merging tHTη (T [I]) and tHTη (T [J])
to tHTη (T [b(I) . . e(J)]) for two intervals I and J with b(I) < b(J) and
|[e(I) + 1 . . b(J) − 1]| < д, as performed in Rule 4.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:39

Fig. 32. Division of LCE intervals in protected and recyclable parts. The protected and the recyclable parts

are depicted with horizontal magenta lines () and vertical violet lines (), respectively.

(a) Partitioning of LCE intervals. To merge two η-truncated HSP trees, we have to take special
care of thoseη-nodes that are fragile, because their names can change due to a merge. If the parsing
changes the name of an η-node v , we first check whether v’s new name is already present in
the dictionary. If it is not, we have to create v’s new name consisting of a text position i and a
length � such thatT [i . . i + � − 1] = string(v). The new name of a fragile surrounded η-nodev can
be created easily: According to Lemma 3.4, the generated substring of v is always a prefix of the
generated substring of an already existing η-node w , which is found in the reverse dictionary of
the η-nodes. Hence, we can create a new name of v with string(w).

Unfortunately, the same approach does not work with the non-surrounded η-nodes, because
those nodes have generated substrings that are found at the borders ofT [j . . j + � − 1] (remember
node v of Figure 30). If the characters around the borders are left untouched (meaning that we
prohibit overwriting these characters), they can be used for creating the names of the fragile non-
surrounded η-nodes during a reparsing. To prevent overwriting these characters, we mark both
borders of the interval [j . . j + � − 1] as protected. Conceptually, we partition an LCE interval into
(1) recyclable and (2) protected intervals (see Figure 32); we free the text of a recyclable interval
for overwriting while prohibiting write access on a protected interval. The recyclable intervals are
managed in a dynamic, global list. We comply with the following property:

Property 6: �2α lg2 nΔL/ lgσ � = Θ(д) text positions of the left and right ends of
each LCE interval are protected.

This property solves the problem for the non-surrounded nodes, because a non-surrounded η-
node has a generated substring that is found in T [j . . j + f − 1] or T [j + � − 1 − f . . j + � − 1].

(b) Reserving text space. We can store the upper part of the η-truncated HSP tree in a recyclable
interval, because it needs �/2η lgn ≤ �α0.6 (lgσ)0.7/(lgn)0.2 = o(� lgσ) bits. Since f depends on α
and д, we can choose д (the minimum length of a substring on which an η-truncated HSP tree
is built) and α (relative to the number of words taken by a single η-truncated HSP tree node)
appropriately to always leave f lgσ/ lgn = O (lg∗ n lgn) words on a recyclable interval untouched,
sufficiently large for the working space needed by Corollary 5.6. Therefore, we precompute α and
д based on the input textT and set both as global constants dependent on σ and n. Since the same
amount of free space is needed during a subsequent merging when reparsing an η-node, we add
the following property:

Property 7: Each LCE interval has f lgσ/ lgn words of free space left on a recyclable
interval.

(c) Interval overlapping. In our algorithm for sparse suffix sorting, a special problem emerges
when two computed LCE intervals overlap. For instance, this can happen when the LCE of a
position i ∈ P with a position j ∈ P overlaps, i.e.,

[i . . i + lce(i, j) − 1] ∩ [j . . j + lce(i, j) − 1] � ∅.
ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:40 J. Fischer et al.

Fig. 33. Top: Overlapping LCE intervals I =
[i . . i + � − 1] and J = [j . . j + � − 1]. Mid-

dle: Partitioning I and J as described
in (c). Bottom: Finding the generated sub-
string T [b . . e] of an η-node in a pro-
tected interval. Given that p is a period
of T [I ∪ J], it is sufficient to make f +
p characters on the left protected to find
the generated substring of all η-nodes of
tHTη (T [i . . j + � − 1]) in T [i . . i + p + f −
1]. The protected and the recyclable parts
of the LCE intervals are depicted with hori-
zontal magenta lines () and vertical violet

lines (), respectively. Parts that have not
yet been declared as protected or recyclable

are dotted ().

The algorithm would proceed with merging both overlapping LCE intervals to satisfy Property 5.
However, the merged LCE interval cannot respect Properties 6 and 7 in general (consider that
each interval has a length of 3д, and both intervals overlap with 2д characters). In the case of
overlapping, we exploit the periodicity caused by the overlap to make an η-truncated HSP tree fit
into both intervals (while still assuring that Property 4 and Property 5 hold and that we can restore
the text).

In a more general setting, suppose that the intervalsI := [i . . i + � − 1] and J := [j . . j + � − 1]
with T [I] = T [J] overlap, without loss of generality i < j. Given � > 2д, our task is to create
tHTη (T [i . . j + � − 1]) (e.g., needed to comply with Property 4). SinceT [I] = T [J], the substring

T [i . . j + � − 1] has a period p with 1 ≤ p ≤ j − i , i.e., T [i . . j + � − 1] = XkY , where |X | = p and
Y is a (proper) prefix of X , for an integer k with k ≥ 2 (k > 1, since j ≤ i + � − 1, otherwise, i >
j or I ∩ J = ∅). By definition, each substring of T [i + p . . j + � − 1] appears also p characters
earlier. We treat the substring T [i . . i + p + f − 1] as a reference and therefore mark it protected.
Keeping the original characters inT [i . . i + p + f − 1], we can restore the generated substrings of
every η-node by an arithmetic progression. This can be seen by two facts: First, the length of the
generated substring of an η-node is at most 3η = α lg2 n/ lgσ ≤ f /2. Second, given an η-node with
the generated substring T [b . . e] with i + p + f ≤ e ≤ j + � − 1, we find an integer k with k ≥ 0
such that T [b . . e] = T [b − pk . . e − pk] and [b − pk . . e − pk] ⊆ [i . . i + p + f − 1] (since e − b ≤
f /2). Hence, we can make the interval [i + p + f + 1 . . j + � − 1 − f] recyclable, which is at least
as large as f , since |I ∪ J | ≥ j − i + 2д ≥ p + 2д is at least p + 3f for a sufficiently large д. This
partitioning into protected and recyclable intervals is illustrated in Figure 33.

