
Theory Comput Syst (2018) 62:162–191
DOI 10.1007/s00224-017-9794-5

Tighter Bounds and Optimal Algorithms for All
Maximal α-gapped Repeats and Palindromes
Finding All Maximal α-gapped Repeats and Palindromes
in Optimal Worst Case Time on Integer Alphabets

Paweł Gawrychowski1 · Tomohiro I2 ·
Shunsuke Inenaga3 · Dominik Köppl4 ·
Florin Manea5

Published online: 15 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract An α-gapped repeat (α ≥ 1) in a word w is a factor uvu of w such that
|uv| ≤ α |u|; the two occurrences of u are called arms of this α-gapped repeat. An α-
gapped repeat is called maximal if its arms cannot be extended simultaneously with
the same character to the right nor to the left. We show that the number of all maximal
α-gapped repeats occurring in words of length n is upper bounded by 18αn. In the

Parts of this work have already been presented at 33rd International Symposium on Theoretical
Aspects of Computer Science [13] and at the 20th International Symposium on Fundamentals of
Computation Theory [10].

This article is part of the Topical Collection on Theoretical Aspects of Computer Science

� Paweł Gawrychowski
gawry@mimuw.edu.pl

Tomohiro I
tomohiro@ai.kyutech.ac.jp

Shunsuke Inenaga
inenaga@inf.kyushu-u.ac.jp

Dominik Köppl
dominik.koeppl@tu-dortmund.de

Florin Manea
flm@informatik.uni-kiel.de

1 Institute of Informatics, University of Warsaw, Warsaw, Poland

2 Department of Artificial Intelligence, Kyushu Institute of Technology, Fukuoka, Japan

3 Department of Informatics, Kyushu University, Fukuoka, Japan

4 Department of Computer Science, TU Dortmund, Dortmund, Germany

5 Department of Computer Science, Kiel University, Kiel, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9794-5&domain=pdf
mailto:gawry@mimuw.edu.pl
mailto:tomohiro@ai.kyutech.ac.jp
mailto:inenaga@inf.kyushu-u.ac.jp
mailto:dominik.koeppl@tu-dortmund.de
mailto:flm@informatik.uni-kiel.de

Theory Comput Syst (2018) 62:162–191 163

case of α-gapped palindromes, i.e., factors uvuᵀ with |uv| ≤ α|u|, we show that
the number of all maximal α-gapped palindromes occurring in words of length n is
upper bounded by 28αn + 7n. Both upper bounds allow us to construct algorithms
finding all maximal α-gapped repeats and/or all maximal α-gapped palindromes of a
word of length n on an integer alphabet of size nO(1) in O(αn) time. The presented
running times are optimal since there are words that have �(αn) maximal α-gapped
repeats/palindromes.

Keywords Combinatorics on words · Counting algorithms

1 Introduction

Gapped repeats and palindromes are repetitive structures occurring in words that
were investigated extensively within theoretical computer science (see, e.g., [3, 5–
8, 10, 14, 17–19, 22] and the references therein) with motivation coming especially
from the analysis of DNA and RNA structures, modelling different types of tandem
and interspersed repeats as well as hairpin structures; such structures are important
in analyzing the structural and functional information of the genetic sequences (see,
e.g., [3, 14, 18]).

Let wᵀ denote the reversed word of a word w. An α-gapped repeat (respectively,
an α-gapped palindrome) is a factor of the form uvu (respectively, uvuᵀ) with |uv| ≤
α|u|, for a real number α ≥ 1. These are natural generalization of classical repetitive
and palindromic structures in a word: 1-gapped repeats and 1-gapped palindromes
are respectively equivalent to squares and even palindromes, which are very well
known and studied structures. Also, 2-gapped repeats and 2-gapped palindromes are
respectively called long-armed pairs and long-armed palindromes.

The problem of searching for gapped repeats and palindromes in words is not so
new (see [3, 14, 17]), and different solutions were proposed depending on the type of
restrictions imposed on the gap. Kolpakov and Kucherov [18] introduced the notion
of long-armed palindromes (equivalently, 2-gapped palindromes), and showed how to
compute the set Gᵀ

2 (w) of all maximal 2-gapped palindromes in O(n+|Gᵀ
2 (w)|) time

for an input word w of length n over a constant alphabet. They left the question open
how large

∣
∣Gᵀ

2 (w)
∣
∣ can actually be. In [19], Kolpakov et al. introduced the notion of

α-gapped repeats, and showed that the set Gα(w) of all maximal α-gapped repeats
can be computed in O(α2n+|Gα(w)|) time for integer alphabets. They further proved
that |Gα(w)| = O(α2n), and that the number of all maximal factors with exponents
in (1 + δ, 2] for a δ ∈ (0, 1], so-called δ-subrepetitions, is bounded by the number
of all maximal 1/δ-gapped repeats. In their article, they posed two open questions
concerning the bounds they computed:

– Closing the gap between the upper bound O(α2n) and the lower bound �(αn)

for the number of maximal α-gapped repeats, and
– Developing a more efficient algorithm.

Problems like how many maximal α-gapped repeats or palindromes can a word of
length n contain, how efficiently can we compute the set of all maximal α-gapped

164 Theory Comput Syst (2018) 62:162–191

repeats or palindromes in a word, how efficiently can we compute the α-gapped
repeat or palindrome with the longest arm, were already investigated [3, 7, 10, 22]:
[10] showed how to compute the longest α-gapped repeat/palindrome in O(αn) time,
[8] showed how to compute a series of data structures that can give the longest 2-
gapped repeat/palindrome that starts at each position (and the results generalize easily
to arbitrary α), Tanimura et al. [22] gave an O(αn + |Gα(w)|)-time solution to find
all maximal α-gapped repeats for an input word over constant alphabets. Finally, in
August 2015, the fourth author of this paper announced on the Stringmasters web-
page that the bound on the number of all maximal α-gapped repeats and palindromes
is indeed O(αn); together with [22], this leads to an optimal algorithm for solving the
problem of finding all maximal α-gapped repeats in the particular case of constant
alphabets. This announcement was followed by Crochemore et al. [7] who confirmed
the bound |Gα(w)| = O(αn); additionally, they presented an algorithm computing
all maximal α-gapped repeats for constant alphabets in O(αn) time.

Our article concludes in big measure this line of research: we give concrete bounds
of the number of α-gapped repeats and α-gapped palindromes, and, building on the
approach from [10], we give optimal algorithms for finding them in the usual case of
an integer alphabet whose size is polynomial in the input string length. Namely, we
obtain the following results:

– The number of all maximal α-gapped repeats in a word of length n is at most
18αn (Theorem 11).

– The number of all maximal α-gapped palindromes in a word of length n is at
most 28αn + 7n (Theorem 14).

– We can compute the set of all α-gapped repeats in O(αn) time for integer
alphabets (Theorem 28).

– This algorithm can be adapted to find the number of all maximal α-gapped
palindromes in O(αn) time (Corollary 29).

The following example shows that our obtained bounds on the number of all maximal
α-gapped repeats and palindromes are asymptotically tight:

Example 1 ([7, Thm. 2]) The word wk := (abba)k with k ∈ N contains �(αn)

maximal α-gapped repeats whose arms are of length one. Since an α-gapped repeat
whose arms have length one is an α-gapped palindrome, we get that the number of
maximal α-gapped repeats and the number of maximal α-gapped palindromes in the
word wk is �(αn).

In this sense, we cannot hope for algorithms finding all α-gapped repeats or palin-
dromes faster in the worst case. The results above improve those of [19] (as well as
those existing in the literature before [19]). Our algorithms require a deeper analysis
than the one developed in [10] for finding the longest α-gapped repeats. Asides, they
use essentially different techniques and data structures than the ones described in [7,
18, 22].

A related problem is the computation of all factors with an exponent less than
2 that are maximal with respect to their exponents. This problem was recently
investigated in [1].

Theory Comput Syst (2018) 62:162–191 165

2 Combinatorics on Words

Let Σ be a finite alphabet; an element of Σ is called character. Σ∗ denotes the set
of all finite words over Σ . The length of a word w ∈ Σ∗ is denoted by |w|. For
v = xuy with x, u, y ∈ Σ∗, we call x, u and y a prefix, factor, and suffix of v,
respectively. We denote by w[i] the character occurring at position i in w, and by
w[i, j] the factor of w starting at position i and ending at position j, consisting of
the catenation of the characters w[i], . . . , w[j], where 1 ≤ i ≤ j ≤ n; w[i, j] is the
empty word if i > j . By wᵀ we denote the mirror image of w.

By I = [b, e] we represent the set of consecutive integers from b to e, for b ≤ e,
and call I an interval. For an interval I, we use the notations b(I) and e(I) to denote
the beginning and end of I; i.e., I = [b(I), e(I)]. We write |I| to denote the length
of I; i.e., |I| = e(I) − b(I) + 1.

A subword w[b, e] of a word w is the occurrence of a factor f equal to w[b, e]
in w; we say that f occurs at position b in w. While a factor is identified only by a
sequence of characters, a subword is also identified by its position in the word. So
subwords are always unique, while a word may contain multiple occurrences of the
same factor. We use the same notation for defining factors and subwords of a word.
For two subwords u and u of a word w, we write u = u if they start at the same
position in w and have the same length. We write u ≡ u if the factors identifying
these subwords are the same (hence u = u ⇒ u ≡ u). We implicitly use subwords
both like factors of w and as intervals contained in [1, |w|], e.g., we write u ⊆ u if two
subwords u := w[b, e], u := w[b, e] of w satisfy [b, e] ⊆ [b, e], i.e., b(u) ≤ b(u) ≤
e(u) ≤ e(u). Two subwords u and u of the same word w are called consecutive, iff
e(u) + 1 = b(u). Two occurrences u and u with b(u) < b(u) of the same factor v

in a word w are called subsequent if there is no occurrence of v starting between
b(u) + 1 and b(u) − 1.