For the actual merging operation, we elaborate an approach that respects Properties 6 and 7:

(d) Merging with a gap. We introduce a merge operation that supports the merging of two
η-truncated HSP trees whose LCE intervals have a gap of less than д characters. In contrast to

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:41

Fig. 34. Merging tHTη (T [I]) and tHTη (T [J]) with b(J) − д ≤ e(I) ≤ b(J) − 1. The substring T [e(I) −
f . . b(J) + f] is marked protected for the sake of the bridging nodes.

Lemma 4.3, we additionally build new η-nodes on the gap between both trees. The η-nodes whose
generated substrings intersect with the gap are called bridging nodes.

Let tHTη (T [I]) and tHTη (T [J]) be built on two LCE intervals I and J with 1 ≤ b(J) −
e(I) ≤ д. Our task is to compute the merged tree tHTη (T [b(I) . . e(J)]). We do that by
(a) reprocessing O (ΔL + ΔR) nodes at every height of both trees (according to Lemma 4.3) and
(b) building the bridging nodes connecting both trees. Like with the non-surrounded nodes,
the generated substring of a bridging node can be a unique substring of the text. This means
that overwritingT [e(I) − f . . b(J) + f] would invalidate the generated substrings of the bridg-
ing nodes and of some (formerly) non-surrounded nodes. Therefore, we also mark the inter-
val [e(I) − f . . b(J) + f] as protected. By doing so, we can use the characters of T [e(I) −
f . . b(J) + f] to (a) create the bridging η-nodes and to (b) reparse the non-surrounded nodes
of both trees (Figure 34). The bridging nodes and their ancestors take o(lgn lg∗ n) words of ad-
ditional space, since building tHTη (T [e(I) + 1 . . b(J) − 1]) with |b(J) − e(I) | = O (д) takes

(д/2η) lgn = o(д lgσ) = o(lg∗ n lg2 n) bits (or o(lg∗ n lgn) words) of space. By choosing д and α
sufficiently large, we can store the bridging nodes in a recyclable interval while maintaining
Property 7 for the merged LCE interval. Finally, the time bound for this merging strategy is given
in the following corollary:

Corollary 5.8. Given two LCE intervals I and J with b(I) ≤ b(J) ≤ e(I) + д and their

respective η-truncated HSP trees, we can build tHTη (T [b(I) . . e(J)]) in O (д lg∗ n + tlookд/2
η +

дη/logσn + tlook lg∗ n lgn) time.

Proof. We adapt the merging of two HSP trees (Lemma 4.3) for the η-truncated HSP trees.
The difference to Lemma 4.3 is that we reparse an η-node by rebuilding its local surrounding
consisting of O ((ΔL + ΔR)3η) nodes that take α (ΔL + ΔR) lg2 n/ lgσ ≤ f words for a sufficiently
large α . According to Property 7, there are at least f words of space left in a recyclable interval
to recompute an η-node, and to create the bridging nodes in the fashion of Corollary 5.6. Both
creating and recomputing takes overall O (д lg∗ n + tlookд/2

η + дη/logσn) time. �

There is one problem left before we can prove the main result of this article: The sparse suffix
sorting algorithm of Section 4.1 creates LCE intervals on substrings smaller than д between two
LCE intervals temporarily when applying Rule 3. We cannot afford to build such tiny η-truncated
HSP trees, since they cannot respect Property 6 and Property 7. Due to Rule 4, we eventually merge

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:42 J. Fischer et al.

a temporarily created dynLCE with a dynLCE on a long LCE interval. Instead of temporarily cre-
ating an η-truncated HSP tree covering less than д characters, we apply the new merge operation
of Corollary 5.8 directly, merging two trees that have a gap of less than д characters. With this and
the other properties stated above, we come to the final proof:

Proof of Theorem 1.1 The analysis is split into suffix comparison, tree generation, and tree
merging:

• Suffix comparisons are done as in Corollary 4.2. LCE queries on η-truncated HSP trees and
HSP trees are conducted in the same time bounds (compare Lemma 3.7 with Corollary 5.7).

• All positions considered for creating the η-truncated HSP trees belong to C. Constructing
the η-truncated HSP trees costs O (|C| lg∗ n + tlook |C| /2η + |C| lg lgn) overall time, due to
Corollary 5.6.

• Merging in the fashion of Corollary 5.8 does not affect the overall time: Since a merge of
two trees introduces less than д new text positions to an LCE interval, we conclude with
the same analysis as in Theorem 4.4 that the time for merging is upper bounded by the
construction time.

Plugging the times for suffix comparisons, tree construction and merging in Corollary 4.2 yields
the overall time

O (tC (|C|)) =O (|C| lg∗ n + tlook |C| /2η + |C| lg lgn)

=O
(
|C| (tlook (lgσ)0.7/(lgn)1.2 + lg lgn)

)
=O
(
|C|
(√

lgσ + lg lgn
))

because tlook = O (lgn). The time for searching and sorting the suffixes is O (tQ (|C|)m lgm) =
O (m lgm lg∗ n lgn). The auxiliary data structures used are SAVL(Suf (P)), the search tree L for
the LCE intervals, and the list of recyclable intervals, each taking O (m) words of space. �

6 CONCLUSIONS

In the first part, we introduced the HSP trees based on the ESP technique as a new data structure
that (a) answers LCE queries and (b) can be merged with another HSP tree to form a larger HSP
tree. With these properties, HSP trees are an eligible choice for the mergeable LCE data structure
needed for the sparse suffix sorting algorithm presented here.

In the second part, we developed a truncated version of the HSP tree with a trade-off parameter
determining the height at which to cut off the lower nodes. Setting the trade-off parameter ade-
quately, the truncated HSP tree fits into text space. As a result of independent interest, we obtained
a new deterministic LCE data structure with a trade-off parameter. Although not shown here, ESP
trees can also (a) answer LCE queries, (b) be merged, and (c) be truncated. However, answering
LCE queries or merging two ESP trees is by a factor of O (lgn) slower than when the operations
are performed with HSP trees.