A period of a word w over Σ is a positive integer p < |w| such that w[i] = w[j]
for all i and j with 1 ≤ i, j ≤ |w| and i ≡ j (mod p); a word that has period p is
also called p-periodic. A word w whose smallest period is at most 	|w| /2
 is called
periodic; otherwise, w is called aperiodic.

For a word w, we call a triple of consecutive subwords (uλ, v, uρ) a gapped
repeat with period |uλv| and gap |v| iff uρ ≡ uλ. A triple of consecutive subwords
(uλ, v, uρ) is called a gapped palindrome with gap |v| iff uρ ≡ uλ

ᵀ. The subwords
uλ and uρ are called left and right arm, respectively. For α ≥ 1, the gapped repeat
(palindrome) uλ, v, uρ is called α-gapped iff |uλ|+|v| ≤ α |uλ| (see Fig. 1). Further,

Fig. 1 A factor of the form
uλvuρ . It is called an α-gapped
repeat (palindrome) if
|uλv| ≤ α |uλ| and uλ ≡ uρ

(uρ ≡ uλ
ᵀ)

166 Theory Comput Syst (2018) 62:162–191

it is called maximal iff its arms cannot be extended simultaneously to the right nor to
the left. This means for a gapped repeat uλ, v, uρ that w[b(uλ) − 1] �= w[b(uρ) − 1]
and w[e(uλ) + 1] �= w[e(uρ) + 1], and for a gapped palindrome uλ, v, uρ that
w[b(uλ) − 1] �= w[e(uρ) + 1] and w[e(uλ) + 1] �= w[b(uρ) − 1]. Let Gα(w)

(resp. Gᵀ
α (w)) denote the set of all maximal α-gapped repeats (resp. palindromes)

in w. The representation of a maximal gapped repeat (resp. palindrome) by the sub-
word z := w[uλ]w[v]w[uρ] is not unique — the same subword z can be composed
of gapped repeats (resp. palindromes) with different periods (resp. different gaps).
Instead, a maximal gapped repeat (resp. palindrome) is uniquely determined by its
left arm uλ and its period (resp. gap). By fixing w, we can map uλ, v, uρ injectively
to the pair of integers (e(uλ), |uλv|) in case of gapped repeats, or to (e(uλ), |v|) in
case of gapped palindromes.

A repetition in a word w is a periodic factor; a run is a maximal repetition; the
exponent of a run is the (rational) number of times the period fits in that run. Let
E(w) denote the sum of the exponents of runs in the word w. The exponent of a run r

is denoted by exp(r). We use the following results from the literature:

Lemma 1 The length of the overlap between two subsequent occurrences of an
aperiodic factor u in a word w is upper bounded by 	|u| /2
.

Lemma 2 ([2]) For a word w, E(w) < 3 |w|, and the number of runs is less than
|w|.

Corollary 3 ([7, Conclusions]) The number of maximal 1-gapped repeats is less than
|w|.

Lemma 4 ([19]) Two distinct runs with the same minimal period p cannot have an
overlap of length greater than or equal to p.

Observation 5 The mirror image of a gapped repeat (resp. palindrome) is a gapped
repeat (resp. palindrome) with the same period. Hence, there exist the bijections
Gα(w) ∼ Gα(wᵀ) and Gᵀ

α (w) ∼ Gᵀ
α (wᵀ).

2.1 Point Analysis

A pair of positive integers is called a point. We use points to bound the cardinality of
a subset of gapped repeats and gapped palindromes by injectively mapping a gapped
repeat (resp. palindrome) to a point as stated above. To this end, we show that a
certain vicinity of any point generated by a member of this subset does not contain
any point that is generated by another member. This vicinity is given by

Definition 6 Given a real number γ with γ ∈ (0, 1], we say that a point (x, y)

γ -covers a point (x′, y′) iff x − γy ≤ x′ ≤ x and y − γy ≤ y′ ≤ y.

Theory Comput Syst (2018) 62:162–191 167

It is crucial that the γ factor is always multiplied with the y-coordinates. In other
words, the number of γ -covers of a point (·, y) correlates with γ and the value y.
The main property of this definition is given by

Lemma 7 Given a real number γ with γ ∈ (0, 1], let S ⊂ [1, n]2 ⊂ N
2 be a set of

points such that no two distinct points in S γ -cover the same point. Then |S| < 3n/γ .

Proof We estimate the maximal number of points that can be placed in [1, n]2 ⊂ N
2

such that their covered points are disjoint. First, the number of points (·, y) ∈ [1, n]2

with y < 1/γ is less than n/γ . Second, if a point (·, y) satisfies 2
/γ ≤ y < 2
+1/γ

for an integer
 ≥ 0, the point (·, y) γ -covers at least 2
 × 2
 points, or to put it
differently, this point γ -covers at least 2
 points (·, y′) with y − 2
 ≤ y′ ≤ y. In
other words, there are at most n/(2
γ) points in S with 2
/γ ≤ y < 2
+1/γ . Hence,
|S| < n/γ + ∑∞

=0 n/(2
γ) = 3n/γ .

Kolpakov et al. [19] split the set of all maximal α-gapped repeats into three
subsets, and studied the maximal size of each subset:

– those whose arms are contained in one or two runs,
– those whose arms contain a periodic prefix or suffix larger than half of the size

of the arms, and
– those belonging to neither of the two subsets.

They showed that the first two subsets contain at most O(αn) elements. The point
analysis is used as a tool for studying the last subset. By mapping a gapped repeat
to a point consisting of the end position of its left arm and its period, they showed
that the points created by two different maximal α-gapped repeats cannot 1

4α
-cover

the same point. By this property, they bounded the size of the last subset by O(α2n).
Lemma 7 immediately improves this bound of O(α2n) to O(αn). Consequently, it
shows that the number of maximal α-gapped repeats of a word of length n is O(αn).

2.2 Upper Bound on the Number of Periodic Maximal α-gapped Repeats
and Palindromes

Unlike [7, 18, 19], we partition the maximal α-gapped repeats (resp. palindromes)
differently. We categorize a gapped repeat (resp. palindrome) depending on whether
their left arm contains a periodic prefix or not. The two subsets are treated differently.
For the ones having a periodic prefix, we think about the number of runs covering
this prefix. The other category is analyzed by using the results of Section 2.1. We
begin with a formal definition of both subsets and analyze the former subset.

Let β be a real number with 0 < β < 1. A gapped repeat (resp. palindrome)
σ = uλ, v, uρ belongs to βPα(w) (resp. βPᵀ

α(w)) iff uλ contains a periodic prefix
of length at least β |uλ|. We call σ periodic. Otherwise σ ∈ βPα(w) (resp. σ ∈
βPᵀ

α(w)), where βPα(w) := Gα(w) \ βPα(w) and βPᵀ
α(w) := Gᵀ

α (w) \ βPᵀ
α(w);

we call σ aperiodic.

168 Theory Comput Syst (2018) 62:162–191

Fig. 2 Setting of Lemma 8(a). The equation b(uλ) = b(rλ) or b(uρ) = b(rρ) must hold. By the
maximality property of runs, e(rλ) = e(sλ) and e(rρ) = e(sρ)

Lemma 8 Let w be a word, α > 1 and 0 < β < 1 two real numbers. Then

(a) |βPα(w)| is at most 2αE(w)/β, and
(b)

∣
∣βPᵀ

α(w)
∣
∣ is at most 2(α + 1)E(w)/β.

Proof Let σ = (uλ, v, uρ) ∈ βPα(w) (resp. σ ∈ βPᵀ
α(w)). By definition, the left

arm uλ has a periodic prefix sλ of length at least β |uλ|. Let rλ denote the run that
generates sλ, i.e., sλ ⊆ rλ and they both have the common shortest period p. By
the definition of gapped repeats (resp. palindromes), there is a right copy sρ of sλ
contained in uρ with

sρ =
{

w[b(sλ) + |uλv| , e(sλ) + |uλv|] ≡ sλ if σ ∈ βPα(w),
w[b(uρ) + (e(uλ) − e(sλ)), b(uρ) + (e(uλ) − e(sλ)) + |sλ| − 1] ≡ sλ

ᵀ if σ ∈ βPᵀ
α(w).

Let rρ be a run generating sρ (it is possible that rρ and rλ are identical). By definition,
rρ has the same period p as rλ.

Since σ is maximal, b(uλ) = b(rλ) or b(uρ) = b(rρ) (resp. e(uρ) = e(rρ))
must hold (see Fig. 2, resp. Fig. 3); otherwise we could extend σ to the left (resp.
outwards).

(a) Gapped Repeats

The periodic α-gapped repeat σ is uniquely determined by its period q := |uλv|, and

– rλ in case b(uλ) = b(rλ), or
– rρ in case b(uρ) = b(rρ).

We analyze the case b(uλ) = b(sλ) = b(rλ), the other is treated exactly in the same
way by symmetry. The gapped repeat σ is identified by rλ and the period q. We fix rλ
and pose the question how many maximal periodic gapped repeats can be generated
by rλ. To this end, we count the number of possible values for the period q. Given
two different gapped repeats σ1 and σ2 with respective periods q1 and q2 such that
the left arms of both are generated by rλ, the difference between q1 and q2 must be
at least p.

Fig. 3 Setting of Lemma 8(b). The equation b(uλ) = b(rλ) or e(uρ) = e(rρ) must hold. By the
maximality property of runs, e(rλ) = e(sλ) and b(rρ) = b(sρ)

Theory Comput Syst (2018) 62:162–191 169

Sub-Claim Given two different gapped repeats σ1 and σ2 with respective periods
q1 and q2 such that the left arms of both are generated by rλ, the difference δ

between q1 and q2 must be at least p.

Sub-Proof We consider two cases:

– If e(uλ) = e(rλ), then uλ = sλ = rλ, so uλ is p-periodic. Since both right arms
are p-periodic, too, δ is a multiple of p.

– Otherwise, both gapped repeats are generated by two different repeats with
period p. So by Lemma 4, δ must be at least p.

Since |uλ| ≤ |sλ| /β and σ is α-gapped, 1 ≤ q ≤ |sλ| α/β ≤ |rλ| α/β. Then
the number of possible periods q is bounded by |rλ| α/(βp) = exp(rλ)α/β. There-
fore the number of maximal α-gapped repeats is bounded by αE(w)/β for the
case b(uλ) = b(rλ). Since the case b(uρ) = b(rρ) is symmetric, we get the bound
2αE(w)/β in total.

(b) Gapped Palindromes

The periodic α-gapped palindrome σ is uniquely determined by its distance d :=
b(sρ) − e(sλ), and

– rλ in case b(uλ) = b(rλ), or
– rρ in case e(uρ) = e(rρ).

We analyze the case b(sλ) = b(rλ), the other is treated exactly in the same way by
symmetry. The gapped palindrome σ is identified by rλ and d. We fix rλ and count the
number of possible values for d. Given two different periodic α-gapped palindromes
with the distances d1 and d2, the difference between d1 and d2 must be at least p,
due to Lemma 4. It follows from |uλ| ≤ |sλ| /β that d = |v| + 2(|uλ| − |sλ|) ≤
|v| + 2 |sλ| /β. Since σ is α-gapped, |v| ≤ (α − 1) |uλ| ≤ (α − 1) |sλ| /β, and hence,
1 ≤ d ≤ |sλ| (α + 1)/β. Then the number of possible values for the distance d is
bounded by |sλ| (α + 1)/(βp) ≤ |rλ| (α + 1)/(βp) = exp(rλ)(α + 1)/β. In total, the
number of maximal α-gapped palindromes in this case is bounded by (α+1)E(w)/β

for the case b(uλ) = b(rλ). Since the case b(uρ) = b(rρ) is symmetric, we get the
bound 2(α + 1)E(w)/β in total.

2.3 Upper Bound on the Number of Maximal α-gapped Repeats

We optimize the proof technique from Kolpakov et al. [19] and improve the upper
bound on the number of maximal α-gapped repeats in a word of length n from O(αn)

to 18αn. Remembering the results of Section 2.1, we map gapped repeats to their
respective points. By using the period of a gapped repeat as the y-coordinate, we can
show the following lemma:

Lemma 9 Given a word w, and two real numbers α, β with α > 1 and 2/3 ≤ β <

1, the points mapped by two different maximal gapped repeats in βPα(w) cannot
1−β
α

-cover the same point.

170 Theory Comput Syst (2018) 62:162–191

Proof Let σ = uλ, v, uρ and σ = uλ, v, uρ be two different maximal gapped repeats
in βPα(w). Set u := |uλ| = ∣

∣uρ

∣
∣, u := |uλ| = ∣

∣uρ

∣
∣, q := |uλv| and q := |uλv|.

We map the maximal gapped repeats σ and σ to the points (e(uλ), q) and (e(uλ), q),
respectively. Assume, for the sake of contradiction, that both points 1−β

α
-cover the

same point (x, y).
Let z := |e(uλ) − e(uλ)| be the difference of the endings of both left arms, and

sλ := w[[b(uλ), e(uλ)] ∩ [b(uλ), e(uλ)]] be the overlap of uλ and uλ. Let s := |sλ|,
and let sρ (resp. sρ) be the right copy of sλ based on σ (resp. σ).

Sub-Claim The overlap sλ is not empty, and sρ �= sρ
Sub-Proof Assume for this sub-proof that e(uλ) < e(uλ) (otherwise exchange σ

with σ , or yield the contradiction σ = σ). The latter contradiction (σ = σ) is
yielded by the following consideration: Since e(uλ) = e(uλ), sλ cannot be empty
(it is the intersection of both left arms). Further, both right copies are defined as
the right translation of sλ by q and q, respectively. So if both right copies are
identical, then q = q, which contradicts the fact that the mapping of a maximal
gapped repeat to the point consisting of its end point and its period is injective.

Having e(uλ) < e(uλ), we can combine the (1 − β)/α-cover property with the fact
that σ is α-gapped, and yield e(uλ)−u ≤ e(uλ)−q/α < e(uλ)−q(1−β)/α ≤ x ≤
e(uλ) < e(uλ). Hence, the subword w[e(uλ)] is contained in uλ. If sρ = sρ , then we
get a contradiction to the maximality of σ : By the above inequality, w[e(uλ) + 1] is
contained in uλ, too. Since σ is a gapped repeat, the character w[e(uλ) + 1] occurs
in uρ , exactly at w[e(uρ) + 1].

This sub-claim shows that q �= q. Without loss of generality let q < q. Then

q − q(1 − β)

α
≤ y ≤ q ≤ q. (1)

So the difference of both periods is 0<δ :=q−q ≤q(1−β)/α≤u(1−β). (2)

Eq. (1) also yields that u ≥ q/α ≥ q

α
(1 − 1 − β

α
) ≥ qβ/α. (3)

Since sρ = [b(sλ) + q, e(sλ) + q] and sρ = [b(sλ) + q, e(sλ) + q], we have b(sρ) −
b(sρ) = δ.

By case analysis, we show that uλ or uλ has a periodic prefix, which leads to the
contradiction that σ or σ are in βPα(w).

1. Case e(uλ) ≤ e(uλ). Since e(uλ) − q(1 − β)/α ≤ x ≤ e(uλ) ≤ e(uλ),

z = e(uλ) − e(uλ) ≤ q(1 − β)/α ≤ u(1 − β). (4)

1a. Sub-Case b(uλ) ≤ b(uλ), see Fig. 4. By (4), we get s = u− z ≥ uβ. It follows
from (2) and 2/3 ≤ β < 1 that s/δ ≥ uβ/u(1 − β) = β/(1 − β) ≥ 2, which
means that sρ and sρ overlap at least half of their common length, so sλ is periodic.
Since sλ is a prefix of uλ of length s ≥ uβ, σ is in βPα(w), a contradiction.

1b. Sub-Case b(uλ) > b(uλ), see Fig. 5. We conclude that sλ = uλ. It follows
from (2) and (3) and 2/3 ≤ β < 1 that s/δ ≥ qαβ/(qα(1−β)) = β/(1−β) ≥
2, which means that sλ = uλ is periodic. Hence σ is in βPα(w), a contradiction.

Theory Comput Syst (2018) 62:162–191 171

Fig. 4 Sub-Case 1a

2. Case e(uλ) > e(uλ). Since e(uλ) − q(1 − β)/α ≤ x ≤ e(uλ) ≤ e(uλ),

z = e(uλ) − e(uλ) ≤ q(1 − β)/α ≤ q(1 − β)/α ≤ u(1 − β). (5)

2a. Sub-Case b(uλ) ≤ b(uλ), see Fig. 6. We conclude that sλ = uλ. It follows
from (2) and 2/3 ≤ β < 1 that s/δ ≥ u/(u(1 − β)) = 1/(1 − β) ≥ 3 > 2,
which means that sλ = uλ is periodic. Hence σ is in βPα(w), a contradiction.

2b. Sub-Case b(uλ) > b(uλ), see Fig. 7. By (5) we get z ≤ q(1−β)/α ≤ u(1−β)

and hence s = u − z ≥ uβ. If δ ≤ s/2, sρ and sρ overlap at least half of their
common length, which leads to the contradiction that uλ has a periodic prefix
sλ of length at least uβ. Otherwise, let us assume that s/2 < δ. By (2) and (3)
we get u/δ ≥ qαβ/(qα(1 − β)) = β/(1 − β) ≥ 2 with 2/3 ≤ β < 1. Hence, δ

is upper bounded by u/2; so uρ has a periodic prefix of length at least 2δ (since
2δ > s ≥ uβ), a contradiction.

The next lemma follows immediately from Lemmas 7 and 9.

Lemma 10 Given two real numbers α, β with α > 1 and 2/3 ≤ β < 1, the number
of all aperiodic maximal α-gapped repeats

∣
∣βPα(w)

∣
∣ of a word w of length n is less

than 3αn/(1 − β).

Theorem 11 Given a word w of length n and a real number α > 1, the number of
all α-gapped repeats |Gα(w)| is less than 18αn.

Proof Combining the results of Lemma 8(a) and Lemma 10, |Gα(w)| = |βPα(w)|+
∣
∣βPα(w)

∣
∣ < 2αE(w)/β + 3αn/(1 − β) for 2/3 ≤ β < 1. Applying Lemma 2, the

term is upper bounded by 6αn/β+3αn/(1−β). The number is minimal for β = 2/3,
yielding the bound 18αn.

With Corollary 3 we obtain the result of Theorem 11 for α ≥ 1.

Fig. 5 Sub-Case 1b

172 Theory Comput Syst (2018) 62:162–191

Fig. 6 Sub-Case 2a

2.4 Upper Bound on the Number of Maximal α-gapped Palindromes

We can bound the maximum number of maximal α-gapped palindromes by similar
proofs to 28αn + 7n. This bound solves an open problem in [18], where Kolpakov
and Kucherov conjectured that the number of α-gapped palindromes with α ≥ 2
in a word is linear. We briefly explain the main differences and similarities needed
to understand the relationship between gapped repeats and palindromes. Let σ be a
maximal α-gapped repeat (or α-gapped palindrome). If σ has a periodic prefix sλ
generated by a run, then its right arm has a periodic prefix (suffix) sρ generated by
a run of the same period. Since σ is maximal, both runs have to obey constraints
that are similar in both cases, considering whether σ is a gapped repeat or a gapped
palindrome (this is reflected by the fact that large parts for proving the statements
of Lemma 8(a) and Lemma 8(b) are identical). Like with aperiodic gapped repeats,
we can apply the point analysis to the aperiodic α-gapped palindromes, too. Our
main idea is to map a gapped palindrome uλ, v, uρ injectively to the pair of integers
(e(uλ), |v|), exchanging the period with the size of the gap.

In what follows, we focus on maximal α-gapped palindromes with α > 1. That is
because the case α = 1 is already solved in literature. To see this, we observe that
1-gapped palindromes are (plain) palindromes. A palindrome u is a subword with
uᵀ = u. Its center is the value (e(u) + b(u))/2. A palindrome is called maximal
if there is no longer palindrome with the same center. So a maximal palindrome
is uniquely defined by its center. Hence, the number of maximal palindromes in a
word of length n is at most 2n − 1. We conclude our observation with the fact that
maximal 1-gapped palindromes are maximal palindromes. For the algorithmic part,
the algorithm of [20] can be used to find all the maximal palindromes in linear time.