In the Appendix, we show that there are strings of length n whose ESP trees differs by Ω(lg2 n)
nodes from the ESP trees of the original inputs modified by the first characters, which invalidates
the upper bound of O (lgn lg∗ n) on the maximal number of fragile nodes postulated in Refer-
ence [11]. This result also invalidates theoretical results that depend on the ESP technique (e.g.,
for approximating the SEDM [11] or the Lempel-Ziv-77 (LZ77) factorization [10], or for building
indexes [14, 30, 40, 41]). We could quickly provide a new upper bound of O (lg2 n lg∗ n), but it re-
mains an open problem to refine our bounds. Luckily, our new HSP technique can be used as a

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:43

substitute for the ESP technique, since HSP trees and ESP trees share the same bounds for con-
struction time and space usage. This way, there are only O (lgn lg∗ n) fragile nodes, as promised
in the original ESP paper. This also recovers the postulated O (lgn lg∗ n) approximation bound on
the edit distance matching problem [11, 40]: Given ET(T) of a stringT of length n, it is assumed by
Cormode and Muthukrishnan [11, Theorem 7] that changing/deleting a character ofT or inserting
a character inT changes O (lg∗ n lgn) nodes in ET(T). Although we only provided proofs that pre-
/appending characters toT changes O (lg∗ n lgn) nodes of HT(T), it is easy to generalize this result
by applying a merge operation: Given that we insert a character c ∈ Σ between T [i] and T [i + 1],
the trees HT(T) and HT(T [1 . . i]cT [i + 1 . .]) differ in at most O (lg∗ n lgn) nodes, since appending
c to HT(T [1 . . i]) and merging HT(T [1 . . i]c) with HT(T [i + 1 . .]) changes O (lg∗ n lgn) nodes.
The same can be observed when deleting or changing the ith character.

Our open problems are:

Practical evaluation. In light of the theoretical improvements of the HSP over the ESP, it would be
interesting to evaluate how the HSP behaves practically. Especially, we are interested in how well
the HSP behaves in the context of grammar compression [3] like the ESP-index [30, 41] on highly
repetitive texts, where a more stable behavior of the repetitive nodes could lead to an improved
compression ratio. Speaking about implementing the complete suffix sorting algorithm, a major
problem is to choose the parameter α (defined in Section 5.2.1) andд (defined in Property 2) wisely,
since they affect the practical computation time as well as the space needed for storing an η-
truncated HSP tree. At least for highly repetitive texts, our approach can be practically faster
than a naive approach, since the ESP grammar tends to become especially small on those kinds
of texts [40, Tables 4 to 6], making our approach to store the trees in text space more feasible.
However, we do not see a chance that our deterministic algorithm can compete with practical non-
deterministic solutions resorting to hashing like the approach of Prezza [35], which also works in
the restore model.

Suffix sorting with trade-off parameter. From the theoretical point of view, it would be interest-
ing to compute the sparse suffix sorting with a trade-off parameter adjusting working space and
construction time of SSA and SLCP.

Mergeable rank-support. Remembering Remark 5.4, we are unaware of whether rank-support
data structures can be mergeable. Given two bit vectors B1 and B2, both with a rank-support data
structure, the task is to compute a rank-support data structure on the concatenation of B1 and B2

in sub-linear time in the total lengths of both bit vectors.

Construction space aware compressed bit vectors. Although there are bit vectors with rank-
support that can be stored in compressed space (e.g., Reference [34]), there is, to the best of our
knowledge, no (compressed) bit vector representation that can be constructed within compressed
space or on-line.

Improved Alphabet Reduction Technique. Finally, we thank an anonymous reviewer for pointing
us to a new technique [15] that appeared after the initial submission of this article, which might

improve the running time of our algorithm even further to O (|C| (
√

lgσ + lg lgn) +m lgm lgn).
We leave this as future work.

APPENDIX

A A LOWER BOUND ON THE NUMBER OF FRAGILE ESP TREE NODES

Here, we present two examples revealing that the ESP technique changes Ω(lg2 n) nodes when
changing a single character. The idea is to give an example that contains a large number of Type M

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:44 J. Fischer et al.

Fig. 35. Basic idea of our two counter-examples described in Theorems A.2 and A.4. We build a counter-

example in such a way that the last node of a certain repeating meta-block μh on height h (a) is fragile (),
and (b) is the child of the first node of a repeating meta-block μh+1 having the same properties as μh . This
property can cause a recursive chain reaction when prepending a suitable character such that the names of
the last and the first block of a meta-block on height h and a meta-block on height h + 1 are changed, on
each height h.

meta-blocks in a specific constellation. Remembering how the ESP technique parses its input, a
remaining single symbol neighbored by two repeating meta-blocks is fused with one of them to
form a Type M meta-block. We provide examples for Rule (M) and for the original tie-breaking
rule for Type M meta-blocks:

Rule (M’): Fuse a remaining character Y [i] with its preceding meta-block, or, if i = 1,
with its succeeding meta-block.

In each example, we present a string of length at most n whose ESP tree has Ω(lg2 n) fragile
nodes. There, we modify the input string by one character and show that Ω(lg2 n) nodes differ
from the original tree as a result of this modification. Since we can change Ω(lg2 n) nodes by
changing one character in the input, we have a contradiction to Lemma 9 in Reference [11], where
it is claimed that O (lg∗ n lgn) nodes change after such a modification.

A.1 Fusing with the Preceding Repeating Meta-block

Consider a Type 1 meta-block μ whose rightmost node is fragile. If the leftmost node of a repeating
meta-block ν is built on μ’s rightmost node, then the rightmost node of ν can also be fragile.

Having this idea in mind, we build an example consisting of a chain of repeating meta-blocks,
where the leftmost node of a repeating meta-block is built on the fragile rightmost node of a meta-
block of one depth below (Figure 35). The main idea is the following: Each meta-block of this chain
can be of arbitrary (but sufficiently long) length. Keeping in mind that changing the name of a node
means that the names of its ancestors also have to change, we can create an example string whose
ESP tree contains fragile nodes appearing on each height at arbitrary positions. Before giving such
an example, we introduce a lemma showing the associativity of esp on a special class of strings,
which helps us proving the lower bound:

Lemma A.1. Suppose that we comply to Rule (M’). Given a height h and two strings X ,Y that are

either empty or have a length of at least 2 · 3h−1, esp(h) (Xb3i

Y) = esp(h) (X) esp(h) (b3i

) esp(h) (Y) if

i ≥ h, b is neither a suffix of X nor a prefix of Y , and there is no prefix of esp(j) (Y) of the form cdk for

some symbols c, d ∈ Σj with c � d, and integers k, j with k ≥ 2 and 0 ≤ j ≤ h − 1.

Proof. The additional requirement for Y is to ensure that the leftmost block of esp(j) (Y) is not
a non-repetitive Type M block that has been fused to its succeeding meta-block, only because it

has no preceding meta-block. Regardless of which symbols are prepended to esp(j−1) (Y), the first
symbol of such a block would form with its preceding symbols a new block.