Lemma 12 Given a word w, and two real numbers α > 1 and 6/7 ≤ β < 1.
The points mapped by two different maximal gapped palindromes in βPᵀ

α(w) cannot
1−β
α

-cover the same point.

Proof Let σ = uλ, v, uρ and σ = uλ, v, uρ be two different gapped palindromes in
βPᵀ

α(w). Set u := |uλ| = ∣
∣uρ

∣
∣, u := |uλ| = ∣

∣uρ

∣
∣, g := |v| and g := |v|. We map

Fig. 7 Sub-Case 2b

Theory Comput Syst (2018) 62:162–191 173

the maximal gapped palindromes σ and σ to the points (e(uλ), g) and (e(uλ), g),
respectively. Assume, for the sake of contradiction, that both points 1−β

α
-cover the

same point (x, y). This means for the point (e(uλ), g) that e(uλ) − (1 − β)g/α ≤
x ≤ e(uλ) and g − (1 − β)g/α ≤ y ≤ g hold. The same inequations hold when
exchanging (e(uλ), g) with (e(uλ), g).

Let z := |e(uλ) − e(uλ)| be the difference of the endings of both left arms, and
sλ := w[[b(uλ), e(uλ)] ∩ [b(uλ), e(uλ)]] be the overlap of uλ and uλ. Let s = |sλ|,
and let sρ (resp. sρ) be the reversed copy of sλ based on σ (resp. σ).

Sub-Claim The overlap sλ is not empty, and sρ �= sρ
Sub-Proof Assume for this sub-proof that e(uλ) < e(uλ) (otherwise exchange σ

with σ , or yield the contradiction σ = σ). The latter contradiction (σ = σ) is
yielded by the following consideration: Since e(uλ) = e(uλ), sλ cannot be empty
(it is the intersection of both left arms). In particular, it is the longest common
suffix of uλ and uλ. Consequently, both reversed copies sρ and sρ of sλ are prefixes
of uρ and uρ , respectively. The gap between sρ and sρ to sλ is g and g, respectively.
In other words, if sρ = sρ , then g = g, a contradition to the fact that the mapping
of a maximal gapped palindrome to the point consisting of its end point and its
gap is injective.

By combining the (1 − β)/α-cover property with the fact that σ is α-gapped, we
yield e(uλ) − u ≤ e(uλ) − (u + g)/α < e(uλ) − g(1 − β)/α ≤ x ≤ e(uλ) < e(uλ).

So the subword w[e(uλ)] is contained in uλ. If sρ = sρ , then we get a contradiction
to the maximality of σ : By the above inequality, w[e(uλ)+1] is contained in uλ, too.
Since σ is a gapped palindrome, the character w[e(uλ) + 1] occurs in uρ , exactly at
w[b(uρ) − 1].

Without loss of generality let g ≤ g. Then

g − g(1 − β)

α
≤ y ≤ g ≤ g. (6)

So the difference of both gaps is

0 ≤ δ := g − g ≤ g(1 − β)/α ≤ u(1 − β). (7)

By case analysis, we show that sλ is periodic, which leads to the contradiction that
σ or σ are in βPᵀ

α(w).

1. Case e(uλ) ≤ e(uλ). Since e(uλ) − g(1 − β)/α ≤ x ≤ e(uλ) ≤ e(uλ),

z = e(uλ) − e(uλ) ≤ g(1 − β)/α ≤ u(1 − β). (8)

Since sλ is a suffix of uλ, the reverse copy sρ is a prefix of uρ . The starting
positions of both right copies sρ and sρ differ by b(sρ) − b(sρ) = 2z + δ > 0.
The inequality 2z+ δ > 0 holds, since e(uλ) �= e(uλ) or g �= g. By (7) and (8),
we get

2z + δ ≤ 3g(1 − β)/α ≤ 3u(1 − β). (9)

1a. Sub-Case b(uλ) ≤ b(uλ), see Fig. 8. By (8), we get s = u− z ≥ uβ. It follows
from 6/7 ≤ β < 1 and (9) that s/(2z+δ) ≥ uβ/3u(1−β) = β/(3(1−β)) ≥ 2,
which means that sρ and sρ overlap by at least half of their common length, and

174 Theory Comput Syst (2018) 62:162–191

Fig. 8 Sub-Case 1a

sλ is periodic. Since sλ is a prefix of uλ of length s ≥ uβ, σ is in βPᵀ
α(w), a

contradiction.
1b. Sub-Case b(uλ) > b(uλ), see Fig. 9. We conclude that sλ = uλ. By (6) and

β < 1,

u ≥ g/α ≥ g

α

(

1 − 1 − β

α

)

≥ gβ/α. (10)

It follows from 6/7 ≤ β < 1 and (9) that s/(2z + δ) ≥ gαβ/(3αg(1 − β)) =
β/(3(1−β)) ≥ 2, which means that sλ = uλ is periodic. Hence σ is in βPᵀ

α(w),
a contradiction.

2. Case e(uλ) > e(uλ). Since e(uλ) − g(1 − β)/α ≤ x ≤ e(uλ) ≤ e(uλ),

z = e(uλ) − e(uλ) ≤ g(1 − β)/α ≤ g(1 − β)/α ≤ u(1 − β). (11)

The starting positions of both right copies differ by
∣
∣b(sρ) − b(sρ)

∣
∣ = |2z − δ|

because b(sρ) = e(sλ) + 2z + g and b(sρ) = e(sλ) + g. Since 2z − δ ≤
max (δ, 2z), we get |2z − δ| ≤ 2g(1 − β)/α ≤ 2u(1 − β) by (7) and (11).

2a. Sub-Case b(uλ) ≤ b(uλ), see Fig. 10. We conclude that sλ = uλ. It follows
from 6/7 ≤ β < 1 that s/ |2z − δ| ≥ u/(2u(1−β)) = 1/(2(1−β)) ≥ 7/2 > 2,
which means that sλ = uλ is periodic. Hence σ is in βPᵀ

α(w), a contradiction.
2b. Sub-Case b(uλ) > b(uλ), see Fig. 11. By z ≤ g(1 − β)/α of (11), we get

z ≤ u(1−β) and thus s = u−z ≥ βu. It follows from (10) and (7), and 2(
√

2−
1) < 6/7 ≤ β < 1 that s/ |2z − δ| ≥ βu/(2g(1−β)/α) ≥ gβ2/(2g(1−β)) =
β2/(2(1 − β)) > 2, which means that sλ is periodic. Since sλ is a prefix of uλ

of length s ≥ uβ, σ is in βPᵀ
α(w), a contradiction.

The next lemma follows immediately from Lemmas 7 and 12.

Lemma 13 Given two real numbers α, β with α > 1 and 6/7 ≤ β < 1, the number

of all aperiodic α-gapped palindromes
∣
∣
∣βPᵀ

α(w)

∣
∣
∣ of a word w of length n is less than

3αn/(1 − β).

Fig. 9 Sub-Case 1b

Theory Comput Syst (2018) 62:162–191 175

Fig. 10 Sub-Case 2a. The left and the right gapped repeat show the cases 2z − δ > 0 and 2z − δ < 0,
respectively

Theorem 14 Given a word w of length n and a real number α > 1, the number of
all maximal α-gapped palindromes

∣
∣Gᵀ

α (w)
∣
∣ is less than 28αn + 7n.

Proof By Lemmas 8 and 13,
∣
∣Gᵀ

α (w)
∣
∣ = ∣

∣βPᵀ
α(w)

∣
∣ +

∣
∣
∣βPᵀ

α(w)

∣
∣
∣ < 2(α +

1)E(w)/β + 3αn/(1 − β) for every 6/7 ≤ β < 1. Applying Lemma 2, the term
is upper bounded by 6(α + 1)n/β + 3αn/(1 − β). This number is minimal when
β = 6/7, yielding the bound 28αn + 7n.

3 Finding All Maximal α-gapped Repeats

For the upcoming algorithmic problems, we fix a word w of length n on an alphabet
of size nO(1). Our computational model is the word RAM model with word size
�(lgn) (where the function lg is the logarithm to base two). Consequently, each
character of w fits into a constant number of memory words.

Our algorithm is split into three parts. A part finds all α-gapped repeats with

(1) an arm of one character,
(2) an arm of length between two and γ lgn characters, and
(3) arms longer than γ lgn characters.

As a starter, we can find (1) very easily in our target time of O(αn):

Lemma 15 We can compute all maximal α-gapped repeats with an arm of one
character in a word w of length n in O(αn) time.

Proof For each position i with 1 ≤ i ≤ n, we check whether the characters w[i]
and w[i + j] form the arms of an maximal α-gapped repeat, for 1 ≤ j ≤ α. They
form an α-gapped repeat if w[i] = w[i +j]. If w[i] = w[i +j] we try to prolong the
arms w[i] and w[i + j] to check whether the found α-gapped repeat is maximal.

The main ingredient to our algorithms dealing with (2) and (3) is a data structure
for finding maximal equal subwords of a word that start or end at some particular
positions.

Fig. 11 Sub-Case 2b. The left and the right gapped repeat show the cases 2z − δ > 0 and 2z − δ < 0,
respectively

176 Theory Comput Syst (2018) 62:162–191

Fig. 12 Occurrences of y in z. The two rightmost subwords are single occurrences. The other subwords
are occurrences within a run. We store the starting position of the first occurrences of the subwords in a
run, and the starting positions of the subwords that are not part of a run

Lemma 16 Given a word w of length n, there is a data structure that

(a) it can be built in O(n) time,
(b) it can compute the longest common prefix of two suffixes of w in constant time,

and
(c) it can compute the longest common suffix of two prefixes of w in constant time.

Proof We build the suffix array of w and the longest common prefix (LCP) array
of w in O(n) time [15]; Subsequently we invert the suffix array in O(n) time. Having
a range minimum data structure [9] on the LCP array, we can solve (b) since the
longest common prefix of two suffixes w[s..] and w[t..] can be answered with a
range minimum query on the LCP array with the range [SA−1[s] + 1..SA−1[t]] in
constant time, where SA−1 denotes the inverse suffix array. By building the same
data structure on the mirror image of w, we solve (c).

We call the data structure of Lemma 16 an LCE↔ data structure.1 Subsequently,
we provide some tools that show the usefulness of an LCE↔ data structure for our
problem. We start with a lemma that uses an LCE↔ data structure:

Lemma 17 Given a word w of length n, we can preprocess it inO(n) time such that
we can return the longest factor with the period p starting at position i in w (for
1 ≤ i, p ≤ n arbitrary), in constant time.

Proof Once we have produced the LCE↔ data structure of w, we just have to com-
pute the longest common prefix of w[i, n] and w[i+p, n]. If this prefix is w[i+p,
],
then w[i,
] is the longest p-periodic factor starting at position i.

Let y be a factor of w with period p. Further, let z be a subword of length
 |y| of
w. For an easier presentation of our algorithm, we distinguish between two types of
occurrences of y in z (see Fig. 12).

1Our abbreviation for a data structure answering longest common extension queries in both directions.

Theory Comput Syst (2018) 62:162–191 177

– On the one hand, we have the so-called single occurrences.

– If y is aperiodic, then all its occurrences in z are single occurrences;
there are O(
) such occurrences [16].

– If y is periodic, then the subword z[i, i + |y| − 1] is a single occurrence
if y occurs neither at position i − p nor at position i + p in z.

– On the other hand, we call an occurrence of y within a run, if the occurrence
is contained in a run whose period is equal to the smallest period of y. Let
z[i, i + |y| − 1] be an occurrence of y. If there is an occurrence of y that
shares with z[i, i + |y| − 1] at least |y| /2 positions, then both occurrences are
occurrences of y within a run. Conversely, given a run r with period p and an
occurrence z[i, i +|y|− 1] of y, then z[i, i +|y|− 1] is an occurrence within the
run r if y occurs either at i−p or at i+p. Additionally, we say that z[i, i+|y|−1]
is the first occurrence of y within a run of period p if y does not occur at i−p but
occurs at i+p. By Lemma 4, there are at most O(
) runs containing occurrences
of y in z, i.e., O(
) first occurrences of y in a run in z.

Corollary 18 Given a subword y of w and a subword z of w with length
 |y|, the
occurrences of y in z can be represented succinctly in O(
) words.

Proof We only store the starting position of the single and first occurrences, and the
period of y. This is sufficient, since we can reconstruct the missing information in
constant time due to the LCE↔ data structure.

Having the starting position of the first occurrence of y in a run r we can com-
pute all further occurrences within the run r by an arithmetic progression with the
difference equal to the period of y. The number of occurrences within this run can be
determined in constant time due to Lemma 17.

In our approach, we restrict y to be a factor of the length 2k for an integer k ≥ 1;
a factor is called a basic factor if its length is equal to a power of two. We can find
the occurrences of a basic factor y in a subword z of length
 |y| efficiently due to
the following lemma:

Lemma 19 ([4], as well as [10, 16] and the references therein) For each basic fac-
tor y of w, we compute an array containing the starting positions of the occurrences
of y in ascending order. Computing the arrays can be done in O(nlgn) time.

In order to search in the arrays of Lemma 19 efficiently, we are interested in a data
structure built upon a sorted integer array A that can, given an integer j ,

– retrieve the largest index i with A[i] ≤ j (predecessor query),
– retrieve the smallest index i with A[i] ≥ j (successor query), and
– conduct both above operations in O(lglg |A|) time.

178 Theory Comput Syst (2018) 62:162–191

Such a data structure is given in

Lemma 20 ([21, Observation 2.1]) Given a sorted array of length n storing integers
(represented by lgn bits), we can build a data structure in O(n) time that answers
predecessor and successor queries in O(lglgn) time.

We can use Lemmas 19 and 20 in the following way (see also Fig. 13):

Corollary 21 Given a word w of length n and an integer
 ≥ 2, we can preprocess
w inO(nlgn) time such that given a basic factor y := w[i, i +2k −1] and a subword
z := w[j, j +
2k − 1] of w with k ≥ 0, we can find the occurrences of y in z in
O(lglgn +
) time, and compute their representation as described in Corollary 18.

Proof As a preprocessing step, we construct the arrays of Lemma 19 in O(nlgn)

time. On each such array, we construct the data structure of Lemma 20.
Assume that we get a basic factor and that we want to compute the representation

of Corollary 18. In order to find the occurrences of y in z, we search the successor of
j and the predecessor of j +
2k −1 in the array A storing the starting positions of the
occurrences of y. Both retrieved values define the range in A where all occurrences
of y in z are contained. Within this range, we can compute the representation of
Corollary 18 in O(
) time: We linearly process the occurrences in this range from left
to right. We return the beginning position of every single occurrence and of every first
occurrence. In order to get O(
) running time, we have to omit all occurrences within
a run except the first occurrence. To this end, we perform the following procedure
using a constant number of longest common prefix queries: Since we scan linearly
from left to right, we always access the first two (consecutive) occurrences in the
run. First, we compute the length of the overlap of both occurrences; this length is
the period of y. Subsequently, we determine the length of the run by Lemma 17.
Having this length, we skip the remaining occurrences of y in this run (since every
occurrence of y is stored in A, and we know the run’s length and period, we know
how many occurrences we have to omit). If the next occurrence of y (starting after
this run) starts after the computed predecessor of j +
2k − 1, then we terminate.

Fig. 13 Occurrences of the basic factor y = w[i, i+2k−1] in z = w[j, j+8·2k−1] in Corollary 21, with c =
8. The overlapping occurrences are part of a run. The occurrences of a run r are represented only by its
first (leftmost) occurrence of y in r . In total, the representation of the occurrences of y in z is composed
of, along with the period of y, four starting positions: three first occurrences and one single occurrence

Theory Comput Syst (2018) 62:162–191 179

Fig. 14 Covering the word w with the superblocks xm

Since there are at most O(
) runs and single occurrences of y in z, the conclusion
follows.

In order to accelerate the search to O(αn) time, we first consider α-gapped
repeats with arms whose lengths are at most γ lgn, for an integer constant γ >

0. Our idea is to first spot the right arm uρ and then to apply some tech-
niques to find the left arm uλ: If we cover the word w with the set of sub-

words
{

w[mlgn + 1, (m + γ + 1)lgn] : 0 ≤ m ≤ n
lgn

− γ − 1
}

then the right arm

has to be contained in at least one of these subwords. The left arm can be at
most αγ lgn characters away from the right arm. By stretching every subword of
the above cover to the left, the complete gapped repeat is contained in exactly one
subword

xm :=
{

w[1, (m + γ + 1)lgn] if (m − γα)lgn + 1 < 1,

w[(m − γα)lgn + 1, (m + γ + 1)lgn] else,

for an integer m with γα ≤ m ≤ n
lgn

− γ − 1. We call each xm a superblock (see
Fig. 14). Our task is to enhance each superblock with a data structure that allows
us to query for possible positions of the left arm. We show that this query can be
answered efficiently in the light that the right arm is always contained in the last γ lgn

characters of a superblock. The main idea is to use a bit vector marking the starting
positions of a basic factor instead of relying on the arrays described in Lemma 19
and used in the proof of Corollary 21. Nevertheless, we need Corollary 21 for finding
long-armed gapped repeats (see later Lemma 26).

Lemma 22 ([10]) Given a word x and an integer β > γ such that |x| = βlgn, we
can process x inO(βlgn) time such that given a basic factor y = x[i2k+1, (i+1)2k]
with i, k ≥ 0 and i2k + 1 > (β − γ)lgn, we can compute a bit vector of length βlgn

180 Theory Comput Syst (2018) 62:162–191

Fig. 15 The setting of Lemma 23. The difference to Corollary 21 is that y has to appear in the last γ lgn

characters of x

marking the beginning positions of the occurrences of y in x. The computation of the
bit vector takes O(β) time.

It is easy to use Lemma 22 as a precomputation step in order to find the occur-
rences of basic factors in small subwords on the precomputed word efficiently (see
also Fig. 15):

Lemma 23 Let y and x be defined as in Lemma 22, and let z be a subword of x with
length
 |y|. Given the bit vector of Lemma 22 marking the starting positions of all
occurrences of y in x, we can represent all occurrences of y in x by the representation
described in Corollary 18 in O(
) time.

Proof We assume that our RAM model supports retrieving the location of the
most-significant set bit in the binary representation of an integer in constant time.2

Otherwise, as a preliminary step, we store the mapping i �→ 	lgi
 + 1 for every
integer i with 1 < i < n in a lookup table, in O(n) time.

By being able to find the location of the most significant set bit of an integer in
constant time, we can output all occurrences of y in z in O(
) time. To this end, we
scan the bit vector of Lemma 22 in chunks of lgn bits. By skipping all chunks that
represent positions of x before z, we only process chunks representing positions of z.
Given such a chunk, we retrieve the position of the most-significant set bit. This bit
represents an occurrence of y that can be retrieved by standard bit-operations. We
erase this bit and start to query for the location of the new most-significant set bit. If
there is no bit set in the current chunk, we fetch the next chunk.

In order to get the representation of Corollary 18, we need to handle occurrences
within a run analogously to the proof of Corollary 21.

After having described all tools, we start with the presentation of the algorithm
finding all maximal α-gapped repeats of w with an arm size larger than one. We first
deal with the short arms:

2Commodity computers of the x86 family have an extension instruction set that provides access to the
functions leading zeros count and bit scan reverse, both returning the number of leading
zeros of the binary representation.

Theory Comput Syst (2018) 62:162–191 181

Lemma 24 Given a word w and α ≥ 1, we can find all maximal α-gapped repeats
uλ, v, uρ with 1 <

∣
∣uρ

∣
∣ ≤ γ lgn occurring in w, in O(αn) time.