For h = 1, esp divides the string Xb3i

Y into meta-blocks such that there is one Type 1 meta-

block μ that exactly contains the substring b3i

. That is because of the following: If X (respectively,

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:45

Fig. 36. ET(X3) as defined in Theorem A.2. The subtree of each node with name χi is equal to ET(Xi). The
meta-blocks of the lowest height are labeled with their types.

Y) is not the empty string, thenX (respectively, Y) contains at least two characters. Since we favor
fusing with the preceding meta-block, there is no chance that characters of X can enter μ. Assume
that Y is not the empty string. Since the first block of esp(Y) is neither a non-repetitive Type M
block nor a block starting with b, it is not possible that characters of this block can enter μ.

Under the assumption that the claim holds for a given h − 1 ≥ 0, we have

esp(h) (Xb3i

Y) = esp
(
esp(h−1) (Xb3i

Y)
)

= esp
(
esp(h−1) (X) esp(h−1) (b3i

) esp(h−1) (Y)
)
.

The strings esp(h) (X) and esp(h) (Y) are either empty or contain at least two symbols. Since i ≥ h,

esp(h−1) (b3i

) is the repetition of the same symbol. This repetition has a length of at least three such
that we can apply the shown associativity for h = 1 to show the claim. �

Theorem A.2. There is a text Y of length n whose ESP tree differs by Ω(lg2 n) nodes from the ESP

tree of Y [2] · · ·Y [n] when complying to Rule (M’).

Proof. Let a, b, and c ∈ Σ be three different characters. Further, let

Y := (X0)3k

(X1)3k−1

(X2)3k−2 · · · (Xk−1)3 withk :=
⌊
log3 (n/ log3 n)

⌋
,

X0 := a, andXi :=
⎧⎨⎩
X 2

i−1b
3i−1

if i is odd,

X 2
i−1c

3i−1
if i is even,

for i = 1, . . . ,k .

For instance, X0 = a, X1 = aab, X2 = aabaabc3, and X3 = X 2
2b

9.

In the following, we show that the textY has a length at most n and that its ESP tree has Ω(lg2 n)
fragile nodes, which change when removing the first character ofY . We start with determining the
length of Y . Since |X0 | = 30, under the assumption that |Xi | = 3i , we obtain that |Xi+1 | = 2 |Xi | +
3i = 3i+1. Therefore, |X 3k−i

i | = 3k for all i = 0, . . . ,k − 1. We conclude that the length of Y is at

most n, since |Y | = k3k ≤ n log3 (n/ log3 n)/ log3 n ≤ n.
We now show that each substring Xi of Y is the generated substring of a node χi of ET(Y) on

height i whose subtree is equal to the perfect ternary subtreeTi := ET(Xi), for i = 1, . . . ,k − 1. This
is true for i = 1, 2, 3, as can be seen in Figure 36. For the general case, we adapt the associativity
shown for esp in Lemma A.1 to the string Xi :

Sub-Claim. For every i with 0 ≤ i ≤ k − 2 it holds that

(I) | esp(i+1) (Xi+1) | = 1,
(II) esp(h) (Xi+1) = esp(h)

(
XiXid

3i

i

)
= esp(h) (XiXi) esp(h)

(
d3i

i

)
= esp(h) (Xi) esp(h) (Xi) esp(h)

(
d3i

i

)
, and

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:46 J. Fischer et al.

(III) esp(h) (Xi+1) starts with a repetition of a symbol,

for every h with 0 ≤ h ≤ i , where di is a character with di = b if i is even, otherwise, di = c.

Sub-Proof. For i = 0, we have

(I) | esp(1) (X1) | = ��esp(aab)�� = 1 (aab is put in a Type M meta-block having exactly one block),

(II) esp(0) (X1) = X1, and
(III) X1 = aab starts with a repetition of the character a.

Under the assumption that the claim holds for an integer i , we conclude that it holds for i + 1
due to

esp(h) (Xi+2) = esp(h)
(
Xi+1Xi+1d

3i+1

i+1

)
= esp(h)

(
XiXid

3i

i XiXid
3i

i d3i+1

i+1

)
(Lemma A.1,di�di+1) = esp(h)

(
XiXid

3i

i XiXid
3i

i

)
esp(h)

(
d3i+1

i+1

)
(Lemma A.1,(I) or (III)) = esp(h) (XiXi)esp(h)

(
d3i

i

)
esp(h) (XiXi)esp(h)

(
d3i

i

)
esp(h)

(
d3i+1

i+1

)
(Lemma A.1,(I) or (III)) = esp(h)

(
XiXid

3i

i

)
esp(h)

(
XiXid

3i

i

)
esp(h)

(
d3i+1

i+1

)
= esp(h) (Xi+1)esp(h) (Xi+1)esp(h)

(
d3i+1

i+1

)
for 1 ≤ h ≤ i . The conditions of Lemma A.1 hold, because di is neither a prefix nor a suffix of Xi ,

di � di+1, |XiXi | = 2 · 3i , and esp(h) (XiXi) starts with a repetition of a symbol due to

{
(III) forh < i , or due to

esp(i) (XiXi) =(I I) esp(i) (Xi)esp(i) (Xi) and (I) forh = i .

For h = i + 1, we use that (I) holds forXi , | esp(i) (d3i

i) | = 1, and esp(i) (d3i+1

i+1) is a repetition of length
3 of the same symbol, to obtain

esp(i+1) (Xi+2) = esp
(
esp(i) (Xi+2)

)
= esp

(
esp(i) (XiXi)esp(i) (d3i

i)esp(i) (XiXi)esp(i)
(
d3i

i

)
esp(i)

(
d3i+1

i+1

))
(Lemma A.1) = esp

(
esp(i) (XiXi)esp(i) (d3i

i)esp(i) (XiXi)esp(i)
(
d3i

i

))
esp
(
esp(i)

(
d3i+1

i+1

))
(evaluate and reformulate) = esp

(
esp(i) (XiXi)esp(i)

(
d3i

i

))
esp
(
esp(i) (XiXi)esp(i)

(
d3i

i

))
esp
(
esp(i)

(
d3i+1

i+1

))
,

where we used the two facts that

—another application of esp puts esp(i) (XiXi)esp(i) (d3i

i) into a single Type M meta-block of
length three, and that

—di is neither a prefix nor a suffix of Xi .

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:47

This concludes (II). A consequence is (III): For h ≤ i , we have esp(h) (Xi+2) =

esp(h) (Xi+1)esp(h) (Xi+1)esp(h) (d3i+1

i+1), and esp(h) (Xi+1) starts with a repetition of a symbol
according to our assumption. For h = i + 1, we have

esp(i+1) (Xi+2) = esp
(
esp(i) (Xi) esp(i) (Xi) esp(i)

(
d3i

i

)
esp(i) (Xi) esp(i) (Xi) esp(i)

(
d3i

i

)
esp(i)

(
d3i+1

i+1

))
.

Due to (I), | esp(i) (Xi) | = | esp(i) (d3i

i) | = 1; hence, the last application of esp creates three blocks,

where each of the first two represents the string esp(i) (Xi) esp(i) (Xi) esp(i) (d3i

i) of length three.
Another application of esp yields (I). This concludes the sub-proof.

Let βi and γi denote the names of the roots of ET(b3i

) and of ET(c3i

), respectively. Set δi := βi if
i is even, otherwise, δi := γi . Then 〈Xi+1〉i+1 = χi+1 due to Sub-Claim (I), and 〈Xi+1〉i = χi χiδi due
to Sub-Claim (II). Consequently,

esp
(
(〈Xi+1〉i)3k−i−1

)
= esp

(
(χi χiδi)3k−i−1

)
= (esp(χi χiδi))3k−i−1

= χ 3k−i−1

i+1 . (2)

This means that 〈Xi 〉3
k−i

h
=

〈X 3k−i

i 〉h is a repetition of

length 3k−h consisting of
the same name, for every
height h = i, . . . ,k . We con-

clude that Ti := ET((Xi)3k−i

)
is a perfect ternary tree.

Finally, we show that esp(h) (Y) = esp(h) (X 3k

1) · · · esp(h) (X 31

k−1
) holds for each height h with 1 ≤

h ≤ k . On the one hand, we have

esp(h)
(
X 3k−i

i X 3k−i−1

i+1

)
= esp(h)

(
X 3k−i−1

i Xi−1Xi−1d
3i−1

i−1 X
3k−i−1

i+1

)
(III) with 0≤i≤h−2 = esp(h)

(
X 3k−i−1

i Xi−1Xi−1

)
esp(h)

(
d3i−1

i−1

)
esp(h)

(
X 3k−i−1

i+1

)

= esp(h)
(
X 3k−i−1

i Xi−1Xi−1d
3i−1

i−1

)
esp(h)

(
X 3k−i−1

i+1

)

= esp(h)
(
X 3k−i

i

)
esp(h)

(
X 3k−i−1

i+1

)

(3)

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:48 J. Fischer et al.

Fig. 37. Differences between ET(Y) (top) and ET(Y ′) (bottom) on the heights i and i + 1, where Y =

a3k
(a2b)3k−1

((a2b)2c3)3k−2 · · · and Y = aY ′ (defined in Theorem A.2). The names ξi+1 and κi+1 are only
used in this figure. The meta-blocks on height i and i + 1 are labeled with their types.

for 1 ≤ h ≤ i − 1 due to Lemma A.1. On the other hand, we have

esp(h)
(
X 3k−i

i X 3k−i−1

i+1

)
= esp(h−i+1)

(
esp(i−1)

(
X 3k−i

i X 3k−i−1

i+1

))
Equation (3) = esp(h−i+1)

(
esp(i−1)

(
X 3k−i

i

)
esp(i−1)

(
X 3k−i−1

i+1

))
Equation (2) = esp(h−i)

(
esp
(
(χi−1χi−1δi−1)3k−i

(χi−1χi−1δi−1χi−1χi−1δi−1

〈
d3i

i

〉
i−1

)3k−i−1
))

(apply esp) = esp(h−i)
(
χ 3k−i

i (χi χiδi)3k−i−1
)

= esp(h−i−1)
(
esp
(
χ 3k−i

i χi χiδi

)
esp
(
(χi χiδi)3k−i−2

))
(evaluate and reformulate) = esp(h−i−1)

(
esp
(
χ 3k−i

i

)
esp
(
(χi χiδi)3k−i−1

))
Equation (2) = esp(h−i−1)

(
esp
(
χ 3k−i

i

)
esp
(
χ 3k−i−1

i+1

))
(Lemma A.1) = esp(h−i)

(
χ 3k−i

i

)
esp(h−i)

(
χ 3k−i−1

i+1

)

(4)

for i ≤ h ≤ k . It is easy to extend the pairwise associativity X 3k−i

i X 3k−i−1

i+1 for each i with 0 ≤ i ≤
k − 2 to X 3k

1 · · ·X 31

k−1
. This concludes that the root of Ti has the same name as the ith leftmost

node of ET(Y) on height k . Figure 37(left) shows an excerpt of Ti and Ti+1. The crucial step in
Equation (4) is the re-formulation of the parsing

esp(h−i−1) (esp(χ 3k−i

i χi χiδi)︸���������������︷︷���������������︸
belongs toTi

esp((χi χiδi)3k−i−2

)︸�����������������︷︷�����������������︸
belongs toTi+1

)

= esp(h−i−1) (esp(χ 3k−i

i) esp((χi χiδi)3k−i−1

)︸�����������������︷︷�����������������︸
�μi+1

)
(5)

showing that there is a Type 1 meta-block μi+1 covering all nodes of Ti+1 and the rightmost node
of Ti , on height i + 1. This meta-block is a repetition of the symbol esp(χi χiδi) = χi+1 ∈ Σh+1.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:49

Given that μ0 is the first Type 1 meta-block of esp(Y) (covering the prefix X 3h+2
0), we now ex-

amine what happens with μi for each i with 0 ≤ i ≤ h − 1 when removing the first a from Y . Let
us call the shortened string Y ′, i.e., Y = aY ′. On removing the first a from Y , we claim that the
meta-block μi contains one symbol χi less, for every i with 0 ≤ i ≤ h − 1 (cf. Figure 37 showing
the difference between 〈Y 〉i and 〈Y ′〉i on height i with 0 ≤ i ≤ k − 1): For μ0, this is trivial. For an

i ≥ 0, focus on the substring X 3k−i

i X 3k−i−1

i+1 of Y : We have

esp
(〈
X 3k−i

i X 3k−i−1

i+1

〉
i

)
= esp

(
χ 3k−i

i (χi χiδi)3k−i−1
)

= esp(χ 3k−i

i︸︷︷︸
suffix of μi

) esp
(
(χi χiδi)3k−i−1

)
︸������������������︷︷������������������︸

=μi+1

= esp
(
χ 3k−i

i

)
χ 3k−i−1

i+1

due to Equation (4). Under the assumption that removing the first character a from Y causes μi to
shrink by one symbol χi ∈ Σi , we get

esp
(
χ 3k−i−1

i (χi χiδi)3k−i−1
)
= esp

(
χ 3k−i

i χiδi

)
esp
(
(χi χiδi)3k−i−1−1

)

= esp
(
χ 3k−i

i χiδi

)
χ 3k−i−1−1

i+1

� esp
(
χ 3k−i−1

i

)
χ 3k−i−1

i+1 .