Proof A maximal α-gapped repeat uλ, v, uρ with
∣
∣uρ

∣
∣ ≤ γ lgn has a right arm uρ

that must be contained in a subword w[mlgn + 1, (m + γ + 1)lgn], for an integer m

with 0 ≤ m ≤ n
lgn

− γ − 1. By fixing the interval where uρ may occur (i.e., fix m),
we know that the entire repeat is contained in xm (see Fig. 16).

An overview of our algorithm follows (see also Algorithm 1): As a preprocess-
ing step, we equip every superblock with the data structure described in Lemma 22,
and create an LCE↔ data structure on it. For the actual search, we process each
superblock linearly. In each superblock, we search for all maximal α-gapped repeats
uλ, v, uρ that are contained in xm with uρ contained in the suffix of length γ lgnof
xm. In order to spot the right arm uρ of a possible gapped repeat, we have to iterate
over all possible lengths. Since a linear scan over all lengths would take too much
time, we first compute a gapped repeat whose right arm is a basic factor, and then try
to extend such a gapped repeat to a maximal α-gapped repeat. To this end, we iterate
over 0 ≤ k ≤ lg(γ lgn) to find gapped repeats with an arm length between 2k+1 and
2k+2 by searching for gapped repeats whose right arms are basic factors of length 2k

Fig. 16 Idea of the proof of
Lemma 24. The algorithm
iterates over m, and uses the
data structures built on each
superblock xm to spot gapped
repeats whose right arms are at
the end of xm while having left
arms contained somewhere
in xm

182 Theory Comput Syst (2018) 62:162–191

Fig. 17 Extending a gapped repeat whose right arm is a basic factor. Fixing xm in the proof of Lemma
24, we try to spot gapped repeats whose arms contain a certain basic factor. If we can extend this gapped
repeat to a maximal gapped repeat, we output it. The functions lcs(i, j) and lcp(i, j) denote the longest
common prefix and the longest common suffix, respectively, starting at i and j

contained in the last γ lgn characters of xm (since we do not allow the overlapping of
those right arms, their number is at most γ

lgn

2k).
In more detail, we start with fixing a superblock xm. We want to build maximal

α-gapped repeats by extending gapped repeats whose arms are basic factors (see
Fig. 17). A maximal α-gapped repeat uλ, v, uρ with 2k+1 ≤ ∣

∣uρ

∣
∣ ≤ 2k+2 has a right

arm uρ that contains at least one subword yρ = w[j2k +1, (j +1)2k] starting within
the first 2k positions of uρ (b(uρ) ≤ b(yρ) < b(uρ) + 2k). By definition, there is a
copy yλ of the subword yρ that occurs also within the first 2k positions of uλ, namely
yλ = w[b(uλ) + b(yρ) − b(uρ), b(uλ) + e(yρ) − b(uρ)]. Finding the respective
copy yλ of yρ helps us discovering the location of uλ.

Assume that we identified the copy yλ := w[
 + 1,
 + ∣
∣yρ

∣
∣] for an integer
 with

0 ≤
 < n; we try to build uλ and uρ by extending yλ and yρ in both directions,
respectively. To this end, we compute the longest factor p of xm that ends both at j2k

and at
, and the longest factor s that starts both at (j + 1)2k + 1 and at
 + ∣
∣yρ

∣
∣ + 1.

If
 + ∣
∣yρ

∣
∣ + |s| > j2k − |p|, then yλ and yρ do not determine a maximal repeat

(the gap would have a negative length). Otherwise (
 + ∣
∣yρ

∣
∣ + |s| ≤ j2k − |p|), let

sλ and sρ denote the left and right occurrences of s, and let pλ and pρ denote the
left and right occurrences of p, respectively. Then uλ is obtained by concatenating
pλ, xm[
 + 1,
 + |y|], and sλ, while uρ is obtained by concatenating pρ , xm[j2k +
1, (j + 1)2k], and sρ . To avoid duplicates, the determined repeat is only reported if
its right arm contains the position j2k + 1 of xm within its first 2k positions.

The algorithm above does not describe how to find the copy yλ (efficiently). We
rectify this omission now: Since

∣
∣uρ

∣
∣ < 2k+2 and

∣
∣yρ

∣
∣ = 2k , the copy yλ is contained

in the subword of xm of length α2k+2 ending at position j2k . In our preprocessing,
we already equipped xm with the data structure from Lemma 22. We use this data
structure as described in Lemma 23: It allows us to retrieve every possible subword yλ

inside the subword of length α2k+2 ending at position j2k , in O(α) time. These
occurrences can be single occurrences and occurrences within runs. There are O(α)

Theory Comput Syst (2018) 62:162–191 183

single occurrences, and we can process each of them individually to find the maximal
α-gapped repeat that is determined by yρ and this occurrence.

However, it is not efficient to do the same for the occurrences of yρ that are within
a run (there can be �(α) many occurrences). Instead, we locate the first occurrence
in each run (there are at most O(α) many first occurrences): Let y denote the factor
of yρ . Assume we have a repetition of y’s inside the factor of xm of length α2k+2

ending at position j2k . Let
 be the starting position of the first occurrence of y in
this repetition, and let p be the period of y. By Lemma 17, we can determine the
maximal p-periodic subword (a run of period p) rλ of xm containing this repetition
of y-occurrences. Similarly, we can determine the maximal p-periodic subword (a
run of period p) rρ that contains yρ . To determine efficiently the α-gapped repeats
containing yρ in the right arm and yλ in the left arm, where yλ is an occurrence
in rλ, we analyze several cases (see Fig. 18). We group the cases by the fact whether
b(uρ) > b(rρ), b(uρ) = b(rρ), or b(uρ) < b(rρ) holds. In each case, we determine
the exact location of uλ and uρ by querying the LCE↔ data structure on xm:

(a-c) Assume uρ starts within rρ , but after rρ’s first position (e(rρ) > b(uρ) >

b(rρ)). Then uλ starts at the first position of rλ (otherwise, we could extend both
arms to the left, a contradiction to the maximality of the repeat).

(a) If uρ ends at a position to the right of rρ , then uλ ends at a position to the right
of rλ (otherwise, it would again contradict to the maximality). Moreover, the
suffix of uλ occurring after the end of rλ and the suffix of uρ occurring after the
end of rρ are equal to the longest equal substring starting at positions e(rλ) + 1
and e(rρ) + 1, and can be computed by a longest common prefix query on xm.

(b) If uρ ends exactly at the same position as rρ (e(uρ) = e(rρ)), then uρ is periodic
with the period p as rρ . We compute the longest p-periodic prefix u′ of rλ
that is a suffix of rρ . By knowing the period p (determined by two subsequent
occurrences of yρ) and the length of rλ and rρ , the factor u′ can be determined
in constant time.

Since uλ is longer than p, the α-gapped repeats under consideration have the
left arm uλ := rλ[1, |u′| − pi] and the right arm uρ := rρ[|rρ | − (|u′| − pi) +
1, |rρ |] for i ≥ 0 such that the gap v := w[e(uλ) + 1, b(uρ) − 1] respects the
condition |uλv| ≤ α |uλ|.

(a) (b) (c)

(g)

(d)

(h)(f)(e)

Fig. 18 Spotting gapped repeats with periodicity. This is done by a case analysis in the proof of Lemma
24. Each case is depicted in order (from left to right, top to bottom)

184 Theory Comput Syst (2018) 62:162–191

(c) The final case is when uρ ends at a position of rρ , prior to rρ’s last position
(e(uρ) < e(rρ)). In that case, we get that uλ = rλ (otherwise, we could extend
both arms to the right). The left arm uλ is equal to a factor zhz′ for an integer
h ≥ 2, where z = rλ[1, p], p is the period of rλ, and z′ is a prefix of z.

We can get the position of the first and the last occurrence of z in rρ . If
the first occurrence starts at
′, then the starting positions of the succeeding
occurrences of z form the arithmetic progression
′,
′ + p, . . . ,
′ + tp for an
integer t ≥ 1. For each 0 ≤ i ≤ t , we let uρ start at position
′ + ip (and check
whether uρ ≡ uλ by knowing the length of uρ and rρ).

Finally, additional care has to be taken for the border cases. If uρ is a suffix
of rλ, we have to check that we cannot extend simultaneously uρ and uλ to the
right. (uρ cannot be a prefix of rρ since we assumed for the cases (a-c) that
b(uρ) > b(rρ).)

(d-f) Assume uρ starts at the first position of rρ (b(uρ) = b(rρ)).

(d) If uρ ends at a position inside rρ , prior to its last position (b(rρ) = e(uρ) <

e(rρ)), then uλ ends at the last position of rλ (otherwise, both arms could be
extended to the right). This means that the gap between the two arms is uniquely
determined, and that the arms are periodic for a period p. We compute the
longest p-periodic suffix of rλ that is a prefix of rρ , and check whether the two
occurrences of this factor determine a maximal α-gapped repeat.

(e) If uρ ends at the last position of rρ , then we know the exact location of uρ . We
can proceed analogously to case (c) by symmetry.

(f) Finally, if uρ ends at a position to the right of rρ , then uλ ends also after rλ
(e(uρ) > e(rρ)∧e(uλ) > e(rλ)), and the suffix of uλ occurring after rλ is equal
to the suffix of uρ occurring after rρ . We determine this suffix by a longest
common prefix query on xm. With this suffix, we obtain the location of both
arms.

(g-h) The last case is when uρ starts at a position to the left of rρ (b(uρ) < b(rρ)).
Then uλ starts at a position before the first position of rλ (b(uλ) < b(rλ) < e(uλ));
the prefix of uρ occurring before the beginning of rρ is equal to the prefix of uλ

occurring before rλ. The length of these prefixes can be retrieved with a longest
common suffix query.

(g) If e(uρ) ≤ e(rρ), then e(uλ) ≤ e(rλ), and we are done.
(h) Otherwise (e(uρ) > e(rρ)), uλ and uρ contain rλ and rρ , respectively. We

determine uλ be the longest common substring starting at e(rλ)+1 and e(rρ)+1.