We observe that the length of μi is decremented by one, causing the name of its rightmost block
to change, which is the leftmost node ofTi+1 on height i + 1 and the first symbol of μi+1. Due to the
tie-breaking rule, this block gets fused with its preceding meta-block at height i + 1, decrementing
the length of its succeeding meta-block μi+1 by one (and hence, this process repeats for all i =
0, . . . ,k − 2). This means that the leftmost node on height i of Ti changes, for 1 ≤ i ≤ k − 1. Each
of these nodes receives a new name such that it is fused with its preceding Type 1 meta-block to
form a Type M meta-block. Since changing a node on height i changes all its ancestors (or removing
the first character of Y for i = 0 changes all nodes built on this character), at least k − i nodes are
changed in Ti . In total, at least k + (k − 1) + (k − 2) + · · · + 2 = (k2 + k)/2 − 1 nodes are changed.
Hence, there is a lower bound of Ω(k2) = Ω(log2

3 (n/ log3 n)) = Ω(lg2 n) changed nodes. �

Note that the later-introduced HSP technique (see Section 3) with the same tie-breaking rule also
produces Ω(lg2 n) different nodes in this example. However, this is not the case when complying
with Rule (M), as we will see later in Section 3.1.

A.2 Fusing with the Succeeding Repeating Meta-block

The idea is similar to the previous example. In particular, we introduce a corollary of Lemma A.1:

Corollary A.3. Given a height h and a string Y that is either empty or has a length of at least

2 · 3h−1, esp(h) (XY) = esp(h) (X) esp(h) (Y) if a is not a prefix of Y , where X = b3i

a3j

with i + j ≥ h,

and a, b ∈ Σ with a � b.

In the following example, we build a text whose ESP tree has a specific Type M meta-block on
each height that we want to change. Given a Type M meta-block μ that emerged from prepending
a symbol to a Type 1 meta-block, we can create a new meta-block by prepending another symbol
such that it precedes μ and absorbs μ’s first symbol (μ then returns to be a Type 1 meta-block). We

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:50 J. Fischer et al.

Fig. 38. ET(Y) of the example stringY defined in Theorem A.4 with k = 1 (left) and as a schematic illustration
(right) with the meta-block μi on height i (due to space issues, the number of nodes/children is incorrect).
The meta-blocks of the lowest height in the left figure are labeled with their types.

can arrange the Type M meta-blocks such that prepending a symbol to the text changes a Type M
meta-block on each height:

Theorem A.4. There is a text Y ′ of length n whose ESP tree differs by Ω(lg2 n) nodes from the ESP

tree of Y ′[2] · · ·Y ′[n] when complying with Rule (M).

Proof. Let k = �log3 (n/ log3 n)	 be a natural number and a, b ∈ Σ. Define

Y := X0X1 · · ·Xk withXi := b3i

a3k−3i

,

for 0 ≤ i ≤ k − 1. Figure 38 gives an example on its left side. In the following, we show that |Y | ≤ n,
and ET(Y) has Ω(lg2 n) fragile nodes, which change when prepending the character a to Y .

Given an integer i with 0 ≤ i ≤ k − 1, we have |Xi | = 3k and |Y | = k3k ≤ n. Corollary A.3 yields

esp(h) (Xi) = esp(h) (b3i

) esp(h) (a3k−3i

) for all heights h with 0 ≤ h ≤ i , since 3k − 3i ≥ 3k − 3k−1 =

2 · 3k−1. Let αi := 〈a3k 〉i [1] and βi := 〈b3k 〉i [1] be the nodes on height i with 0 ≤ i ≤ k and, respec-

tively, string(αi) = a3i

and string(βi) = b3i

(α0 := a, β0 := b).

The function esp applied on esp(h−1) (Xi) partitions its input esp(h−1) (Xi) into two meta-blocks:
a Type 1 meta-block containing all βi ’s and a subsequent Type 1 meta-block containing all αi ’s. All
blocks of these two meta-blocks contain three symbols, since each meta-block has a length that is
equal to a power of three. For the upper heights, we get

esp(h+i) (Xi) = esp(h)
	

�

having length 3k−i︷�������������������������︸︸�������������������������︷
esp(i) (b3i

)︸������︷︷������︸
=βi

esp(i) (a3k−3i

)︸����������︷︷����������︸
=α 3k−i −1

i

�
�

for 0 ≤ h + i ≤ k − 1. (6)

Hence, esp(h+i) (Xi) consists of exactly one Type M meta-block, which has length 3k−h−i , and each
block contains three symbols. We conclude that the tree Ti := ET(Xi) is a perfect ternary tree, for

0 ≤ i ≤ k − 1. Since | esp(h) (Xi) | = 3k−h for all i,h with 0 ≤ i ≤ k − 1 and 0 ≤ h ≤ k , with Corol-

lary A.3 it is easy to see that esp(h) (Y) = esp(h) (X1 · · ·Xk−1) = esp(h) (X1) · · · esp(h) (Xk−1) for all
0 ≤ h ≤ k . Consequently, Xi is the generated substring of the ith leftmost node vi of ET(Y) on
height k . The name of vi is the name of the root of Ti , for 0 ≤ i ≤ k − 1.