To sum up, we can determine the locations of both arms of the repeat in all cases
(a-g) by the LCE↔ data structure in constant time. For each found pair of arms, we
have to check whether

– the arms form a (valid) maximal α-gapped repeat,
– their length is between 2k+1 and 2k+2, and whether
– the right arm contains position j2k + 1 of xm within its first 2k positions.
– for the cases (b) and (c) we check that the right arm contains yρ[1] in its first 2k

positions.

Theory Comput Syst (2018) 62:162–191 185

The last two conditions ensure that no gapped repeat is reported twice within the
same superblock.

This concludes our analysis for finding all α-gapped repeats of xm, for each m

separately. We can ensure that our algorithm finds and outputs each maximal repeat
exactly once when moving from xm to xm+1. To this end, we check that the right
arm of each repeat we find is not completely contained in xm (so it is already found).
This condition can be easily imposed in our search: when constructing the arms that
are determined by a single occurrence of yρ , we check the containment condition
separately; when constructing the arms determined by a run of yρ-occurrences, we
have to impose the condition that the right arm extends out of xm when searching the
starting positions of the possible arms.

Finally, we compute the complexity of the algorithm. We need O(n) preprocessing
time for w, and O(|xm|) = O(γ αlgn) preprocessing time for each xm. For fixed m,
k, and j , our process takes O(α + occj,m,k) time, where occj,m,k is the number of all
maximal α-gapped repeats determined with the fixed values m, j, k. Iterating over
all values m, j and k gives the overall time complexity of the algorithm, which is

O

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n
︸︷︷︸

precomp. on w

+
n

lgn
∑

m=0
︸︷︷︸

for all xm

⎛

⎜
⎜
⎜
⎜
⎜
⎝

γαlgn
︸ ︷︷ ︸

precomp. on xm

+
lg(γ lgn)
∑

k=0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

γ
lgn

2k
∑

j=0

(

α + occj,m,k

)

︸ ︷︷ ︸

for all yρ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⊆ O(αn),

since the total number of maximal α-gapped repeats is O(αn).

In the last part of this section, we show how to find all maximal α-gapped repeats
with longer arms. To this end, we introduce a so-called block-representation of a
word w: We partition w into subwords of lgn characters w[1 + ilgn, (i + 1)lgn]
for every 0 ≤ i < n/lgn (we can ensure that every block has the same number of
characters by padding w with dummy characters such that n

lgn
is integer). We call

these subwords blocks of w. The lexicographic order on Σ induces a linear order
on the blocks. Since there are at most n/lgn different blocks, we can enumerate the
blocks with numbers from 1 to at most n/lgn such that the j -th smallest block gets
the number j . For our purpose, an enumeration from 1 to n (possibly omitting some
values) is sufficient. Before showing how to compute the enumeration, we start with
the definition of the block-representation: A word w′ is the block-representation of
w if

– w′ is a word of length n/lgn on the alphabet {, . . . , n}, and
– w′[i] = j (1 ≤ i ≤ n/lgn) if and only if the block of w with number j is equal

(in the sense of ≡) to w[1 + (i − 1)lgn, ilgn].
It is easy to provide a linear-time algorithm computing the (larger) enumeration: We
start with building the LCE↔ data structure of w. Subsequently, we cluster together
the suffixes of the suffix array that share a common prefix of length at least lgn.
There are at most n different clusters; hence we can enumerate all clusters, starting

186 Theory Comput Syst (2018) 62:162–191

from 1 to at most n. A block is associated with the number of a cluster if the cluster
contains the suffix that starts at the same position as the block.

Lemma 25 We can build the block representation w′ of a word w of length n inO(n)

time.

Equipped with Lemma 25, we are ready to present the algorithm finding long-
armed maximal α-gapped repeats with large values for α:

Lemma 26 Given a word w of length n, and an α ≥ lgn, we can find all maximal
α-gapped repeats uλ, v, uρ with

∣
∣uρ

∣
∣ > γ lgn occurring in w, in O(αn) time.

Proof The general approach in proving this lemma is similar to the techniques of the
proof of Lemma 24. Essentially, when identifying a new maximal α-gapped repeat,
we try to fix the place and length of the right arm uρ of the respective repeat, which
restricts the place where the left arm uλ occurs. This allows us to fix a long enough
subword of w as being part of the right arm, detect its occurrences that are possibly
contained in the left arm, and, finally, to efficiently identify the actual repeat. The
main difference is that we cannot use the result of Lemma 22, as we have to deal
with repeats with arms longer than γ lgn. Instead, we use the structures constructed
in Corollary 21. However, to get the stated complexity, we apply this lemma to the
block-representation of w, rather than to w itself.

In this sense, the first step is to construct the block-representation w′ of w. Sub-
sequently, we construct the LCE↔ data structures of w and w′, as well as the data
structure of Corollary 21 for the word w′. Every construction step is conducted in
O(n) time.

Like in the proof of Lemma 24, we iterate over all possible arm lengths. For an
integer k, we search for all maximal α-gapped repeats uλ, v, uρ in w with 2k+1lgn ≤
|uλ| ≤ 2k+2lgn.

For the following, we fix k. Similar to the block-representation, we partition
the word w into subwords, but this time into subwords of length 2klgn, called
k-blocks. Again (as for blocks), we assume that each k-block has the same number
of characters.

The idea of this partition is the following: If a maximal α-gapped repeat uλ, v, uρ

with 2k+1lgn ≤ |uλ| ≤ 2k+2lgn exists, then it contains a k-block within its first 2klgn

positions. Let z be the first k-block contained in uρ . Since uρ contains z, the left
arm uλ also contains an occurrence of z. However, this occurrence is not necessarily
starting at a position j lgn + 1 for an integer j ≥ 0; this means that it does not have
to start with a block. In this sense, we cannot capture this occurrence with our block-
representation. Nevertheless, at least one of the subwords of length 2k−1lgn starting
within the first lgn positions of z has an occurrence in uλ that starts with a block (the
subword itself in z does not have to start with a block, see also Fig. 19). In order
to find such a subword, we iterate over all lgn positions. Let us fix a subword yρ

of length 2k−1lgn that starts within the first lgn positions of z. As said, yρ is not
necessarily a sequence of 2k−1 blocks, i.e., yρ is not represented by a subword of w′

Theory Comput Syst (2018) 62:162–191 187

Fig. 19 Finding occurrences of y starting with a block in proof of Lemma 26. The distance δ is smaller
than lgn, and the distance ϕ is smaller than 2k lgn, since z is the first k-block contained in z

in general. We look for an occurrence of yρ starting at one of the α2k+2lgn positions
to the left of z. For each such occurrence yλ that correspond to a sequence of blocks,
we try to extend both yλ and yρ to an α-gapped repeat (having the same idea as for
Lemma 24 in mind).

Let y denote the factor of yρ . By binary searching the suffix array of w′ (using
longest common prefix queries on w to compare the factors of lgn characters of y

and the blocks of w′, at each step of the search) we try to detect a factor of w′ that
encodes a word equal to y. Assume that we can find such a sequence y ′ of blocks in w′
(otherwise, y cannot correspond to a sequence of blocks from uλ, so we choose a new
yρ by taking the next starting position). By Corollary 21, we can spot the occurrences
of y′ in the α2k+2 blocks of w′ that occur before the blocks of z, in O(lglg

∣
∣w′∣∣ + α)

time; this range corresponds to an interval of w with a length of α2k+2lgn.
Each of the occurrences of y′ fixes a possible left arm uλ; this arm, together with

the corresponding arm uρ can be constructed with the same techniques as in Lemma
24. In the case of a single occurrence uλ (there are at most O(α) many of that kind),
we extend uλ and uρ in both directions to obtain two arms, for which we have to
check if they define a valid α-gapped repeat. In order to avoid duplicates, we check
that the length of each arm is between 2k+1 and 2k+2, and that z is the first k-block
of the right arm.

Complications occur when some occurrences of y′ are within a run. Given a run
of occurrences of y′, we cannot determine the period of y in general, but a multiple
of this period. More precisely, we know that the period of y is a multiple of the block
length lgn. However, this is not a problem, since the subword y in uρ corresponds to
a block sequence from uλ, hence definitely to one of the subwords encoded in the run
of occurrences of y′. Analogously to the analysis in Lemma 24, we can determine
the maximal factor containing y such that it has the same period as the repetition of
y′-occurrences (with the period measured in w).

It remains to prove that each maximal gapped repeat is counted only once:

– Assume that there are two factors y′
1 and y′

2 of w′ that correspond to two separate
factors y1 and y2, each of length 2k−1lgn, occurring in the first lgn characters of
z. Since y′

1 and y′
2 cannot define the same repeat, the distance between y′

1 and y′
2

is at least one block long, i.e., the distance between y1 and y2 is at least lgn, a
contradiction.

– Similarly, if we have found a subword y occurring in the first lgn characters of
a k-block z such that y determines an α-gapped maximal repeat, then the same

188 Theory Comput Syst (2018) 62:162–191

maximal repeat will not be determined by a subword of another k-block, since z

is the first k-block of uρ .

Let us evaluate the complexity of the above described algorithm. The preprocess-
ing, i.e., the construction of w′ and all of the needed data structures, takes O(n) time.
We have multiple nested iterations:

(a) We iterate over all 0 ≤ k ≤ lg n
lgn

− 2.
(b) For a fixed k, we examine every k-block z, and there are n

2k lgn
many.

(c) For a fixed z, we analyze each subword yρ of length 2k−1lgn starting within the
first lgn positions of the chosen k-block z.

(d) For each such subword yρ we find the occurrences of the block encoding the

occurrence of yρ in uρ in O
(

lg n
lgn

+ lglgn + α
)

time.

(e) For each of the O(α) single occurrences uλ, we check whether it is possible
to extend yλ and yρ to a maximal α-gapped repeat in O(1) time. We also have
O(α) occurrences of the block encoding uρ in runs, all of them are processed in
O(α + occz,y) time overall, where occz,y is the number of maximal α-gapped
repeats we find for a given z and y.

Overall, this adds up to

lg n
lgn

−2
∑

k=0

n

2klgn
︸ ︷︷ ︸

#z

lgn
︸︷︷︸

#yρ

(

lg
n

lgn
+ lglgn + α + occz,y

)

︸ ︷︷ ︸

process every possible yλ

∈ O(nlgn + αn), (12)

since the total number of maximal α-gapped repeats in w is upper bounded by O(αn).
Since α ≥ lgn, the statement of the lemma follows.

Lemma 27 Given a word w of length n, and an α < lgn, we can find all maximal
α-gapped repeats uλ, v, uρ with

∣
∣uρ

∣
∣ > γ lgn occurring in w, in O(αn) time.

Proof Initially, we run the algorithm of Lemma 26 only for k > lglgn to find all
maximal α-gapped repeats with an arm length of at least 2lglgnlgn. We see that (12)
with k > lglgn yields O(αn) time.

In the rest of this proof, we search for maximal α-gapped repeats whose arms’
length is upper bounded by 2lglgn+1lgn = 2(lgn)2. Setting
 := α · 2(lgn)2 +
2(lgn)2 = 2(α + 1)(lgn)2, the lengths of those gapped repeats is at most
. If we
cover w with the set of subwords {w[1 + m
, (m + 2)
] : 0 ≤ m ≤ n/
 − 2}, then
such an α-gapped repeat is contained in (at least) one subword of this cover.

In this sense, we can apply the algorithm of Lemma 26 to each subword in the
cover (iterating over all m) in order to detect all maximal α-gapped repeats with an
arm length of at least 2lglg(2
)+1lg(2
) contained completely in each subword of the
cover. Equation (12) with k ≥ lglg(2
) gives O(α
 + occm) running time for the
algorithm running on a subword of the cover (each is of length 2
), where occm is
the number of occurrences of all maximal α-gapped repeats with the above described
arm length in the m-th subword of the cover. Summing over all subwords of the cover,

Theory Comput Syst (2018) 62:162–191 189

we get O(αn) time in total. By knowing the overlap of two subsequent subwords of
the cover, it is easy to adopt the algorithm of Lemma 26 in such a way that no gapped
repeat is reported twice.

It is left to find all maximal α-gapped repeats with an arm length smaller than
2lglg(2
)+1lg(2
). For n large enough, it holds that 2lglg(2
)+1lg(2
) ≤ γ lgn, since
α ≤ lgn. But those maximal α-gapped repeats are already found by the algorithm of
Lemma 24 running in O(αn) time.

Putting the results of Lemmas 15, 24, 26 and 27 together, we get the following
theorem.

Theorem 28 Given a word w and an α ≥ 1, we can compute Gα(w) in O(αn) time.

Analogously, we can compute Gᵀ
α (w), generalizing the algorithm of [18]:

Corollary 29 Given a word w and α ≥ 1, we can compute Gᵀ
α (w) in O(αn) time.

Proof We construct the LCE↔ data structure of wwᵀ to test in constant time whether
a factor w[i, j]ᵀ occurs at a position in w. On searching the α-gapped palindromes
uλ, v, uρ (with uρ ≡ uλ

ᵀ), we split w into blocks and k-blocks (like in Lemma 26)
for each k ≤ lg |w|, to check whether there exists a gapped palindrome uλ, v, uρ

with 2k ≤ |uλ| ≤ 2k+1. This search is conducted analogously to the case of gapped
repeats, with the difference that when fixing the occurrence of a factor y in uρ , we
have to look for the occurrences of yᵀ in the subword of length O(α

∣
∣uρ

∣
∣) preceding

it; the LCE↔ data structure of wwᵀ is useful for this task, since it allows us to search
the mirror images of factors of w inside w in constant time.

4 Conclusion

We presented two major achievements that shed more light on the combinatorial and
computational aspects of α-gapped repeats. First, we succeeded in giving concrete
bounds for the maximum number of maximal α-gapped repeats and maximal α-
gapped palindromes of a word. Second, we elaborated two algorithms computing the
set of all maximal α-gapped repeats and the set of all maximal α-gapped palindromes,
respectively, of a word of length n on an integer alphabet. The achieved combinatorial
bounds and the time bounds of the algorithms are asymptotically optimal.

Nevertheless, we deliberately omitted the exact memory consumption of the cre-
ated data structures (currently O(n) words). With a more careful analysis of the
space, we could give preciser bounds (e.g., measured in bits) of the selected data
structures, perhaps yielding an algorithm working on succinct space. It is also inter-
esting to further refine both algorithms to such an extent that their running time is
output sensitive, i.e., having O(n + |Gα(w)|) and O(n + ∣

∣Gᵀ
α (w)

∣
∣) worst case run-

ning time, respectively, for a word w. Additionally, we think that our result can serve
as a basis for practical solutions, since most of the used data structures are well stud-
ied. In this sense, we also want to get better constants for the combinatorial bounds.

190 Theory Comput Syst (2018) 62:162–191

The current constants seem unreasonably large. We think that a more precise analysis
allows us to shrink the constants to a smaller number.

The presented bounds are still valid when working with the more general defini-
tion of α-gapped ϕ-repeats or α-gapped ϕ-palindromes: Let ϕ : Σ∗ → Σ∗ be a word
isomorphism, i.e. ϕ(uv) = ϕ(u)ϕ(v), and ϕ is bijective. For instance, id(v) = v is
a word isomorphism. A subword of the form uvϕ(u) (uvϕ(u)ᵀ) is called α-gapped
ϕ-repeat (ϕ-palindrome) iff uvu (uvuᵀ) is an α-gapped repeat (palindrome). It is
easy to see that our results are also applicable for α-gapped ϕ-repeats or α-gapped
ϕ-palindromes. This generalizes the analysis in [18, Sec. 5]; there, ϕ is equal to a
function building the base complements of a DNA string. The problem of enumer-
ating all 1-gapped ϕ-repeats or all 1-gapped ϕ-palindromes was already investigated
in [11, 12].

Acknowledgements We thank the anonymous reviewers for their careful reading of our manuscript and
their insightful comments and suggestions.

The work of Florin Manea was supported by the DFG grant 596676.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Badkobeh, G., Crochemore, M.: Computing maximal-exponent factors in an overlap-free word. J.
Comput. Syst Sci. 82(3), 477–487 (2016)

2. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The runs theorem.
arXiv:1406.0263 (2014)

3. Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding maximal pairs with bounded gap
Proc. CPM, volume 1645 of LNCS, pp. 134–149 (1999)

4. Crochemore, M., Rytter, W.: Usefulness of the karp-Miller-Rosenberg algorithm in parallel computa-
tions on strings and arrays. Theor. Comput. Sci. 88(1), 59–82 (1991)

5. Crochemore, M., Tischler, G.: Computing longest previous non-overlapping factors. Inf. Process. Lett.
111(6), 291–295 (2011)

6. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rytter, W., Walen, T.: Efficient Algorithms for Two
Extensions of LPF table: The Power of Suffix Arrays Proc. SOFSEM, volume 5901 of LNCS,
pp. 296–307 (2010)

7. Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal Bounds for Computing α-Gapped Repeats
Proc. LATA, pp. 245–255 (2016)

8. Dumitran, M., Manea, F.: Longest Gapped Repeats and Palindromes Proc. MFCS, volume 9234 of
LNCS, pp. 205–217 (2015)

9. Fischer, J., Heun, V.: Space efficient preprocessing schemes for range minimum queries on static
arrays. SIAM J. Comput. 40(2), 465–492 (2011)

10. Gawrychowski, P., Manea, F.: Longest α-Gapped Repeat and Palindrome Proc. FCT, volume 9210 of
LNCS, pp. 27–40 (2015)

11. Gawrychowski, P., Manea, F., Mercas, R., Nowotka, D., Tiseanu, C.: Finding Pseudo-repetitions Proc.
STACS, volume 20 of LIPIcs, pp. 257–268 (2013)

12. Gawrychowski, P., Manea, F., Nowotka, D.: Testing Generalised Freeness of Words Proc. STACS,
volume 25 of LIPIcs, pp. 337–349 (2014)

13. Gawrychowski, P., Tomohiro, I., Inenaga, S., Köppl, D., Manea, F.: Efficiently finding all maximal
α-gapped repeats Proc. STACS, volume 47 of LIPIcs, pp. 39:1–39:14 (2016)

http://creativecommons.org/licenses/by/4.0/
http://arXiv.org/abs/1406.0263

Theory Comput Syst (2018) 62:162–191 191

14. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational
biology. Cambridge University Press, Cambridge (1997)

15. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53, 918–936
(2006)

16. Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Efficient Data Structures for the Factor
Periodicity Problem Proc. SPIRE, volume 7608 of LNCS, pp. 284–294 (2012)

17. Kolpakov, R., Kucherov, G.: Finding Repeats with Fixed Gap Proc. SPIRE, pp. 162–168 (2000)
18. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput. Sci. 410(51), 5365–

5373 (2009)
19. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of Gapped Repeats and

Subrepetitions in a Word Proc. CPM, volume 8486 of LNCS, pp. 212–221 (2014)
20. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a

string. J. ACM 22(3), 346–351 (1975)
21. Ruzic, M.: Making deterministic signatures quickly. ACM Transactions on Algorithms 5 (3) (2009)
22. Tanimura, Y., Fujishige, Y., Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: A faster algorithm for

computing maximal α-gapped repeats in a string Proc. SPIRE, volume 9309 of LNCS, pp. 124–136
(2015)

	Tighter Bounds and Optimal Algorithms for All Maximal -gapped Repeats and Palindromes
	Abstract
	Introduction
	Combinatorics on Words
	Point Analysis
	Upper Bound on the Number of Periodic Maximal -gapped Repeats and Palindromes
	Upper Bound on the Number of Maximal -gapped Repeats
	Upper Bound on the Number of Maximal -gapped Palindromes

	Finding All Maximal -gapped Repeats
	Conclusion
	Acknowledgements
	Open Access
	References