For the proof, we prepend an a to Y and call the new string Y ′, i.e., Y ′ = aY . Our analysis
of the difference between ET(Y) and ET(Y ′) focuses on the unique meta-block at height i of Ti :
From Equation (6) with h = 0, we observe that there is a single meta-block μi at height i of Ti ,
and this meta-block is a Type M meta-block (cf. the right side of Figure 38). Our claim is that
prepending a to Y changes the first and the last block of every μi (0 ≤ i ≤ k − 1): The prepended
a forms a Type 2 meta-block with the first character of X0 by “stealing” the first character from
μ0, and this character is a β0 = b. Assume that μi (0 ≤ i ≤ k − 1) loses its first symbol (i.e., βi).

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:51

Fig. 39. Excerpt of the ESP trees ET(Y) (top) and ET(Y ′) (bottom, vertically flipped), where Y =

ba3k−1b3a3k−3b9a3k−9 · · · and Y ′ = aY (defined in Theorem A.4). The two trees differ in the nodes that
are highlighted in magenta (). Note that right of the rightmost α ′2 (bottom tree, rightmost magenta node)
is the node β2, and both nodes form a Type 2 meta-block.

By relinquishing this symbol, μi becomes a Type 1 meta-block consisting only of αi ’s. The last
two αi ’s contained in μi are grouped into a block α ′i+1 of length two, where α ′i+1 := 〈αiαi 〉1[1]
is the name of the root node of ET(αiαi). Every newly appearing node α ′i+1 gets combined with
its right-adjacent node βi+1 to form a new Type 2 meta-block. The used βi+1 is stolen from μi+1,
and hence, we observe an iterative process of stealing the first symbol βi+1 from μi+1 for each
height i = 0, . . . ,k − 2. Figure 39 visualizes this observation on the lowest two heights.

This observation can be inductively proven for each even integer i with 0 ≤ i ≤ h − 2. By Equa-

tion (6), we know that 〈Xi 〉i = βiα
3k−i−1
i and 〈Xi+1〉i = β3

i α
3k−i−3
i . Then

esp(esp(〈Xi 〉i 〈Xi+1〉i)) = esp
(
esp
(
βiα

3k−i−1
i β3

i α
3k−i−3
i

))
(Corollary A.3) = esp

(
esp(βiαiαi) esp

(
α3k−i−3

i

)
βi+1α

3k−i−1−1
i+1

)

= esp
(
esp(βiαiαi) α3k−i−1−1

i+1 βi+1α
3k−i−1−1
i+1

)
(Corollary A.3) = esp

(
esp(βiαiαi) α3k−i−1−1

i+1

)
esp
(
βi+1α

3k−i−1−1
i+1

)

= esp
(
esp(βiαiαi) α3k−i−1−1

i+1

)
esp(βi+1αi+1αi+1)

esp
(
α3k−i−1−3

i+1

)
,

and esp(α3k−i−1−3
i+1) = α3k−i−2−1

i+2 . Prepending α ′i (set α ′0 := a) to the string 〈Xi 〉i 〈Xi+1〉i yields

esp
(
esp
(
α ′i 〈Xi 〉i 〈Xi+1〉i

))
= esp

(
esp
(
α ′i βiα

3k−i−1
i β3

i α
3k−i−3
i

))
(Corollary A.3) = esp

(
esp
(
α ′i βi
)

esp
(
α3k−i−1

i

)
βi+1α

3k−i−1−1
i+1

)

= esp
(
esp
(
α ′i βi
)

esp
(
α3k−i−3

i αiαi

)
βi+1α

3k−i−1−1
i+1

)

= esp
(
esp
(
α ′i βi
)
α3k−i−1−1

i+1 α ′i+1βi+1α
3k−i−1−1
i+1

)
(Corollary A.3) = esp

(
esp
(
α ′i βi
)
α3k−i−1−1

i+1

)
esp
(
α ′i+1βi+1

)
esp
(
α3k−i−1−3

i+1 αi+1αi+1

)

= esp
(
esp
(
α ′i βi
)
α3k−i−1−1

i+1

)
esp
(
α ′i+1βi+1

)
α3k−i−2−1

i+2 α ′i+2,

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

50:52 J. Fischer et al.

and α ′i+2 carries on to the nodes 〈Xi+2〉i+2〈Xi+3〉i+2 on height i + 2 due to Corollary A.3.
Overall, the leftmost and rightmost node on height i + 1 ofTi changes, for i = 0, . . . ,k − 1. Such

a changed node v of Ti on height i + 1 has k − i − 1 ancestors in Ti , which become changed by
changing the name of v . Therefore, at least k − 1 + (k − 2) + (k − 3) + · · · + 1 = (k2 − k)/2 nodes
are changed. Hence, there is a lower bound of Ω(k2) = Ω(log2

3 (n/ log3 n)) = Ω(lg2 n) changed
nodes. �

REFERENCES

[1] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. 2000. Pattern matching in dynamic texts. In Proceedings of

the SODA. 819–828.

[2] Arne Andersson and Stefan Nilsson. 1994. A new efficient radix sort. In Proceedings of the FOCS. 714–721.

[3] Hideo Bannai. 2016. Grammar compression. In Encyclopedia of Algorithms. Springer, 861–866.

[4] Jon Louis Bentley and Robert Sedgewick. 1997. Fast algorithms for sorting and searching strings. In Proceedings of

the SODA. 360–369.

[5] Philip Bille, Johannes Fischer, Inge Li Gørtz, Tsvi Kopelowitz, Benjamin Sach, and Hjalte Wedel Vildhøj. 2016. Sparse

text indexing in small space. ACM Trans. Algor. 12, 3 (2016), 39:1–39:19.

[6] Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and Hjalte Wedel Vildhøj. 2015. Longest

common extensions in sublinear space. In Proceedings of the CPM (LNCS), Vol. 9133. 65–76.

[7] Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. 2014. Time-space trade-offs for longest common

extensions. J. Disc. Algor. 25 (2014), 42–50.

[8] Timothy M. Chan, J. Ian Munro, and Venkatesh Raman. 2014. Selection and sorting in the “restore” model. In Pro-

ceedings of the SODA. 995–1004.

[9] Charles J. Colbourn and Alan C. H. Ling. 2000. Quorums from difference covers. Inf. Proc. Lett. 75, 1–2 (2000), 9–12.

[10] Graham Cormode and S. Muthukrishnan. 2005. Substring compression problems. In Proceedings of the SODA. 321–330.

[11] Graham Cormode and S. Muthukrishnan. 2007. The string edit distance matching problem with moves. ACM Trans.

Algor. 3, 1 (2007), 2:1–2:19.

[12] Johannes Fischer, Tomohiro I, and Dominik Köppl. 2016. Deterministic sparse suffix sorting on rewritable texts. In

Proceedings of the LATIN (LNCS), Vol. 9644. 483–496.

[13] Gianni Franceschini and Roberto Grossi. 2008. No sorting? Better searching! ACM Trans. Algor. 4, 1 (2008), 2:1–2:13.

[14] Shouhei Fukunaga, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto. 2016. Online grammar compression

for frequent pattern discovery. In Proceedings of the International Conference on Grammatical Inference (Workshop and

Conference Proceedings), Vol. 57. 93–104.

[15] Michal Ganczorz, Pawel Gawrychowski, Artur Jez, and Tomasz Kociumaka. 2018. Edit distance with block operations.

In Proceedings of the ESA (LIPIcs), Vol. 112. 33:1–33:14.

[16] Pawel Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr Sankowski. 2018. Optimal dy-

namic strings. In Proceedings of the SODA. 1509–1528.

[17] Pawel Gawrychowski and Tomasz Kociumaka. 2017. Sparse suffix tree construction in optimal time and space. In

Proceedings of the SODA. 425–439.

[18] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. 1987. Parallel symmetry-breaking in sparse graphs.

In Proceedings of the STOC. 315–324.

[19] Keisuke Goto. 2019. Optimal time and space construction of suffix arrays and LCP arrays for integer alphabets. In

Proceedings of the PSC. 111–125.

[20] Tomohiro I. 2017. Longest common extensions with recompression. In Proceedings of the CPM (LIPIcs), Vol. 78. 18:1–

18:15.

[21] Tomohiro I, Juha Kärkkäinen, and Dominik Kempa. 2014. Faster sparse suffix sorting. In Proceedings of the STACS

(LIPIcs), Vol. 25. 386–396.

[22] Robert W. Irving and Lorna Love. 2003. The suffix binary search tree and suffix AVL tree. J. Disc. Algor. 1, 5–6 (2003),

387–408.

[23] Guy Joseph Jacobson. 1989. Space-efficient static trees and graphs. In Proceedings of the FOCS. IEEE Computer Society,

549–554.

[24] Juha Kärkkäinen and Dominik Kempa. 2016. LCP array construction using O (sor t (n)) (or less) I/Os. In Proceedings

of the SPIRE (LNCS), Vol. 9954. 204–217.

[25] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. 2006. Linear work suffix array construction. J. ACM 53, 6

(2006), 918–936.

[26] Juha Kärkkäinen and Esko Ukkonen. 1996. Sparse suffix trees. In Proceedings of the COCOON (LNCS), Vol. 1090. 219–

230.

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

Deterministic Sparse Suffix Sorting in the Restore Model 50:53

[27] Zia Khan, Joshua S. Bloom, Leonid Kruglyak, and Mona Singh. 2009. A practical algorithm for finding maximal exact

matches in large sequence datasets using sparse suffix arrays. Bioinformatics 25, 13 (2009), 1609–1616.

[28] Roman Kolpakov, Gregory Kucherov, and Tatiana A. Starikovskaya. 2011. Pattern matching on sparse suffix trees. In

Proceedings of the Data Compression, Communications and Processing. 92–97.

[29] Zhize Li, Jian Li, and Hongwei Huo. 2016. Optimal in-place suffix sorting. ArXiv abs/1610.08305 (2016).

[30] Shirou Maruyama, Masaya Nakahara, Naoya Kishiue, and Hiroshi Sakamoto. 2013. ESP-index: A compressed index

based on edit-sensitive parsing. J. Disc. Algor. 18 (2013), 100–112.

[31] Kurt Mehlhorn, R. Sundar, and Christian Uhrig. 1994. Maintaining dynamic sequences under equality-tests in poly-

logarithmic time. In Proceedings of the SODA. 213–222.

[32] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. 2016. Fully dynamic data

structure for LCE queries in compressed space. In Proceedings of the MFCS (LIPIcs), Vol. 58. 72:1–72:15.

[33] Ge Nong, Sen Zhang, and Wai Hong Chan. 2011. Two efficient algorithms for linear time suffix array construction.

IEEE Trans. Comput. 60, 10 (2011), 1471–1484.

[34] Rasmus Pagh. 2001. Low redundancy in static dictionaries with constant query time. SIAM J. Comp. 31, 2 (2001),

353–363.

[35] Nicola Prezza. 2018. In-place sparse suffix sorting. In Proceedings of the SODA. 1496–1508.

[36] Simon John Puglisi, William F. Smyth, and Andrew Turpin. 2007. A taxonomy of suffix array construction algorithms.

Comput. Surv. 39, 2 (2007), 1–31.

[37] Naila Rahman and Rajeev Raman. 2008. Rank and select operations on binary strings. In Encyclopedia of Algorithms.

Springer, 748–751.

[38] Sühleyman Cenk Sahinalp and Uzi Vishkin. 1994. Symmetry breaking for suffix tree construction. In Proceedings of

the STOC. 300–309.

[39] Hiroshi Sakamoto, Shirou Maruyama, Takuya Kida, and Shinichi Shimozono. 2009. A space-saving approximation

algorithm for grammar-based compression. IEICE Trans. 92-D, 2 (2009), 158–165.

[40] Yoshimasa Takabatake, Kenta Nakashima, Tetsuji Kuboyama, Yasuo Tabei, and Hiroshi Sakamoto. 2016. siEDM: An

efficient string index and search algorithm for edit distance with moves. Algorithms 9, 2 (2016), 26:1–26:18.

[41] Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto. 2014. Improved ESP-index: A practical self-index for

highly repetitive texts. In Proceedings of the SEA (LNCS), Vol. 8504. 338–350.

[42] Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi, and Masayuki Takeda. 2016. Deter-

ministic sub-linear space LCE data structures with efficient construction. In Proceedings of the CPM (LIPIcs), Vol. 54.

1:1–1:10.

[43] Yuka Tanimura, Takaaki Nishimoto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. 2017. Small-space LCE

data structure with constant-time queries. In Proceedings of the MFCS (LIPIcs), Vol. 83. 10:1–10:15.

[44] Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. 2013. essaMEM: Finding maximal exact

matches using enhanced sparse suffix arrays. Bioinformatics 29, 6 (2013), 802–804.

Received March 2018; revised February 2020; accepted May 2020

ACM Transactions on Algorithms, Vol. 16, No. 4, Article 50. Publication date: July 2020.

